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Summary 

Cell atlas projects have nominated recurrent transcriptional states as drivers of biological processes and 
disease, but their origins, regulation, and properties remain unclear. To enable complementary functional 
studies, we developed a scalable approach for recapitulating cell states in vitro using CRISPR activation 
(CRISPRa) Perturb-seq. Aided by a novel multiplexing method, we activated 1,836 transcription factors 
in two cell types. Measuring 21,958 perturbations showed that CRISPRa activated targets within 
physiological ranges, that epigenetic features predicted activatable genes, and that the protospacer seed 
region drove an off-target effect. Perturbations recapitulated in vivo fibroblast states, including universal 
and inflammatory states, and identified KLF4 and KLF5 as key regulators of the universal state. Inducing 
the universal state suppressed disease-associated states, highlighting its therapeutic potential. Our findings 
cement CRISPRa as a tool for perturbing differentiated cells and indicate that in vivo states can be elicited 
via perturbation, enabling studies of clinically relevant states ex vivo. 
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Introduction 

Ongoing cell atlas projects have revealed remarkable cellular diversity within the body, identifying over 
500 distinct cell types1–5. Subsequent more targeted efforts within specific tissues have revealed that even 
greater diversity exists at the level of transcriptional state6,7, with some tissues like the brain comprising 
possibly thousands of transcriptionally distinct clusters8. Furthermore, many disease processes induce 
new transcriptional states, making them interesting candidates as drivers of pathology9–11. What is missing 
from these observational studies, however, is an understanding of how these transcriptional states came to 
be, how they are regulated, and what functional properties they may confer. Answering these questions in 
vivo is challenging because of the number of possible states, their rarity, the difficulty of targeting 
subpopulations with unclear origins, and the labor required to investigate each one individually. 

Here we take a complementary approach by attempting to elicit these in vivo transcriptional states in vitro 
using genetic perturbations of transcription factors. This approach would enable simpler and more 
scalable experiments but requires tools for carefully manipulating gene expression in differentiated cells. 
While cDNA overexpression has been used to direct differentiation or force transdifferentiation12–15, it can 
lead to non-physiological expression levels or isoforms that may not optimally capture natural cell states. 
We hypothesized that CRISPR activation (CRISPRa)16–18, which mimics the regulatory events that 
naturally control gene expression, might be a more nuanced tool, given its past successes19–25 and the 
notable enrichment of transcriptional regulators in the hits of prior screens16,26. However, two challenges 
arise in this endeavor: the need to be sensitive to the many possible outcomes of transcription factor 
perturbations, and persistent issues with CRISPRa guide efficacy25,27,28. Perturb-seq, like other single-cell 
CRISPR screens28–38, offers a solution by linking CRISPR-mediated genetic perturbations to their 
phenotypic effects via single-cell RNA sequencing. A single experiment can therefore enable 
simultaneous investigation of the drivers of multiple transcriptional states and the direct characterization 
of on-target activity. 

Our initial target is the fibroblast, a phenotypically plastic cell type that is ubiquitous in the body as the 
workhorse of connective tissue. In response to injury, fibroblasts become activated, leading to marked 
changes in morphology and behavior as they help orchestrate wound healing. Pathological activation 
results in fibrosis, a common cause of death with few treatments39. They are also mediators of 
inflammation in diseases like rheumatoid arthritis40–42, and major constituents of the tumor 
microenvironment43. Perhaps due to their natural plasticity, cell atlas studies revealed substantial 
fibroblast transcriptional heterogeneity, with some states tied to phenotypic differences41,42,44–54. A large-
scale study53 across 17 tissues identified unique fibroblast subpopulations in mice and humans, including 
an Lrrc15+ state in cancer-associated fibroblasts and a Dpt+ Pi16+ "universal" fibroblast state present in 
most tissues, hypothesized to be immunomodulatory and to serve as a progenitor state for other 
subtypes50. Another study54 identified 17 clusters of human fibroblasts across inflammatory diseases, and 
found likely concordant states: a SPARC+ COL3A1+ inflammatory state that was expanded in all diseases, 
and a CD34+ MFAP5+ state similar to the universal state. These findings suggest there is potential 
therapeutic value in promoting possibly beneficial states, such as the universal state, or suppressing 
disease-associated states, such as the inflammatory state, by identifying their respective regulators. 

Here we perform large-scale CRISPRa Perturb-seq experiments to test our ability to elicit these and other 
fibroblast transcriptional states. We exploit a simple and widely applicable modification to increase the 
throughput of Perturb-seq based on droplet overloading, enabling screens targeting 1836 candidate 
transcription factors with 10,979 guide RNAs in primary human fibroblasts and retinal pigment epithelial 
cells. These experiments revealed key principles governing CRISPRa activity and specificity, most 
notably that it appears to activate transcription factors within a physiological expression range, 
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establishing it as a nuanced tool for manipulating the transcriptome of differentiated cell types. 
Furthermore, our experiments identify key regulators driving the emergence of distinct fibroblast 
transcriptional states, including the universal and inflammatory phenotypes, and reveal cross-regulation 
between them that may reveal new therapeutic targets. Taken together, these results highlight the power 
of CRISPRa Perturb-seq to understand and recapitulate in vivo transcriptional states. 
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Droplet overloading for high-throughput Perturb-seq 

To enable unbiased studies, we set out to replicate a cDNA library targeting 1,836 candidate transcription 
factors13 using CRISPRa as the overexpression method. We constructed a VPH-dCas9 CRISPRa effector 
(Figure S1A, Methods)17,21 that showed robust and uniform activation of cell surface markers (Figure 
S1B). However, guide selection posed a challenge, as predicted CRISPRa guides from existing libraries 
were often inactive: e.g., only 3/8 guides targeting CD45 showed activity (Figure S1C). To ensure 
redundancy, we therefore chose 6 guides per target from existing libraries26,55–57, with rigorous off-target 
filtering (Methods). Our final library comprised 10,979 guides, including 78 overrepresented non-
targeting negative control guides (Figure S1D, Supplemental Table 1). 

Performing experiments at this scale with existing techniques was prohibitively expensive. This challenge 
has motivated the development of multiplexing strategies that trade off single-cell resolution for the 
ability to measure the average effects of more perturbations. These strategies include introducing multiple 
guides per cell by superinfection58–60 or "overloading"59,61 scRNA-seq assays so that more droplets contain 
cells, including more multiplets (2+ cells per droplet) (Figure 1A). In both cases, the average effects of 
perturbations can be reconstructed by solving a regression problem to demultiplex the superimposed 
effects (Figure 1B). 

We focused on the overloading approach because it separates perturbations across distinct cells, 
preventing unmodeled interactions and ensuring that strong perturbations do not overwhelm weak ones. 
This approach is particularly beneficial for studying transcription factor perturbations, which are likely to 
interact if introduced at high multiplicity. To develop our approach, we constructed a library of 155 single 
guide RNA (guides) targeting 140 essential genes (plus 16 non-targeting controls) that clustered in a 
previous screen (Figure 1C, Figure S2A, Supplemental Table 1)62. We transduced this library into 
RPE-1 cells stably expressing a ZIM3-dCas9 CRISPRi effector construct at low multiplicity of infection 
(MOI), sorted sgRNA-containing cells by fluorescence assisted cell sorting (FACS), and loaded ~125,000 
cells per lane onto two lanes of the 10x Genomics Chromium to achieve overloading (approximately eight 
times the typical cell loading density). The resulting scRNA-seq libraries contained ~36,000 loaded 
droplets per lane, split evenly between singlets and multiplets. 

We observed a saturation effect as droplet occupancy increased (Figure 1D) that is not accounted for in 
existing methods59. For example, scRNA-seq libraries made from doublet-containing droplets had only 
~1.8X as many total RNA molecules (measured in unique molecular identifiers, UMIs) as from singlet-
containing droplets. Library complexity (median detected genes) nevertheless continued to increase, 
suggesting library construction was not inhibited by overloading. Interestingly, we found that saturation 
was transcript-dependent. Estimates of average transcript capture efficiency for droplets of different 
occupancy levels revealed highly variable patterns, with some transcripts like RPL27A being captured 
more efficiently in multiplets, while others such as MT-CO2 (and other mitochondrial transcripts) 
exhibited declining capture efficiency as droplet occupancy increased (Figure 1E). 

To compensate for these saturation effects, we developed a new computational normalization (Methods). 
First, we introduced gene-level scaling factors that equalize capture rates across occupancies and 
identified “stable” genes whose capture rate was largely invariant (Figure 1E, center). For each droplet, 
we fit a global scale factor to these genes to infer the library size if all genes were stably captured; these 
estimates were better resolved by occupancy than the observed library sizes (Figure 1F). To normalize, 
we applied the gene-level corrections, scaled by the inferred library size, and centered and scaled each 
gene by its mean and standard deviation in control cells (Methods). With this saturation-aware 
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normalization, average phenotypes could be reconstructed from all droplets using linear regression 
(Figure 1B). 

We benchmarked the reconstructions by comparing replicability between different subsets of the data 
(Figure 1G). As a baseline, we split the singlets into two equal sets, independently computed average 
effects, and downsampled one set to create a calibration curve mapping reconstruction accuracy to the 
number of singlets that would yield equivalent performance (Methods). We first compared (using Pearson 
correlation, Figure S3A) the reconstructed average phenotypes using singlets versus doublets, triplets, or 
quadruplets. Without saturation-aware normalization, performance dropped strongly for higher 
occupancies (Figure 1H left). With saturation-aware normalization, we observed approximately one-to-
one performance by droplet number: e.g., 8,400 doublets yielded equivalent results to 8,400 singlets 
(Figure 1H right). Similar behavior was seen using varying numbers of doublets (Figure S3B) or all 
droplets containing up to 6 cells (Figure 1I, S3C). This normalization significantly improved efficiency, 
as without it, two to three times as many multiplets were needed to match the performance of 
conventional Perturb-seq (Figure 1I). Average phenotypes inferred from saturation-aware normalized 
droplets were visually indistinguishable from those using only singlets (Figure S3D top), whereas 
structural differences were apparent without saturation-aware normalization (Figure S3D bottom). As an 
alternative metric, we assessed how well the correlations between perturbations, which can drive 
clustering and functional insights, were recovered. Performance was strong (Figure 1J) and improved by 
saturation-aware normalization (Figure S3E). 

Finally, significant regression coefficients mark differentially expressed genes in this procedure. We 
observed improved stability in identifying differentially expressed genes (Figure S3F-H), and a 
consistent increase in the number detected per perturbation when using all droplets compared to all 
singlets (Figure S3I). Our approach therefore provided a simple and scalable means to conduct large 
Perturb-seq experiments by correcting the technical biases introduced by overloading. 
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Assessing strength and determinants of CRISPRa on-target activity using Perturb-seq 

We next applied our droplet overloading Perturb-seq approach to activate all transcription factors in two 
untransformed cell lines: Hs27 primary foreskin fibroblasts and RPE-1 retinal pigment epithelial cells. In 
total we measured about 808,000 and 1.76 million cells in Hs27 and RPE-1, respectively (Figure 2A, 
Figure S2B-C, Methods), across ten 10x HT lanes each and with even representation across perturbations 
(Figure S2B,C).  

These large datasets enabled direct assessment of on-target efficacy for 21,958 CRISPRa perturbations. 
The low expression of some transcription factors prevented us fitting the gene-level correction factors 
previously described, so we developed a simplified regression approach to quantify activation (Methods). 
Despite >50% of guides appearing inactive (Figure 2B, Figure S4A,B), 1,482 transcription factors could 
be activated in at least one cell type, including targets that were unexpressed according to baseline bulk 
RNA sequencing (Figure 2C, Figure S4C, Supplemental Table 4). Most activatable targets had 
multiple active guides (Figure 2D), suggesting a low false negative rate, and most (80%) expressed genes 
had at least one active guide.  

cDNA overexpression approaches typically express all genes with a common, often strong, exogenous 
promoter. In contrast, little is known about the range of expression levels induced by CRISPRa. To enable 
comparisons in a common scale, we quantified a gene’s expression in terms of its percentile rank relative 
to all genes in control cells (Methods); e.g., CRISPRa might activate a target from the 20th expression 
percentile to the 50th percentile. The top guides for each target consistently increased expression above 
control levels (Figure 2E and inset, blue dots), with a minority of guides causing expression to decline. 
On-target activity was also well-correlated across cell types (Figure 2F), particularly for top guides 
(Figure 2F, inset). 

Critically, CRISPRa activated unexpressed targets to a similar expression range seen in endogenously 
expressed transcription factors in control cells (Figure 2E, right), suggesting its activity is constrained by 
the endogenous gene regulatory environment. Accordingly, there were diminishing returns when trying to 
further activate already expressed genes (Figure S4D). CRISPRa-mediated activation of a target also 
yielded a similar expression level to the maximal induction seen as an indirect result of activating another 
transcription factor (Figure S4E,F). 

Constraints were also observed in terms of which genes could be activated, with cell-type-specific 
activation for 188 (Hs27) and 196 (RPE-1) targets (Figure 2C right, Figure S4C) and 319 genes resistant 
to activation entirely. Our dataset therefore provided a unique opportunity to explore the determinants of 
susceptibility to CRISPRa for many endogenous genes that were unexpressed in control cells (Figure 
S4G). Previous work has shown epigenetic context plays a role63, so we performed ATAC-seq and 
CUT&RUN assays targeting histone modifications (H3K27ac, H3K27me3, and H3K4me3) on both Hs27 
fibroblast and RPE-1 cells. We focused our initial analysis on Hs27 cells, to incorporate publicly 
available skin fibroblast DNA methylation data64. We also used maxATAC65 to predict binding activity 
for 112 Hs27-expressed transcription factors from our ATAC-seq data. Finally, we observed that KRAB 
zinc finger proteins were resistant to activation (Figure S4H), so we created a feature based on 
membership in KRABopedia66. In total, we collected 118 features, which we summarized for each target 
gene within a window centered at the transcription start site (TSS, Methods). 

To identify features that were predictive of susceptibility to CRISPRa, we performed penalized logistic 
regression (Figure 2G, top, Methods), which selected four features: H3K27me3, KRAB zinc finger 
identity, DNA methylation, and maxATAC-predicted YY1 binding (pred-YY1) (Figure 2G, bottom 
left). A model trained using these features achieved a 5-fold cross-validated AUC of 0.89 (Figure 2G, 
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bottom right), with the features exhibiting clear differences at target promoters according to 
susceptibility to activation (Figure S4I). The model could also distinguish between cases where targeting 
one of two TSSes for a gene resulted in activation while targeting the other did not (Figure S4J,K). pred-
YY1 and DNA methylation showed the strongest positive and negative effects, respectively, and models 
trained only with individual features confirmed these had the strongest predictive power (Figure S4L). 
Notably, pred-YY1 outperformed the ATAC-seq signal. The second strongest positive signal, aside from 
ATAC, was H3K27me3, consistent with Enrichr67,68 enrichment analysis of activatable genes using the 
"ENCODE_Histone_Modifications_2015" gene set (Figure S4M).  

We then tested the generality of our model by exploring whether the model trained on Hs27 cells could 
predict CRISPRa activity in RPE-1 cells. Because DNA methylation data was unavailable, we trained a 
reduced model using three features: pred-YY1, H3K27me3, and KRAB zinc finger identity. When 
evaluated on RPE-1 data, this reduced model achieved an AUC of 0.883 (Figure S4N). Consistent with 
Hs27 cells, activated promoters in RPE-1 showed high pred-YY1 (Figure S4I, bottom).  The reduced 
model also captured cell-type-specific differences in CRISPRa susceptibility, as evidenced by higher 
predicted activation probabilities for 33 genes uniquely activated in Hs27 cells compared to RPE-1 cells 
(Figure S4O).While these findings leave open the role of YY1 in mediating gene activation by CRISPRa, 
they reveal that the susceptibility of unexpressed genes to activation by CRISPRa is a largely predictable 
product of epigenetic context at target promoters, and that activation is constrained to a physiological 
expression range. 
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Seed-dependent off-target effects of CRISPR epigenetic editors 

The 21,958 transcriptional phenotypes we gathered represent one of the largest high-content CRISPR 
perturbation datasets gathered to date. Critically, each cell received only a single guide RNA and we 
targeted each gene with six independent guides across two cell types. This scale and the degree of internal 
replication within our experiment allowed us to investigate structural patterns in CRISPRa's activity in 
altering the transcriptome that were not previously possible. We applied our regression approach to 
reconstruct average transcriptional phenotypes for all perturbations and uncovered two key features. First, 
and as expected, guides inducing strong target activation did not necessarily induce strong transcriptional 
phenotypes (Figure S5A), likely reflecting context-dependent activity or regulation of transcription 
factors. Second, despite rigorous filtering during guide library design (Methods), clustering revealed an 
off-target effect: 9.7% of guides in Hs27 cells and 26.4% in RPE-1 cells clustered into large groups of 
guides sharing the same seed region (~5 PAM-proximal nucleotides, Figure 3A, right). 

Seed-dependent differences in Cas9 binding in mammalian cells69 and seed-dependent off-target effects 
of CRISPRi in bacteria70 have been reported. Here we found that CRISPRa seed-driven effects could be 
as strong as on-target effects in terms of overall impact (Figure 3B). We identified a common set of seeds 
that drove clustering across the two cell types (Figure 3C), which were notably enriched for PAM 
sequences (NGG/NAG) or their reverse complements (CCN/CTN) (Figure S3D). The presence of a 
“bad” seed did not hinder on-target activation (Figure S5B), suggesting that guides direct a combination 
of specific on-target effects driven by the full protospacer sequence and off-target effects driven by the 
seed. Accordingly, we could regress out apparently similar seed-driven effects in previous genome-wide 
CRISPRa fitness screens16,26,71 (Figure S5C-F, Methods), including a case in which the median fitness 
phenotypes of non-targeting negative control guide RNAs, grouped by seed, identified similar PAM-rich 
sequences (Figure 3E)16. In contrast, a CRISPRi fitness screen did not show obvious enrichment for 
PAM-containing seed sequences (Figure S5G), although we could identify seed-driven clusters in a 
previous large-scale CRISPRi Perturb-seq experiment (Figure S5H). Finally, a CRISPRoff fitness 
screen72 showed signs of seed-driven effects (Figure S5J). 

To directly assess off-target binding, we developed a dCas9 CUT&RUN protocol (Methods). Profiling of 
six guides revealed that bad seeds led to more binding sites within the genome (Figure 3F). Seed-driven 
effects therefore likely arise from actions of Cas9 epigenetic effectors at these alternate binding sites. We 
incorporated both our on-target effect activity estimates and seed filtering to produce a library of 
validated active sgRNAs for 1319 transcription factors (Supplemental Table 4). 
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Expression programs and regulatory interactions driven by transcription factors in fibroblasts 

We next examined the global architecture of transcription factor-induced phenotypes. Activating 
individual transcription factors had more subtle effects than, for example, knockdown of essential genes62. 
To account for this difference and to ensure resilience against off-target effects, we developed a 
clustering-based test to identify transcription factors that robustly altered the transcriptome (Figure 4A, 
top right). This method leverages the principle that when the dataset is clustered at a sufficiently fine 
resolution, guides targeting the same gene are unlikely to co-cluster by chance; instead, clustering likely 
reflects a common transcriptional effect from target gene activation. This test assesses both 
reproducibility (multiple guides must cluster) and distinctiveness (clusters must emerge) of induced 
transcriptional phenotypes. Clustering by profile correlations, which is robust to guide efficacy 
differences28,62, and applying this criterion identified 212 and 178 transcription factors with strong effects 
in Hs27 and RPE-1 cells, respectively, plus 102 and 82 additional genes that had single guides that 
clustered strongly with these gold standards that we included in our analyses (Methods). In total, 1077 
guides targeting 417 genes induced a strong transcriptional phenotype in at least one cell type (Figure 
S6A). 

We visualized relationships among hit guides by embedding their transcriptional phenotypes (Hs27: 
Figure 4A, RPE-1: Figure S7, Methods). Guides clustered primarily by target and subsequently by 
homology, as evidenced by clustering of genes with similar names. For instance, guides targeting 
BCL11A, BCL11B, and ZNF827, which share an amino-terminal motif that mediates NuRD complex 
interactions73 clustered in both datasets, as did the CREBBP/EP300 complex. However, most clusters 
were cell-type-specific: for example, CRX and OTX2 are critical regulators of retinal development74, and 
clustered only in RPE-1 cells (Figure S7). To examine how transcription factors' effects varied across 
cellular contexts, we compared the effects of 121 perturbations active in both cell types using two 
approaches: by directly correlating the expression profiles, and by correlating the correlation matrices of 
the perturbations, which assesses similarities in how perturbations relate to each other (Methods). While 
similar expression changes (Figure 4B, top right) were rare and typically associated with specialized 
inducible regulons, the relationships between transcription factors were better preserved (Figure 4B, top 
left), suggesting regulatory interactions are conserved despite differences in how effects manifest. To 
identify strong interactions, we examined anticorrelated perturbation pairs (Figure 4C, Methods). This 
analysis revealed known interactions, such as MYC repression by HELZ275 and MXI1 and SMAD5 
inhibition by SMAD6, as well as many candidate interactions. 

To further understand how these transcription factors orchestrated gene expression, we sought to identify 
modules of functionally related genes that they regulated. We developed a sparse PCA approach (Figure 
4A, right middle, Methods) to identify reproducible and interpretable gene expression programs 
(Methods). Applied to Hs27 cells, this procedure organized 2,389 genes into 57 programs (Figure 4A, 
bottom right, Figure S8, Figure S9A, Supplemental Table 2). Though the programs were sparse, 
transcription factors usually modified multiple programs simultaneously. Nevertheless, perturbations 
often showed a distinct preference for specific programs. For example, one program (Figure 4D) was 
dominated by translation-associated genes, was strongly induced by MYC and MYCN, and was strongly 
suppressed by MYC repressors like MXI1 and less characterized modulators like HELZ275 and NKX3-176, 
suggesting it reflects MYC activity. Other broadly activated programs corresponded to transcriptional 
responses like the cell cycle and mTORC1-mediated activation of ATF4 (Figure S9B,C), while some 
were highly specific, such as an IRF1-driven antigen presentation program (Figure 4E) and an oxidative 
stress response driven largely by NFE2L2 (Figure S9D). 
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Transcription factor perturbations driving markers of in vivo fibroblast states 

As our transcription factor perturbations were physiological and exhaustive, we reasoned that some gene 
programs might explain fibroblast transcriptional heterogeneity observed in vivo. We performed an 
enrichment analysis (Methods) to test whether gene programs overlapped with differentially expressed 
genes associated with states in a human cross-tissue stromal atlas54. We found significant overlaps for 
several gene programs (Figure S10A). 

The first program corresponded with the MYH11+ in vivo state, included canonical smooth muscle 
markers such as ACTA2, CNN1, and TAGLN77, and captured transcription factors promoting a 
myofibroblast phenotype49 (Figure 5A). Top activators included the smooth muscle regulator 
MYOCD78,79, the pro-fibrotic Hedgehog signaling effector GLI180,81, and regulators of epithelial-to-
mesenchymal transition (EMT) such as SNAI1 and FOXC282. Conversely, FLI1 and KLF5, whose 
reduced expression is associated with systemic sclerosis83, were negative regulators. Many novel inducers 
emerged, such as the Notch effector HES7 (Figure 5A, magenta), known for its role in somitogenesis84, 
and the uncharacterized gene ZNF296 (Supplemental Table 2). Guides targeting these genes upregulated 
ACTA2 and induced myofibroblast-like morphological changes (Figure 5B, Figure S10B), with the 
HES7 results consistent with the role of Notch signaling in controlling fibroblast state40,41. Interestingly, 
EOMES, a transcription factor that regulates EMT in a sharply timed period of early development85, was 
also a strong inducer. Our perturbative approach can therefore be used to study phenotypes that are rare 
relative to typical expression patterns. 

A second program corresponded with the SPARC+COL3A1+ inflammatory fibroblast population (Figure 
5C, Figure S10A)54. Although we did not observe LRRC15 expression in our experiment, the identified 
program included the genes COL1A1, COL1A2, COL3A1, COL5A2, and SPARC that are upregulated in 
the cross-tissue atlas Lrrc15+ mouse fibroblasts53, LRRC15+ cancer associated fibroblasts (CAF)86, and 
within a Lrrc15low CAF cluster in a model of pancreatic ductal adenocarcinoma52. Numerous 
perturbations altered the expression of this gene program in both directions. Strong inducers included 
PLAGL1, PLAG1, GATA6, and EGR3, with the latter two being previously reported as possible mediators 
of fibrogenic responses87,88. Conversely, strong suppressors included NEUROD2, FOXE1, FOXA3, and 
KLF5. According to the Human Protein Atlas2, the main suppressors of the program, aside from KLF5, 
have much stronger expression in non-mesenchymal cell types, suggesting their expression may alter core 
fibroblast function. In contrast, the main inducers of the program are expressed ubiquitously. 

Notably, KLF5 suppressed each of these programs. It also scored highly in a second analysis we 
conducted aimed at identifying transcription factors that elicited entirely new transcriptional states. We 
measured this by counting the number of genes each perturbation activated across two or more 
independent guides that were previously unexpressed in control cells (Figure 5D, Methods). Applied to 
RPE-1 cells, this approach for example identified the established pioneer factor SOX989 (Figure 5D, left), 
which activated glial markers including S100B and KDR2,90 (Figure S10C). Remarkably, in Hs27 cells, 
perturbation of KLF5 and SOX18 induced expression of the universal fibroblast markers PI16 and CD34, 
respectively53,54 (Figure 5E). We expanded our search (Figure S10D) by assembling a curated list of 
fibroblast transcriptional state markers from the literature (Supplemental Table 3) and including all 
perturbations showing clear on-target activity (Methods), revealing induction of universal fibroblast 
markers by homologs of our initial hits, such as CD34 by SOX17 perturbation and TNXB53 by KLF4 and 
KLF5. Finally, KLF4, KLF5, and SOX18 all scored as inducers of a gene program associated with the in 
vivo CD34+MFAP5+ state (Figure 5F, Figure S10A), which we termed the universal fibroblast program. 
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To validate these phenotypes, we constructed Hs27 cell lines individually expressing all guides that 
showed evidence of PI16 induction (including those previously filtered due to low on-target activity)—
KLF4, KLF5, and ASCL5. Flow cytometry analysis confirmed that all selected guides induced PI16 
production in an apparently bimodal pattern (Figure 5G, Figure S10E), with similar phenotypes obtained 
via cDNA overexpression in Hs27 (Figure 5H) and BJ fibroblasts (Figure S10F). Flow cytometry also 
confirmed SOX18 perturbation induced CD34 production but not PI16 (Figure S10G). Collectively, these 
results establish that our perturbative approach can elicit states in vitro that resemble states observed in 
vivo, and that both KLF4 and KLF5 can drive emergence of the universal fibroblast state. 
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Causal drivers of fibroblast transcriptional states and cross-regulation between them 

A natural question then arises of which of these candidate regulators is the dominant driver in vivo, as we 
observed homologous transcription factors could elicit similar phenotypes (Figure 4A). Our perturbation 
approach provides causal evidence that complements observational data. We compared the ability of each 
transcription factor to elicit universal or inflammatory gene programs in vitro to how correlated that 
transcription factor’s expression was with sensitive markers of those states within 96 fibroblast clusters in 
the Human Protein Atlas (Figure 6A,B, Methods). Outliers in this analysis categorized transcription 
factors as capable of modifying the phenotype in vitro (magenta), correlated in vivo (yellow), or both 
(blue). This analysis nominated KLF4 and OSR1 as causal drivers of the universal state in vivo out of 51 
strongly correlated transcription factors. Notably, Klf4 and Osr2 are among the most differentially 
expressed transcription factors in mouse universal fibroblasts53 There was also a general enrichment of 
KLF transcription factors, with the activating factors KLF2, KLF4, and KLF5 all promoting it in vitro, 
and the repressing factors KLF3, KLF8, and KLF12 opposing it (Figure 6A)91. For the inflammatory 
state, the analysis intriguingly nominated PLAG1 and PLAGL1 as causal in vivo (Figure 6B). These 
ubiquitously expressed genes might be dismissed in purely correlative analyses, pointing to the 
interpretability advantages of our approach. 

We observed similar results when we directly scored the similarity between transcription factor-induced 
phenotypes in vitro and transcriptional states observed in vivo in the stromal cell atlas of inflammatory 
disease (Figure 6C, Methods). KLF4 and KLF5 perturbations scored as most similar to the 
CD34+MFAP5+ universal fibroblast state and PLAGL1 and EGR3 perturbations were hits for the 
SPARC+COL3A1+ inflammatory fibroblast state. This analysis also supported a link between the 
CXCL10+CXCL19+ cluster and an IRF1-driven gene program (Figure 4E, Figure S10A). Finally, when 
we examined fibroblasts in a deeply sampled ovarian cancer dataset84, we observed a clear correlation 
between KLF4 expression and PI16 expression (Figure 6D). Overall, these analyses suggest KLF4 is the 
primary cross-tissue driver of the universal fibroblast population in vivo. 

Finally, throughout our analyses we observed a pattern in which activators of the universal fibroblast state 
were negative regulators of the inflammatory and myofibroblast states. This was apparent both among the 
top hit perturbations of our gene programs (Figure 6E, Methods), and in the effect of those hits on the 
expression of literature-defined markers for each of the states (Figure 6F, Methods). KLF5 was the 
strongest hit in this regard (Figure 6G). This cross-regulation argues against a model in which in vivo 
fibroblast transcriptional states merely reflect different combinations of independent gene programs. 
Instead, states are interconnected and perhaps mutually exclusive. Inducing the universal state may 
therefore be a way to suppress disease-associated fibroblast phenotypes. 
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Discussion 

This study tested the ability to elicit in vivo transcriptional states in vitro using comprehensive 
perturbations of transcription factors via CRISPRa Perturb-seq. To enable exhaustive experiments 
targeting all transcription factors, we developed a multiplexing approach applicable to all Perturb-seq 
experiments based on overloading, achieving improved performance over past approaches by addressing 
a previously unappreciated saturation effect. We suspect that the competitive process causing differential 
capture of transcripts likely occurs in normal, singly-loaded droplets as well. Better understanding and 
correcting for these effects may therefore improve the overall sensitivity of single-cell RNA sequencing. 
The overloading approach is the natural choice whenever there is a high likelihood of interactions among 
perturbations, as effects of one strong perturbation may otherwise modify the effects of weaker ones 
measured concurrently. By pairing with approaches for installing programmed combinatorial 
perturbations92,93, it will instead enable scalable, directed profiling of genetic interactions. 

These data yielded new insights into CRISPRa’s activity and specificity. We confirmed that guide 
efficacy is a significant challenge, with >50% of guides exhibiting no detectable on-target activity. A 
second, unexpected challenge was our identification of significant off-target effects driven by the seed 
region of the protospacer. Though present in past experiments, this effect was missed due to their limited 
phenotypic readout or smaller scale compared to the present study, where we have the resolution to see 
that they drive clustering and phenotypes of comparable magnitude to on-target effects. We suspect these 
off-target effects are an important consideration for all CRISPR effectors other than cutting, as they likely 
reflect transient activity of the attached domain as Cas9 scans the genome for target sites. The filtered, 
validated guide libraries developed here overcome these limitations, enabling compact future experiments 
targeting 1319 transcription factors using single guide RNAs (Supplemental Table 4). Combined with 
our multiplexing approach, screens targeting ~1,000 transcription factors can be conducted in a single 10x 
HT lane, making it much easier to replicate our approach to examine transcriptional states in other cell 
types. Such screens could be used to nominate targeted lists of transcription factors for in vivo 
experiments94–96. 

This work also establishes important advantages of CRISPRa as an overexpression tool. The most 
common concern with overexpression screens is the potential for neomorphic or nonphysiological 
phenotypes due to supraphysiological expression levels. In contrast to cDNA overexpression, the degree 
of activation by CRISPRa appears to be constrained by the endogenous regulatory environment: even the 
most potent guides activated unexpressed genes within the physiological expression range of transcription 
factors and activating already expressed genes yielded diminishing returns. The ability of CRISPRa to 
activate unexpressed genes was also a predictable product of epigenetic features of their promoters. 
Extending these predictions across the genome will help refine future library design. Other notable 
advantages of CRISPRa include the simplicity of multiplexing perturbations by co-expressing guides, the 
low cost of synthesis compared to cDNA libraries, the preservation of natural splicing and UTR 
regulation, and the ability to easily pair knockdown and activation97. 

Our comprehensive, physiological CRISPRa perturbations of transcription factors in primary fibroblasts 
elicited expression programs mirroring four states observed in vivo (Figure S10A). Notably we employed 
no prior knowledge in the selection of our perturbations, such as human genetics or previous large-scale 
functional screens, which is valuable given that the origins and properties of these states are largely 
unknown. Our approach enabled causal insights that are impossible to obtain from purely observational 
data, highlighting the complementary nature of large-scale functional studies and cell atlas projects. We 
demonstrated co-regulation rather than co-expression among markers defining different states (Figure 
5A, 5C, 5F, 6F), distinguished between causal and correlated transcription factors (Figure 6A,B), and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2024. ; https://doi.org/10.1101/2024.07.31.606073doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.31.606073
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

observed cross-regulation between states (Figure 6E,F). Given our comprehensive perturbations, 
unelicited additional states may rely on specific in vivo conditions, reflect clustering artifacts, or result 
from combinatorial regulation. Nevertheless, our success in recapitulating states that recurred across 
multiple independent studies supports the idea that many transcriptional states reflect hard-coded 
regulatory logic that is conserved and elicitable in vitro. 

Our most striking findings concern the universal fibroblast state. Critically, inducing this state can 
negatively regulate other fates, including the inflammatory state, which is expanded in various 
inflammatory diseases, and the myofibroblast state, which plays a central role in fibrotic disease. In 
addition to the putative multipotency and immunomodulatory properties50 of the universal state, this result 
underscores its importance as a therapeutic target. We identify KLF4 as the dominant normal driver of the 
universal state in vivo, and we observe that other KLF transcription factors, including KLF5, strongly 
modify it in vitro. Previous studies have linked altered expression of KLF298–100, KLF4101–103, and KLF583 
to fibrotic disease, which our results predict would accompany changes in the state composition of the 
fibroblast population. Importantly, our in vitro reconstitution approach now enables genome-wide 
experiments that would be impossible to perform in vivo. These experiments can identify synergistic 
inducers of the universal fibroblast state or repressors of the inflammatory fibroblast state, potentially 
leading to novel strategies targeting these states in disease.  

Ultimately, our work demonstrates a systematic, generalizable, and scalable approach to dissect the 
regulatory logic of cellular transcriptional states, paving the way for more rational engineering of 
fibroblasts and other cell types. 
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Figure 1. Droplet overloading for high-throughput Perturb-seq 

A. Schematic of the droplet overloading approach: increased cell loading leads to more multiplets (2+ cells), 
enabling measurements of more perturbations by trading off single-cell resolution. 

B. Regression can be used to demultiplex superimposed perturbation effects in overloaded droplets. 
C. Design of benchmarking experiment. 
D. Single-cell RNA sequencing library size and complexity as droplet occupancy increases. 
E. Variability in transcript capture efficiency as a function of droplet occupancy. Some transcripts like RPL27A or 

MT-CO2 are captured more efficiently in multiplets or singlets, respectively, while stable genes are captured 
similarly across conditions. Gene-level corrections (bottom right) are fit to normalize for these differences. 

F. Fitting global scale factors to stably captured genes results in estimates of true library size that are better resolved 
by droplet occupancy. 

G. Overview of the benchmarking approach used to assess reconstruction accuracy. Results from disjoint subsets of 
the data are compared. Baseline performance is determined from comparing equal numbers of singlets. By 
downsampling one set, performance of other subsets can be quantified in terms of the equivalent number of 
singlets required to achieve the same reconstruction accuracy. 

H. Reconstruction accuracy (relative to equivalent number of singlets) using only singlets, doublets, triplets, or 
quadruplets, with and without normalization. 

I. Correlation between expression profiles measured using up to 16,800 singlets (grey) or reconstructed using 
varying numbers of droplets (each containing up to 6 cells). Blue and magenta denote performance with and 
without normalization, respectively.  

J. Same analysis as (I) but compared using the correlation of correlation matrices, which capture functional 
relationships among perturbations. 
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Figure 2. Efficacy of CRISPRa against transcription factors measured using Perturb-seq 

A. Overview of large-scale transcription factor CRISPRa Perturb-seq experiments. 
B. Observed on-target activity for all guides according to whether target gene is expressed. 
C. Overlap of guide activity across two cell types. Left shows number of guides that are inactive (blue), active only 

in Hs27 (yellow), active only in RPE-1 (green), and active in both (grey). Right shows the number of targets that 
are inactivable (blue), activable in Hs27 (yellow), activable only in RPE-1 (green), and activable in both (grey).  

D. Number of active guides per target gene. 
E. Distribution of induced expression changes by CRISPRa for Hs27 and RPE-1 (inset). Expression of a target gene 

is quantified by the percentile rank relative to all genes in control cells. Best performing guides for each target 
are shown in blue. Right histograms compare induced expression of unexpressed target genes to distribution of 
expressed transcription factors in control Hs27 cells 

F. Comparison of target activation across cell types. Guides showing activation across cell types are shown in blue, 
while yellow and green indicate those which showed specific activation in Hs27 and RPE-1 respectively. Inset 
(red) compares only best performing guides for each target gene. 

G. Epigenetic determinants of susceptibility to CRISPRa. Top: Schematic of the model building approach used to 
identify epigenetic features predictive of susceptibility to CRISPRa. Bottom left: Selected features and 
coefficients of model fit in Hs27 cells. Bottom right: Performance of model. 
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Figure 3. Off-target effects driven by the seed region of the protospacer 

A. Schematic depicting perturbation profile clustering driven by seed region of the protospacer in RPE-1 cells. Many 
guides formed clusters with other guides with the same seed region of the protospacer (underlined). 

B. Comparison of the number of differentially expressed genes induced by on-target activity vs. seed-based off-
target activity in Hs27. 

C. Common seeds driving clustering across Hs27 and RPE-1 experiments. Lower thresholds correspond to “bad” 
seeds that drive clustering. 

D. Enrichment of PAM sequences in seeds driving clustering. Top: We categorized bad seeds as either G-rich or C-
rich and then computed sequence logos. Bottom: Number of PAM sequences within bad seeds. 

E. Median fitness effects in non-targeting control sgRNAs grouped by seed in a genome-wide CRISPRa fitness 
screen, Gilbert et al., 201416. 

F. CUT&RUN capture of Fc-dCas9-bound loci to profile seed-driven guide binding across the genome. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2024. ; https://doi.org/10.1101/2024.07.31.606073doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.31.606073
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

Figure 4. Expression programs and regulatory interactions driven by transcription factors in fibroblasts 

A. Overview of the approach used to identify interpretable transcription factor-driven gene expression programs. 
Transcriptional phenotypes are reconstructed for all perturbations and a clustering-based test is applied to identify 
robust hits attested to by multiple guides. Sparse PCA is then used to extract positively correlated gene programs 
from these phenotypes. Embedding shows hit transcription factors for Hs27 fibroblast cells. Some hits cluster 
tightly together, indicated by slashes in labels. Magenta marks transcription factors highlighted in later analyses. 

B. Comparison of transcription factor effects between Hs27 and RPE-1 cells using two metrics: direct correlation of 
induced expression changes (x-axis) vs. correlation of perturbation-perturbation correlation matrices (y-axis).  

C. Anticorrelated perturbation pairs suggestive of regulatory interactions. Arcs in the circos plots annotate strong 
negative (red) or positive associations (teal) among the selected transcription factors.  

D. The top activators (red) and repressors (blue) the of the broadly modified MYC gene program. 
E. The top activators (red) and repressors (blue) the of the highly IRF1 perturbation specific antigen presentation 

program. 
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Figure 5. Transcription factor perturbations driving markers of in vivo fibroblast states 

A. Identification of a myofibroblast gene expression program and its regulators. Top genes defining the program 
form the rows of the heatmap, and top perturbations repressing (left) or activating (right) the program form the 
columns. Green denotes canonical marker genes or perturbations while magenta marks transcription factor hits 
highlighted in further analysis. 

B. Morphological changes and ACTA2 induction by HES7. 
C. Identification of an inflammatory fibroblast gene expression program and its regulators. In vivo inflammatory 

state marker genes, including COL1A1, COL1A2, COL3A1, COL5A2, SPARC, are colored yellow with 
highlighted perturbations sharing the same color. Genes exhibiting overlap with inflammatory state genes in 
references 53 and 54 respectively are indicated (left). 

D. To score the ability of perturbations to induce new expression states, we counted how many genes they activated 
that were unexpressed in control cells. Labeled points in the box plots show outlier perturbations for each cell 
type. 

E. Examples of genes newly activated by top Hs27 hits from this analysis. Plot is colored according to how many 
independent guides led to activation. Marker genes PI16 and CD34, associated with the universal fibroblasts, are 
highlighted. 

F. Perturbations that induced markers of universal fibroblasts (see E) also activated a sparse gene expression 
program. Genes exhibiting overlap with universal state genes in references 53 and 54 respectively are indicated 
(left). 

G. Flow cytometry validation of PI16 induction by predicted regulators using CRISPRa. 
H. Flow cytometry validation of PI16 induction by predicted regulators using cDNA overexpression. 
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Figure 6. Causal drivers of fibroblast transcriptional states and cross-regulation between them 

A. We compared the correlation of each transcription factor’s expression in vivo with PI16 expression in fibroblasts 
from the Human Protein Atlas2 vs. that transcription factor’s in vitro universal fibroblast program score. Yellow 
denotes highly correlated outliers (1.5 interquartile range, gray lines) in the in vivo data, magenta outliers in the in 
vitro program scores, and blue outliers in both analyses, which we infer to be likely causal drivers in vivo.  

B. Correlation of transcription factor expression in vivo with SPARC expression vs. the in vitro inflammatory 
program score, as described in A.   

C. We scored the similarity between the expression changes induced by each transcription factor in vitro vs. the 
differentially expressed genes within each in vivo cluster/tissue from an atlas of fibroblasts in inflammatory 
disease54. Plot includes the top two transcription factors for each cluster/tissue. Of these, the highest expressed 
transcription factor for each cluster is indicated in bold, and those expressed above the 50th percentile of all 
transcription factor expression are marked with italics. 

D. UMAP representation colored by expression of PI16 (top) and KLF4 (bottom) in fibroblasts collected from a 
large cohort of ovarian cancer patient samples profiled with scRNA-seq104.  

E. Cross-regulation between top activators and repressors of in vivo-associated gene programs. Arcs indicate co-
occurrence of transcription factors across programs, with purple indicating opposing program effects, and blue 
conserved effects across programs.  

F. Heatmap summarizing the effects of top regulators from our analyses on key fibroblast marker genes. 
Inflammatory and universal markers from refs. 53, 54. General fibroblast markers: ref. 40 (see Supplementary 
table 3). Perturbations and genes are highlighted according to their related gene program. Magenta: myofibroblast 
transition, yellow: inflammatory program, blue: universal program.  

G. Schematic depicting the cross-regulation effect of KLF5 in repressing (red) the inflammatory and myofibroblast 
cell states while promoting (green) the universal fibroblast state. 
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Methods 

CRISPR construct design/procurement 
Components of VPH (vp64, p65, and HSF1) were ordered from IDT, PCR amplified and subcloned into 
pHR-UCOE-EF1a-Zim3-dCas9-P2A-mCherry, a gift from Marco Jost & Jonathan Weissman (Addgene 
plasmid # 188766; http://n2t.net/addgene:188766; RRID:Addgene_188766). This vector was further 
modified to have the SFFV promoter in place of EF-1α using the 2x NEBuilder® HiFi DNA Assembly 
Master Mix (NEB,E2621). Whole plasmid sequencing was performed by Plasmidsaurus using Oxford 
Nanopore Technology with custom analysis and annotation. pHR-UCOE-SFFV-VPH-dCas9-P2A-
mCherry is designated pRCA422 and UCOE-SFFV-VPH-XTEN-dCas9-IRES2-BFP-T2A-Blast is 
designated pTMN140. 

Guide vectors 
pRCA360 (GFP) and pRCA595 (mCherry) guide vectors were modified from pBA904, a gift from 
Jonathan Weissman (Addgene plasmid # 122238; http://n2t.net/addgene:122238; 
RRID:Addgene_122238). pJR107 was a gift from Marco Jost & Jonathan Weissman (Addgene plasmid # 
187245; http://n2t.net/addgene:187245; RRID:Addgene 187245). For cloning of guide libraries or single 
guides, pRCA360, pRCA595, or pJR107 was sequentially digested using BstXI and BlpI (NEB) in their 
respective buffers (NEBuffer 3.1: B6003S, NEB CutSmart: B6004S) with gel purification to ensure 
efficiency. For single guide cloning, oligos were ordered with overhangs: Forward (5’- 
TTGN20GTTTAAGAGC-3’) and reverse (5’- TTAGCTCTTAAACN20 CAACAAG-3’) with reverse 
complemented guide sequence from IDT (see Supplemental Table 5 Oligos List). 1µL of each F and R 
100µM oligo is added to 48uL IDT Duplex buffer (IDT, 11-01-03-01) and heated to 95°C for 2 minutes 
before gradually cooled. Annealed oligos are diluted 1:20 with DNase free water and 1uL is used in a Hi-
T4 (NEB, M2622S) ligation reaction at room temperature for 1 hour. Ligated products are transformed 
into NEB® Stable Competent E. coli (NEB, C3040H) as per manufacturer’s protocol and plated on 
Carbenicilin plates (Teknova, L1010) grown at 32°C overnight. Single colonies are picked, grown 
overnight at 32°C, miniprepped or midiprepped with QIAGEN kists (Qiagen, 27104 or 12945), and 
sequence checked by Plasmidsaurus.  

cDNA overexpression vectors 
Lentiviral vectors overexpressing cDNA (TFORF0983 – KLF5, TFORF0985 – KLF4, TFORF3549 – 
GFP) were gifts from Feng Zhang. T2A-GFP was amplified using Q5® High-Fidelity DNA Polymerase 
(M0491, NEB) and plasmids were cut with EcoRI (NEB). Insert was cloned into these plasmids using the 
2x NEBuilder® HiFi DNA Assembly Master Mix. A new empty vector construct was made using the 
newly generated TFORF Puro-T2A-GFP cut with NheI and MluI to remove the expressed cDNA. All 
vectors were sequenced checked by Plasmidsaurus 

Cell culture  
hTERT RPE-1 Retinal Epithelium (RPE-1, ATCC CRL-4000), BJ fibroblasts (ATCC, CRL-2522), K562 
(ATCC, CCL-243), and Hs27 foreskin fibroblasts (ATCC, CRL-1634) cells were purchased from 
American Type Culture Collection (ATCC). Lenti-X™ 293T Cell Line was purchased from Takara Bio 
(632180). hTERT RPE-1 were maintained in DMEM:F12 media (Gibco, 11320033) 10% Fetal Bovine 
Serum (FBS) (VWR, 97068-085), 100U penicillin and 100μg/mL streptomycin (Gibco, 15140122), and 
0.01mg/mL Hygromycin B (Thermo Fisher, 10687-010). BJ and Hs27 fibroblasts are grown in DMEM 
(ATCC 30-2002) supplemented with 10% FBS. Lenti-X™ 293T is maintained in DMEM (Gibco, 
11965092) with 10% FBS and Pen/Strep. Cells are passaged with CTS™ TrypLE™ Select Enzyme 
(Thermo Fisher, A1285901). K562 were maintained in RPMI-1640 (Gibco, 11875135) supplemented 
with 10% FBS and Pen/Strep. 
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Virus packaging 
Lentivirus was produced by co-transfecting LentiX™ 293T cells with transfer plasmids and standard 
packaging vectors (psPAX2, pMD2G) using TransIT-LTI Transfection Reagent (Mirus, MIR 2300). 
When required, virus supernatant was concentrated using the Lenti-X™ concentrator (Takara Bio, 
631231). 

CRISPR cell line generation/procurement 
RPE-1-ZIM3 CRISPRi cell line was obtained from Replogle and Saunders et al., 202262. RPE-1-VPH cell 
line was generated by transducing RPE-1 from ATCC with 20X concentrated VPH lentivirus (pRCA422). 
mCherry+ cells were sorted into single cell clones in 96-well plate format. Single cell clones were grown 
and tested for uniform upregulation of CD55 (expressed) and CD45 (non-expressed) cell surface markers 
with a final clone selected for stable and homogenous target upregulation. BJ-VPH (pTMN140) and 
Hs27-VPH (pRCA422) cell lines were generated by sorting for either BFP-low or mCherry-low 
expression, respectively. CRISPRa activity of the sorted pool was confirmed by measuring cell surface 
expression of CD55 and CD45 as described below. 

Bulk characterization of cell lines 
RNA-seq-RPE-1 cells were plated at a density of 300k per well into a 6 well plate. Cells were harvested 2 
days later using RNEasy Plus Mini Kit (Qiagen, 74134) with QIAshredder (Qiagen, 79656) for 
homogenization and eluted in nuclease-free water. 500k Hs27 cells were plated on 100mm dishes. After 2 
days, cells were harvested for RNA using the RNEasy Plus Mini Kit (Qiagen, 74134) and eluted with 
nuclease-free water. After RiboGreen quantification and quality control by Agilent BioAnalyzer, 500 ng 
of total RNA with RIN values of 10 underwent polyA selection and TruSeq library preparation according 
to instructions provided by Illumina (TruSeq Stranded mRNA LT Kit, catalog # RS-122-2102), with 8 
cycles of PCR. Samples were barcoded and run on a NovaSeq 6000 in a PE100 run, using the NovaSeq 
6000 S2 or S4 Reagent Kit (200 Cycles) (Illumina).  An average of 50 million paired reads was generated 
per sample. Ribosomal reads represented 1.8-5.0% of the total reads generated and the percent of mRNA 
bases averaged 92%. 

ATAC-50,000 freshly harvested RPE-1 and Hs27 cells were sent to MSKCC’s Epigenetics Research 
Innovation Lab for processing. ATAC was performed as previously described105 using the Tagment DNA 
TDE1 Enzyme (Illumina, #20034198). After quantification of the recovered DNA fragments, libraries 
were prepared using the ThruPLEX®DNA-Seq kit (R400676, Takara) following the manufacturer’s 
instructions, purified with SPRIselect magnetic beads (B23318, Beckman Coulter), quantified using a 
Qubit Flex fluorometer (ThermoFisher Scientific) and profiled using a TapeStation 2200 (Agilent). The 
libraries were sent to the MSKCC Integrated Genomics Operation core facility for sequencing on an 
Illumina NovaSeq 6000 (aiming for 50-60 million 100bp paired-end reads per library). 

CUT&RUN-500,000 freshly harvested RPE-1 and Hs27 were sent to MSKCC’s Epigenetics Research 
Innovation Lab for processing. CUT&RUN was performed using the CUTANA™ ChIC/CUT&RUN Kit 
(Epicypher #14-1048) and the following antibodies: rabbit anti-H3K27me3 (CST, #9733S); rabbit anti-
H3K27ac (Epicypher, #13-0059) rabbit anti-H3K4me3 (Epicypher, #13-0041); rabbit anti-mouse IgG 
(Epicypher, #13-0042). After quantification of the recovered DNA fragments, libraries were prepared 
using the ThruPLEX®DNA-Seq kit (R400676, Takara) following the manufacturer’s instructions, 
purified with SPRIselect magnetic beads (B23318, Beckman Coulter), quantified using a Qubit Flex 
fluorometer (ThermoFisher Scientific) and profiled using a TapeStation 2200 (Agilent). The libraries 
were sent to the MSKCC Integrated Genomics Operation core facility for sequencing on an Illumina 
NovaSeq 6000 (aiming for 5-10 million 100bp paired-end reads per library). 
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Guide library design and cloning 
RPE-1-E150 (essentials) – Guides for the small RPE-1 essentials library were selected towards 140 
targets present within 13 functional clusters emerging from Replogle and Saunders et al., 202262 RPE-1 
essentials experiment (Supplemental Table 1). A total of 140 guides (RPE-1 essentials, Protospacer A for 
the 140 selected targets) and 16 non-targeting guides (sampled from Horlbeck et al., 201655 non-targeting 
controls) were selected. The guides were ordered as IDT oPool with overhangs for cloning into to the 
guide vector (pRCA360, overhangs: 5’-agtatcccttggagaaccaccttgttg(N20)-
gtttaagagctaagctggaaacagcatagcaag-3’). To produce double stranded product for cloning, equimolar 
amounts of oligo pool and reverse primer (Supplemental Table 5: Oligo Library cloning R: 
cttgctatgctgtttccagc) were mixed with 2X KAPA HiFi master mix (Roche, 07958935001) and incubated 
for 10 min at 72°C. Following cleanup with a 5ug Monarch PCR& DNA clean up kit (T1030S), the 
library was cloned into digested pRCA360 using NEBuilder HiFi DNA Assembly (E2621S). A 5:1 insert 
to backbone HiFi mastermix reactions was performed for 1 hour at 50°C and purified using the 
Monarch® PCR & DNA Cleanup Kit (New England Biosciences, T1030). Electroporation was performed 
with an Eppendorf Eporator into Endura Electrocompetent Cells (LGC, 60242-2) according to 
manufacturer’s protocol. Overnight cultures are grown at 32°C for 18 hours before midiprep.  

CRISPRa-TFs – We performed guide selection on the list of previously annotated and curated human 
transcription factors (MORF library13). We cross referenced all genes within the MORF library with the 
CRISPRa guide library described in Replogle, Bonnar, and Pogson et al., 202256(i.e. top 6 ranked from 
Horlbeck et al., 201655). We further supplemented the guide list with the top 6 CRISPick26,57 
(https://portals.broadinstitute.org/gppx/crispick/public) designs (CRISPRa, SpyoCas9) for each target. 
After strict filtering for off target binding, as described below, we ultimately selected 4 guides from 
Replogle, Bonnar, and Pogson et al., 2022 and the top 2 CRISPick guides for the final library. Where 
there were not enough guides post filtration, or guides were unavailable for the specified target, additional 
guides from the other library were selected.  

Filtration criteria was as follows: 1) candidate off-target sites for each protospacer were identified as i) 
having an NGG PAM and matching the 10 bp PAM-proximal sequence of the protospacer and ii) having 
less than 5 total mismatches. This search was limited to the accessible chromatin states within the 
Roadmap Epigenomics Project Core 15-state model of chromatin state106 within: NHDF-Ad Adult 
Dermal Fibroblast Primary Cells, i.e. all states except: 9- Heterochromatin, 13- Repressed PolyComb, 14- 
Weak Repressed PolyComb, 15- Quiescent/Low. 3) Each candidate site was assigned to the nearest gene 
and distance was calculated as absolute distance to the gene’s TSS. 3) A score for each site was calculated 
as: log2(Distance*number of mismatches), where a lower score would suggest the guide more likely to be 
active at the site 4) a bimodal distribution of scores was observed, therefore a mixture model of two 
gaussians was fit and scipy.stats.norm.ppf(0.005) applied to the higher gaussian to threshold the 
distribution of high likely off-target binding from low likely off-target binding sites. Only sites that have a 
score less than the threshold were considered a “true off-target site”. Guides with more than 3 “true off-
target sites” were excluded from the libraries. Additional filtration criteria included protospacers with 
three consecutive Ts (TTT) and those mapping to multiple sites in the genome (mostly attributed to 
paralog genes). If, after filtration and guide selection, the total number of guides per target from both 
libraries was less than 4; first, TTT filtered guides, then paralogs were recovered, where appropriate, to 
reach a total of 4 guides. Control guides were also strictly filtered to contain zero “true off-target sites” 
and at most one site that matches the 10 bp PAM-proximal sequence. Final transcription factor and 
control library compositions are described in Supplemental Figure 1B and full libraries available in 
Supplemental Table 1. 
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Libraries were ordered with overhangs for cloning (5’-agtatcccttggagaaccaccttgttg(N20)-
gtttaagagctaagctggaaacagcatagcaag-3’) as an oligonucleotide pool (Twist Bioscences) and amplified 
using primers (Oligo Library cloning F: agtatcccttggagaaccacc, Oligo Library cloning R: 
cttgctatgctgtttccagc, see Supplemental Table 5) for 8 cycles with 2X KAPA HiFi master mix (Roche, 
07958935001). Double stranded oligo cleanup and library cloning was performed as described above for 
the RPE-1 essentials library.  

Library Verification 
Prior to virus generation libraries were sequenced to verify representation. Libraries were PCR amplified 
using 2X KAPA HiFi master mix (Roche, 07958935001) from purified midipreps with primers 
containing Illumina P5 and P7 adapters and Nextera i7 indices. (oJR232, oJR233, see Supplemental 
Table 5 Oligos List). Following 2X cleanup with ProNex Size-Selective Beads (Promega, NG2001), 
sequencing was performed on Miseq with PE70 read structure. Resulting library representations are 
shown in Supplemental Figure 1A,B. 

RPE-1 essentials benchmarking experiment 
Lentivirus was packaged for the RPE-1-E150 library as described above and the titer measured through 
infection of 250,000 RPE-1-ZIM3 with varying virus volumes. Infections were performed at the time of 
cell plating with 8 µg/ml polybrene. For the full-scale experiment 30M cells were infected across 6 T175s 
for a target MOI of 0.1. On day 3, an infection rate 14% was obtained and cells were sorted for high 
purity GPP+ (fluorescent marker for pRCA360 guide vector) by FACS (FACSAria III, and 
FacsSymphony S6, BD Biosciences). Post sort, cells were replated and cultured for additional 6 days. A 
timepoint of 6 days post infection was selected to minimize the dropout caused by targeting essential 
genes, while allowing sufficient time for phenotypic consequences to be captured within the experiment. 
The recommended protocol for adherent cell lines within “Single Cell Suspensions from Cultured Cell 
Lines for Single Cell RNA Sequencing” (10x Genomics Demonstrated Protocol, CG00054, Rev B) was 
followed to prepare cells for single-cell sequencing with a few deviations: 1) Two rounds of cell filtration 
through a 30 μm MACS SmartStrainers (Milenyi Biotec, 130-098-458) were performed after the initial 
cell resuspension. 2) a higher than recommended final cell concentration of 10,000 cells/μL was targeted 
for final resuspension 3) resuspension was performed in DPBS (Gibco, 14190144) containing 1% BSA 
(UltraPure BSA, 50 mg/mL, Ambion: AM2616) 4) Scienceware Flowmi Cell strainers 70 μm (H13680-
0070) were used after final resuspension prior to cell counting. A cell concentration of ~9700 cells/μL 
and >90% cell viability (Countess II, ThermoFisher) was obtained before loading. Cells were then 
encapsulated over 2 lanes using the Chromium Controller (10x Genomics) using the Chromium Next 
GEM Chip G Single Cell Kit (10X Genomics, 1000120) following the Chromium Single Cell 3' Reagent 
Kits User Guide (v3.1 Chemistry Dual Index) with Feature Barcoding technology for CRISPR Screening 
(CG000316, Rev D) with the goal of recovering 125,000 cells per lane (prior to quality control and cell 
number filtering). Libraries were generated using the 3' Feature Barcode Kit 16 rxns (10X Genomics, 
1000262), Dual Index Kit TT Set A 96 rxns (10X Genomics, 1000215, and Dual Index Kit NT Set A 96 
rxns (10X Genomics, 1000242) as per protocol. The following modifications were made to the cell 
loading protocol: 1) the expected cell recovery was empirically adjusted based on prior loading rate 
experiments for this cell line 2) BSA was added to the cell suspension/loading master mix for a final 
concentration of 1% BSA upon loading.  

RPE-1 TF-CRISPRa Experiment 
Lentivirus was packaged for the TF-CRISPRa library as described above and the titer measured through 
infection of 250,000 RPE-1-VPH with varying virus volumes. Infections were performed at the time of 
cell plating with 8 ug/ml polybrene. For the full-scale experiment 30M cells were infected across 6 T175s 
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for a target MOI of 0.05. After 2 days the infection rate was checked, obtaining a rate of 6%, and cells 
were sorted for high purity GPP+ (marker for pRCA360 guide vector) by FACS (FacsSymphony S6, BD 
Biosciences). Post sort, cells were replated and cultured for a total of 8 days post infection. The 
recommended protocol for adherent cell lines within “Single Cell Suspensions from Cultured Cell Lines 
for Single Cell RNA Sequencing” (10x Genomics Demonstrated Protocol, CG00054, Rev B) was 
followed to prepare cells for single-cell sequencing with a few deviations. 1) two rounds of cell filtration 
through a 30 μm MACs SmartStrainers (Milenyi Biotec, 130-098-458) were performed after the initial 
cell resuspension. 2) a higher than recommended final cell concentration of 10,000 cells/μL was targeted 
for final resuspension 3) resuspension was performed in DPBS (Gibco, 14190144) containing 1% BSA 
(UltraPure BSA, 50 mg/mL, Ambion: AM2616) 4) Scienceware Flowmi Cell strainers 70 μm (H13680-
0070) were used after final resuspension prior to cell counting. A cell concentration of ~10,000 cells/μL 
with >90% cell viability (Countess II, ThermoFisher) and >90% GFP+ (Attune, Invitrogen, 
ThermoFischer) was obtained before loading. Cells were then encapsulated over 10 lanes using the 
Chromium X (10x Genomics) using the Chromium Next GEM Single Cell 3' HT Kit v3.1, 48 rxns (10X 
Genomics, 1000348) following the Chromium Next GEM Single Cell 3' HT Reagent Kits v3.1 (Dual 
Index) with Feature Barcode technology for CRISPR Screening (CG000418, Rev D) with the goal of 
recovering 150,000 cells per lane (prior to quality control and cell number filtering). The following 
modifications were made to the cell loading protocol 1) the expected cell recovery was empirically 
adjusted based on prior loading rate experiments for this cell line 2) BSA was added to the cell 
suspension/loading master mix for a final concentration of 1% BSA upon loading.  

Hs27 TF-CRISPRa Experiment 
Lentivirus was packaged for the TF-CRISPRa library as described above and the titer measured through 
infection of 1M Hs27-VPH cells with varying virus volumes. Infections were performed at the time of 
cell plating with 8 ug/ml polybrene. For the full-scale experiment 45M cells were infected across 15-
150mm dishes for a target MOI of 0.1. After 2 days the infection rate was checked, obtaining a rate of 
12.3%, and cells were sorted for high purity GPP+ (fluorescent marker for pRCA360 guide vector) using 
the SONY SH800 sorter. Post sort, cells were replated, cultured and expanded for a total of 12 days post 
infection. Prior to 10X loading, cells were sorted for GFP+ and measured to be >99% GFP+. The 
recommended protocol for adherent cell lines within “Single Cell Suspensions from Cultured Cell Lines 
for Single Cell RNA Sequencing” (10x Genomics Demonstrated Protocol, CG00054, Rev B) was 
followed to prepare cells for single-cell sequencing with a few modifications: 1) Two rounds of cell 
filtration through a 100 μm MACs SmartStrainers (Milenyi Biotec, 130-098-458) were performed after 
the initial cell resuspension. 2) a higher than recommended final cell concentration of 10,000 cells/μL was 
targeted for final resuspension 3) resuspension was performed in DPBS (Gibco, 14190144) containing 
1% BSA (UltraPure BSA, 50 mg/mL, Ambion: AM2616) 4) Scienceware Flowmi Cell strainers 70 μm 
(H13680-0070) were used after final resuspension prior to cell counting. A cell concentration of ~10,000 
cells/μL with >99% GFP+ (Attune, Invitrogen, ThermoFisher) and >90% cell viability (Countess II, 
ThermoFisher) was obtained before loading. Cells were then encapsulated over 10 lanes using the 
Chromium X (10x Genomics) following the Chromium Next GEM Single Cell 3' HT Reagent Kits v3.1 
(Dual Index) with Feature Barcode technology for CRISPR Screening (CG000418, Rev D) with the goal 
of recovering 100,000 cells per lane (prior to quality control and cell number filtering). The following 
modifications were made to the cell loading protocol 1) the expected cell recovery was empirically 
adjusted based on prior loading rate experiments for this cell line 2) BSA was added to the cell 
suspension/loading master mix for a final concentration of 1% BSA upon loading.  

Perturb-seq Library Preparation and Sequencing 
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Sample processing and library preparation was generally performed as recommended within 10x 
Genomics Chromium Single Cell 3' Reagent Kits User Guide (v3.1 Chemistry Dual Index) with Feature 
Barcoding technology for CRISPR Screening (CG000316, Rev D) (RPE-1-Essentials) or 10x Chromium 
Next GEM Single Cell 3' HT Reagent Kits v3.1 (Dual Index) with Feature Barcode technology for 
CRISPR Screening (CG000418, Rev D) (HT kit, TF-CRISPRa Library experiments) with the following 
modifications 1) During the Dynabeads cleanup step (step 2.1c, standard kit, step 2.1c HT kit), 2 times the 
recommended amount of Dynabeads MyOne SILANE was added to the cleanup mix and Nuclease-free 
Water was omitted (RPE-1 benchmarking), alternatively Nuclease-free Water was simply replaced with 
Dynabeads MyOne SILANE (TF-CRISPRa Library experiments). 2) The amount of cDNA 
amplifications cycles (step 2.2d standard, 2.2d HT) was reduced 1-2 cycles from the lowest 
recommendation. These steps were found to reduce Dynabead clumping and increase the cDNA yield 
with equivalent input and cDNA cycles, and to produce sufficient material for library generation without 
overamplification. For library generation from the HT kit A and B libraries (i.e. the first or second pipette 
from the GEM well. Steps 1.4 e/h-row 3A and i/k-row 3B) were maintained separately throughout the 
protocol; libraries were not combined at Step 2.3A-ix but instead carried through individually. This was 
done to enable library level batch effect corrections in subsequent analysis. In the standard protocol, 
recombination is suggested after separate GEM-RT, cleanup, and cDNA amplification steps, introducing 
batch effects that are obscured upon library recombination. However, due to droplet settling, uneven cell 
numbers are observed across the A and B libraries the libraries (first and second pipette). To account for 
this, lanes were initially sequenced at low depth and re-sequenced to balance reads per cell after initial 
cell calling. For all Feature Barcode (CRISPR guide capture) library preps, all material, i.e. ~150μL of 
guide containing supernatant, was retained during cDNA cleanup (Step 2.3d) and purified at a 1.2X 
SPRIselect ratio to the measured volume in step 2.3B-i. As done for the GEX libraries, Feature Barcode 
libraries were maintained separately and not recombined as specified in 4.1m. Instead, libraries were 
eluted in 50.5μL in step 4.1j and 50μL of each library was transferred to a new tube (4.1m).  

After PicoGreen quantification and quality control by Agilent TapeStation, libraries were pooled 
equimolar and run on a NovaSeq 6000 or X in a PE28/88 run, using the NovaSeq 6000 S4 200-cycle or X 
10B or 25B 100-cycle Reagent Kit (Illumina).  The loading concentration was 0.6-1.0 nM and a 1% 
spike-in of PhiX was added to the run to increase diversity and for quality control purposes. The runs 
yielded on average 326M reads per sample. 

Profiling of genome-wide dCas9 binding by CUT&RUN, related to Figure 3F 
Generation of dCas9 construct and cell lines for CUT&RUN- A dCas9-rabbit Fc domain fusion protein 
(vector pEM022) was constructed by adding a linker sequence and the rabbit Fc domain to the C-terminus 
of dCas9 within a lentiviral vector (pEM021, originating from pRCA422). The rabbit Fc sequence and a 
5’ linker (obtained from Wang et al.107) was codon-optimized and ordered from IDT as a gBlock, which 
was cloned via HiFi Assembly into a NotI digest of this intermediate vector. Lentivirus was produced by 
co-transfecting LentiX 293T cells with pEM022, psPAX2, and pMD2G, and pooled lentiviral stocks 
harvested at 48 hr and 72 hr post-transfection were concentrated 20x with the Lenti-X Concentrator kit 
(Takara #631232). K562 cells (ATCC, CCL-243), either wild-type or harboring a lentiviral integrated 
eGFP driven by the SV40 promoter, were transduced with 500 µL concentrated virus per million cells by 
spinfection in the presence of 8 µg/mL polybrene and sorted for BFP positivity after 48 hr to establish 
stable dCas9-Fc cell lines. This cell line was similarly transduced with lentivirus encoding individual 
sgRNAs produced in arrayed format (vector pRCA595 or pRCA360). At 48 hr post-transduction, sgRNA-
containing cells were selected with puromycin (1.5 µg/mL media) for 4 days.  
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Guide dependent dCas9 CUT&RUN- profiling was performed on each of these cell lines (no sgRNA and 
each of 6 sgRNAs with different seeds, Supplementary Table 5) using the CUTANA ChIC/CUT&RUN 
Kit Version 4 (EpiCypher #14-1048). 1.5x106 cells of each cell line were harvested and divided among 
three technical replicates of 5x105 cells. Before each experiment, viability was confirmed >95% by 
Trypan Blue (Countess II FL, Life Technologies) to reduce background signal from dead cells. Since the 
dCas9-Fc fusion protein obviates the need for a primary antibody, the protocol was performed with slight 
modifications: Section IV was skipped, and pAG-MNase binding was started at Step V.32 with cells still 
in Antibody Buffer (which contains EDTA, chelating Ca2+ to prevent nonspecific pAG-MNase cleavage 
before the digestion step). For pAG binding to dCas9-Fc (step V.33), reactions were incubated for 2 hr on 
a nutator at 4˚C. After incubation, cells were washed three times with Cell Permeabilization buffer, and 
the protocol was continued without modifications. Sequencing libraries were prepared using the 
CUTANA CUT&RUN Library Prep Kit (EpiCypher #14-1001) with no modifications. Individual 
libraries were sequenced on an Illumina NovaSeq X to a target depth of 10 million PE75 reads.  

CD55/CD45 cell surface marker staining, related to Supplemental Figure 1B,C 

100k BJ-VPH, 150k Hs27-VPH, or 300k RPE-1-VPH cells were transduced with lentiviruses of 
pRCA360 expressing sgRNA against CD55, CD45, or a non-targeting guide (NTC) with 8µg/mL 
polybrene in a 6-well plate. Puromycin (Gibco, A1113803) selection (1.2µg/mL) was done at day 2 for 4 
days for fibroblasts but not RPE-1. On day 8, cells were detached using TrypLE and washed once with 
BD Pharmingen™ Stain Buffer (BD, 554656) + 2mM EDTA (Thermo Fisher, 15575020). Cells were 
stained with CD55-APC (BD, 555696) and/or CD45-PerCP-Cy5.5 (BD, 564105) for 30 minutes on ice in 
the dark, washed with stain buffer, and analyzed on BD LSRFortessa or Thermo Fisher Attune flow 
cytometer. Parental cell lines expressing GFP, BFP, or mCherry was used as single-color compensation 
controls. CD55-APC (BD, 555696) and CD81-PerCP-Cy5.5 (BD, 565430) was used as a single-color 
control. Flow cytometry data was analyzed using Flowjo software.  

PI16/CD34 cell surface marker stainingfor CRISPRa, related to Figure 5H, Supplemental Figure 
10E, G  

150k Hs27-VPH cells were transduced with lentiviruses of pRCA360 expressing sgRNA against KLF5, 
KLF4, ASCL5, SOX18, or a non-targeting guide (NTC) with 8µg/mL polybrene. On day 3, puromycin 
selection (1.2µg/mL) was done for 2 days on cells lifted with TrypLE. Cells were cultured and expanded 
with growth media until harvest at day 13 or 17. For this assay, cells were detached using Non-Enzymatic 
Cell Dissociation Solution (ATCC, 30-2103) and washed with stain buffer + 2mM EDTA. Cells were 
stained with PI16-APC (Miltenyi, 130-111-177) and/or CD34-PerCP-Cy5.5 (BD, 347213) for 30 minutes 
on ice in the dark, washed, and analyzed on BD LSRFortessa or Thermo Fisher Attune flow cytometer. 
Parental cell lines expressing GFP, BFP, or mCherry was used as single-color compensation controls. 
CD55-APC (BD, 555696) and CD81-PerCP-Cy5.5 (BD, 565430) was used as a single-color control. 
Flow cytometry data was analyzed using Flowjo software. 

PI16/CD34 cell surface marker staining for cDNA overexpression, related to Figure 5H, 
Supplemental Figure 10F 

150k Hs27 wiltdype or 100k BJ wildtype cells were transduced with lentiviruses of TFORF Puro-T2A-
GFP or TF-ORF Puro-T2A-BFP expressing cDNA of KLF5, KLF4, or empty vector (EV) with 8µg/mL 
polybrene. On day 2, puromycin selection (1.2µg/mL) was done for 2 days on cells lifted with TrypLE. 
Cells were cultured and expanded with growth media until harvest at day 13. For this assay, cells were 
detached using Non-Enzymatic Cell Dissociation Solution (ATCC, 30-2103) and washed with stain 
buffer + 2mM EDTA. Cells were stained with PI16-APC (Miltenyi, 130-111-177) and/or CD34-PerCP-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2024. ; https://doi.org/10.1101/2024.07.31.606073doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.31.606073
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Cy5.5 (BD, 347213) for 30 minutes on ice in the dark, washed, and analyzed on BD LSRFortessa or 
Thermo Fisher Attune flow cytometer. Parental cell lines expressing GFP was used as single-color 
compensation controls. CD55-APC (BD, 555696) and CD81-PerCP-Cy5.5 (BD, 565430) was used as a 
single-color control. Flow cytometry data was analyzed using Flowjo software. 

ACTA2 immunofluorescence, related to Figure 5B, Supplemental Figure 10B 

Buffer composition are as follows: 1) Wash buffer: PBS (Thermo Fisher, 14040117) + 0.05% Tween-20 
(Sigma Aldrich, P7949), 2) Blocking buffer: wash buffer with 5% BSA (Thermo Fisher, J6509722). 
Hs27-VPH were transduced with lentiviruses of pRCA360 expressing sgRNA against HES7, ZNF296 or 
a non-targeting guide (NTC) with polybrene. On day 2, puromycin selection (1.2µg/mL) was done for 2 
days on cells lifted with TrypLE and replated. Cells were cultured and expanded with growth media until 
day 17, where cells were detached, counted, and 2.5k cells were plated into 96-well plates optical plate 
(Cellvis, P96-1.5P). On day 18, cells were fixed with ice-cold methanol for 15 minutes at -20°C. Cells 
were blocked in blocking buffer for 1 hour at room temperature. ACTA2 antibody (Sigma Aldrich, 
A2547) diluted 1:2000 in blocking buffer was added to the plate and incubated overnight in the dark at 
4°C. The next day, cells were washed for three times with wash buffer for 10 minutes each. Goat anti-
mouse AF674 secondary antibody (Invitrogen, A-21236) was diluted 1:2000 in blocking buffer and added 
to plate for 1 hour at RT. Post-secondary antibody, the plate was washed three times with wash buffer for 
10 minutes each. A 1:5000 solution of DAPI (4',6-diamidino-2-phenylindole) (Thermo Fisher, 62248) 
diluted blocking buffer was added for 15 mins at room temperature to stain for DNA. Cells were then 
washed for three times with wash buffer before being imaged on a Nikon Eclipse Ts2. Images were 
analyzed using Fiji.  

Computational 

Dataset processing and guide calling 

cellranger-7.1.0 (10x Genomics) was used for alignment and UMI collapse of reads from gene expression 
(GEX) libraries to the transcriptome (reference: 10x Genomics GRCh38 version 2020-A). sgRNA reads 
were aligned to the protospacer library utilizing the cellranger count --feature-ref option with 
specified library inputs. Resulting filtered cell calls (i.e. droplets) were used for further cell assignment 
with droplet overloading. For the RPE-1 Essentials Library, cellranger aggr was run without 
downsampling (--normalize none) to aggregate the lanes and perform final guide assignment per 
droplet (Cellranger’s CRISPR Guide Capture Algorithm). Integrated libraries were imported with scanpy 
(version 1.7.2) and a final threshold of 5 UMIs was added prior to final cell assignment to account for 
failed protospacer thresholding (i.e. very low UMI threshold in cellranger output). 

For TF-CRISPRa Library experiments, we used a 5 UMI cutoff to make guide assignments per droplet. 
This was effective given the great diversity of protospacers within the library leading to low background 
UMIs per protospacer. Libraries from TF experiments were aggregated with scanpy without read 
downsampling. 

Dataset filtering 

Quality filtering of droplets. As discussed in the main text, total UMI count scaled with the number of 
cells loaded into each droplet. We removed a small number of droplets that had low library sizes for their 
occupancy level. Specifically, for each dataset we computed histograms of the log2 total UMI count 
within each droplet and then set thresholds based on visual inspection of the lower tail of the 
distributions. These thresholds depend on sequencing depth and are dataset-dependent: 
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Droplet 
occupancy 

RPE-1 essentials Hs27 CRISPRa, 
gemgroup <= 7 

Hs27 CRISPRa, 
gemgroup > 7 

RPE-1 CRISPRa 

1 210.7 211 210.7 211 
2 211 211.5 211 211 
3 212 211.7 211.3 211.3 
4 212.7 212 211.5 211.7 
5 213.5    
6 214    
 
We also applied dataset-dependent filters on mitochondrial reads to remove droplets that produced low 
complexity libraries. To set these filters we computed the total fraction of mitochondrial RNA reads, 
plotted histograms of total UMI count vs. fraction of mitochondrial reads to identify outliers, and 
discarded any droplets with fractions greater than the following thresholds: 0.075 for RPE-1 essentials, 
0.05 for Hs27 CRISPRa, and 0.03 for RPE-1 CRISPRa. 

Finally, as noted in the table above, we only kept droplets containing up to 6 cells for the RPE-1 
essentials experiment, and up to 4 cells in the CRISPRa experiments. 

Filtering of control guides. Our experiments incorporated numerous non-targeting control guides, some 
of which may inadvertently have targeting effects. To investigate, for each experiment we constructed an 
expression matrix consisting of all genes with mean expression greater than 1 UMI per cell (as columns) 
and all droplets containing only a single candidate control guide (as rows). We z-normalized the columns 
of this matrix and then computed pseudobulk expression profiles for each control guide by grouping by 
the control guide received and computing the mean. We then visually inspected a clustermap of these 
pseudobulk profiles to look for obvious outliers. We also computed a score by computing the L1 norm of 
the pseudobulk profiles, as outliers will have large norm due to the z-normalization. We made 
conservative, dataset-specific choices about thresholds. Candidate control guides we discarded are 
annotated in Supplemental Table 4, off-target guides. 

Identification of stably captured genes and normalization procedure 

Overview of procedure. As described in the main text, our normalization and regression approach consists 
of three broad steps: 

1. Identification of genes that are “stably” captured across different droplet occupancies, which are 
used to estimate a global scale factor that we apply to make droplets of different occupancies 
comparable to each other. 

2. Identification of gene-specific scale factors that are applied to compensate for the variable capture 
efficiency we observe for different transcripts as droplets are overloaded. 

3. Application of these scale factors, and then normalization relative to droplets that contain single 
control cells. 

Step 1: Global scale factors derived from stably captured genes. We first computed global scale factors to 
adjust for differences in sequencing depth across droplets. This variability in total library size is a feature 
of droplet single-cell RNA sequencing workflows and is a larger source of heterogeneity than any of the 
perturbations we apply. As discussed in the main text, we also observed a saturation effect that appeared 
to affect different transcripts in different ways, with some becoming more likely to be observed in 
droplets of higher occupancy levels and others less likely. This likely indicates that some sort of 
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competitive process takes place during library capture or amplification. We therefore derived a procedure 
to estimate library size that is independent of these effects. 

We computed an expression matrix consisting of genes with mean greater than 0.5 UMI per cell (as 
columns) and all quality filtered droplets as rows. We normalize each row by the total UMI count within 
that droplet: the jth entry in the ith row is then the fraction of total UMIs captured in the ith droplet that 
correspond to gene j. Below we will refer to this matrix as �, as the rows can be viewed as probability 
distributions on expression. If we average together the rows of � corresponding to droplets containing the 
same number of cells, we thus get estimates of the average capture rate of that transcript according to 
droplet occupancy as visualized in Figure 1E.  

We then wished to identify transcripts that were least affected by these shifts in capture efficiency, which 
we termed “stably captured.” Our notion was that these genes should have similarly shaped distributions 
(when normalized as in �) regardless of droplet occupancy. To quantify differences in the shapes of 
distributions, we used the Wasserstein distance. Specifically, for each gene we computed its distribution 
(across rows in �) for each droplet occupancy level, computed all possible pairwise comparisons among 
these distributions with the Wasserstein distance, and then summed the result to produce a “cost” for that 
gene. We performed this procedure independently for each gemgroup in case there were gemgroup-
specific differences in capture efficiency and summed them to produce a “total cost.” Genes whose 
distributions vary little according to droplet occupancy (or gemgroup) will have a low total cost. The total 
cost did scale generally with the mean expression level of the gene (due to properties of Wasserstein 
distance), so we then computed a regression of log���total cost� as a function of 
log���mean expression level� using Huber robust regression and subtracted the regression fit (i.e. 
computed the residual) to produce a “mean-adjusted total cost” for each gene. 

We observed that some cell cycle regulators had low total cost but would serve as poor references for 
normalization due to their substantial single-cell heterogeneity. We therefore computed a measure of 
“excess CV” to identify particularly noisy genes. Specifically, for each gene we computed its coefficient 
of variation (CV). We then ordered genes by mean expression level and fit a nonlinear curve using a 
median filter (specifically, medfilt(gene_cvs_mean_ordered, kernel_size=15)). We then fit an 
interpolation to this curve using interp1d that allowed us to produce for each gene an estimate of the 
expected (median) CV given its observed mean expression level. The ratio of observed CV to expected 
CV was the “excess CV.” More variable genes will thus have excess CV > 1 (i.e. noisier than expected 
for their expression level). 

We then identified stably captured genes using two thresholds: (1) the gene had to be in the bottom 30% 
of the mean-adjusted total cost distribution, and (2) the gene had to have excess CV < 1. We wanted to 
use these stably captured genes to estimate global scale factors for each droplet. Our idea was for each 
droplet we could infer an estimate of what its total library size would be if all genes were stably captured 
(i.e. not affected by the variability in capture rate discussed above). Our approach was to first fit a scaling 
constant for each droplet across stable genes: 

���� 	 �
 

where ��  is a vector composed of the (unnormalized) expression levels of stably captured genes in a given 
droplet, �
 is the mean raw expression of stably captured genes across all droplets with the same 
occupancy level, and ��  is a scale factor fit by Huber robust regression (to prevent undue influence of 
outliers or stochasticity). Put simply, this procedure identifies the single number that best scales the UMI 
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counts of stably captured genes observed in droplet i to be proportional to those observed in the average 
droplet of the same occupancy level. 

Finally, we then used these coefficients to produce estimates of total library size (rather than just the scale 
of stably captured genes). For each droplet, we multiplied the observed total UMI count ��  by the fitted 
coefficient to produce an estimate of what the total UMI count would be if all genes behaved like stably 
captured genes. To enable comparisons across droplets of different occupancy levels, we then further 
normalized these by the median estimated UMI count across all droplets of the same occupancy level to 
produce our final scale factors: 

� 	 ����

median������ � droplet � has same occupancy level as droplet  !� 

Figure 1F shows the distributions of ����  for droplets of different occupancy levels in the RPE-1 
essentials experiment (without the median normalization in the denominator). Note that they are much 
better resolved by droplet occupancy level than the raw total UMI counts, despite the procedure not 
taking droplet occupancy into account during fitting. 

Overall, this procedure produces an estimate of total library size �  that ranges roughly between 0.75 and 
1.25 that can be thought of as an estimate of that droplet’s library size—a droplet with a library size of 
0.75 for example is undersequenced relative to other droplets and has only 75% of the expected total UMI 
count. It thus preserves some of the variation in total library size that would be erased by normalization 
procedures that for example force all libraries to have a fixed total count. Moreover, because this measure 
is computed based on stably captured genes, it can be used to normalize droplets of different occupancies 
to comparable levels. 

Step 2: Computing gene-specific scale factors to adjust for varying capture efficiency. The previous 
procedure provides a global estimate of library size/sequencing depth for each droplet that is robust to the 
variability in transcript capture efficiency that we observed. We next wanted to develop first order 
corrections for this variability as well. To do this, we first computed a matrix �" from � by (1) grouping 
together rows with the same occupancy levels and (2) for each group, calculating a 2%-trimmed mean for 
each gene. (We used trimmed means to try to make the procedure somewhat resilient to the stochastic 
variability in expression that is a feature of single-cell RNA sequencing.) The rows of �" are then 
estimates of the average capture rate of all transcripts as visualized in Figure 1E. 

To develop correction factors, we then computed a mean capture rate vector # by computing the same 
trimmed mean calculation over all rows of � (independent of occupancy level). Our correction factors 
were then defined row-wise via: 

$� 	 %
� &  # 

where $� and %
� are the ith rows of matrices ' and �" and & represents Hadamard (element-wise) 
division. The matrix ' contains our gene-level correction factors that we can apply to each droplet. 
Dividing the expression of gene j by '��  in droplets containing i cells will adjust expression so that, on 
average, transcripts are captured at the same rate regardless of droplet occupancy level. In other words, it 
will “divide out” the variable capture rates seen in Figure 1E, on average. 

Note: Gene-level factors were fitted independently within each gemgroup in case of gemgroup-specific 
differences due to library preparation or overall sequencing depth. 
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Step 3: Final normalization. We finally combine these ingredients to produce the final normalization. We 
proceed as follows: 

A. We compute the matrix � of normalized expression for each droplet. 
B. For each droplet i, we use the procedure of Step 1 above to compute a global library size estimate 

� . 
C. We use � and the procedure in Step 2 above to compute gene-level scaling factors '. 
D. We then apply these factors to adjust for variability in library size and transcript capture rate. If 

droplet i contains k cells, we normalize expression of gene j by �(�� 	 �
���

���
, where �( is the 

corrected normalized expression matrix. 
E. Finally, we convert these estimates to deviations relative to expression seen in control cells within 

the same gemgroup. As described in our past work20,62 this procedure helps adjust for batch 
effects that arise during library prep. We accomplish this by “z-normalizing” relative to statistics 
derived from control cells (within droplets that contain only one cell). If gene j has mean )� and 
standard deviation *� in control cells, our final normalized expression estimate in droplet i is 

+�� 	 �(�� , )�

*�
 

The advantage of this scaling of gene expression is that (1) droplets containing single control 
cells will have 0 mean expression on average for all genes and (2) there is a natural interpretation 
of the scale of coefficients in terms of “standard deviations of change relative to control cells.” 
For example, a score of 2 would indicate that a cell is two standard deviations above mean 
expression in control cells for a given gene. 

Computing mean guide phenotypes using linear regression 

The normalization procedure described in the previous section places droplets of all occupancies on an 
equivalent expression scale and further represents our gene expression measurements in terms of 
deviations relative to expression in control cells. As a result, the task of linear regression is relatively 
simple. We construct a binary design matrix - (scaled so that each row sums to 1) with entries 

-�	 	 .1/� droplet   contains guide 1 and � guides in total
0 otherwise

4
 

(Note: All control guides are treated as having the same “perturbation” which is called “control”.) We 
then perform the multiple linear regression 

+ 	 -5 

using scipy’s lstsq function. Coefficient 5	� then corresponds to the inferred effect of guide k on gene j. 
We attach p-values to coefficients using the standard t-test. (Our specific implementation is based on the 
one in the pingouin library.) Because of the relative normalization, significant (non-zero) coefficients 
mark gene expression changes relative to (singlet) control cells. We produce p-values adjusted for 
multiple hypothesis testing using the Benjamini-Hochberg procedure. 

In the RPE-1 essentials experiment we fit the model to all genes with mean greater than 1 UMI per 
droplet (and over all droplets containing up to 6 cells). In the Hs27 and RPE-1 CRISPRa experiments we 
fit the model to all genes with mean greater than 0.2 UMI per droplet (and over all droplets containing up 
to 4 cells). 
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Benchmarking regression approach, related to Figure 1 and Supplemental Figure 2 

Baseline normalization used for comparison. To provide a baseline gene expression normalization for 
comparison, we used the gemgroup z-normalization from our past work20,62. Specifically, we: 

(1) Normalize all droplets to have equal total UMI counts 
(2) Perform the “z-normalization relative to control cells” for each gene described in the previous 

section. The control cell means and standard deviations are determined independently within each 
gemgroup due to the batch effects we have described previously62. 

The primary difference is thus that all droplets are equalized to have the same total UMI count, meaning 
the UMI saturation effect we describe in the main text is not accounted for. The same design matrix is 
used with both gene expression normalization approaches.  

Figure 1G-I: We first tested reconstruction overall reconstruction reproducibility based on the inferred 
coefficients in 5. Because Perturb-seq is typically conducted with relatively modest sampling per 
perturbation, some variability is expected. Our baseline comparison therefore consisted of taking all of the 
singlet droplets in the experiment, splitting them into two halves (held out vs. test), computing regressions 
within each split to produce 5held out and 5test, and then comparing the results. Our metric was the Pearson 
correlation coefficient computed between 5held out and 5test, each stacked into vector form. We then 
systematically downsampled the size of the test set, recomputed 5test, and measured performance again. 
Across many downsamplings, this produced the calibration curve seen in in Figure 1G. We then fit an 
interpolation to this curve using interp1d, which allows us to map an observed correlation between  
5held out and 5test to an equivalent number of singlet droplets in the test set. Finally, we then selected test 
sets consisting of equal numbers of cells contained in either singlet, doublet, triplet, or quadruplet 
droplets. (I.e. 16800 singlets vs. 8400 doublets vs. 5600 triplets vs. 4200 quadruplets.) We computed the 
corresponding  5test, computed performance relative to the held-out set, used the calibration curve to map 
the observed performance to an equivalent number of singlet droplets, and then finally divided this 
number by the actual number of droplets in the test set. A performance of 1 by this metric then means that 
the given droplets perform equivalently to singlets: e.g. 8400 doublets yielded approximately the same 
performance as 8400 singlets, and so received a score of ~1 in Figure 1H. That figure compares the 
performance of these regressions using the baseline normalization vs. our stably captured gene 
normalization. 

Figure S3B explores an alternative comparison along similar lines. In this case the test set consisted of 
only of doublets, and we varied the number between 8400 (0.5x doublets) and 16800 (1x doublets), 
showing that 16800 doublets perform roughly equivalently to 16800 singlets in terms of reconstruction 
reproducibility. 

We next performed reconstructions using all droplets in the experiment containing up to 6 cells. We 
downsampled them to varying total numbers (Figure S3C) and compared reconstructions again to a held 
out set of 16800 singlets. Figure 1I shows the raw Pearson correlation coefficient between 5held out and 
5test for these different choices of the test set (blue dots), with the magenta dots showing performance 
using the gemgroup z-normalization for comparison. The gray lines show the performance of the 16800 
singlet test set that we use as a baseline comparison, again showing roughly equivalent performance on a 
droplet-for-droplet basis regardless of occupancy level. 
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Finally, Figure S3D compares heatmaps of the 5 coefficients computed using either all singlets in the 
experiment (33681) or all droplets in the experiment containing up to 6 cells, using either our stably 
captured genes-based normalization or the baseline gemgroup z-normalization. Inspection of the heatmaps 
of the latter reveals regions of structural differences driven by the UMI saturation effect that are absent in 
the former, which are largely visually indistinguishable. 

Figure 1J: The previous comparisons were all based on the raw values of the inferred 5 coefficients. 
However, capturing these absolute effects may not be necessary for applications that require only accurate 
reconstruction of the relationships between perturbations. For example, clustering relies on pairwise 
comparisons and can be used to assign function to perturbations. We thus conducted parallel analyses to 
the previous ones using a different metric which we refer to as cophenetic correlation. Specifically, we 
compute 5held out and 5test as above, then compute the perturbation-perturbation correlation matrices 
6held out and 6test, and finally compute the similarity between these, again by stacking them and 
computing the Pearson correlation. Figure 1J shows the result of this for the experimental design in 
Figure S3C, showing that it is in general easier to reconstruct correlations than absolute effects, but that 
our stably captured gene normalization still improves performance. Accordingly, Figure S3E shows an 
equivalent analysis to Figure 1G-H using cophenetic correlation. 

Figure S2F-I: Finally, we conducted equivalent analyses for the p-values assigned by our regression 
procedure to the coefficients in 5. Due to the large-scale differences in p-values, we compared them using 
Spearman correlation instead of Pearson correlation. Figure S3F shows an analysis parallel to Figure 
1G-H, showing that the gemgroup z-normalization severely distorts significance testing, which is 
substantially improved by the stably captured gene normalization. (Compare with Figure S3D, showing 
structural differences in the coefficients that are likely driving this divergence.) Figure S2G follows the 
design of Figure S2C, but for p-values. The relatively weak agreement here is driven partly by the low 
number of cells per perturbation, as we see similarly modest reproducibility using two samples of 16800 
singlets (gray lines). An alternative comparison is to look at the number of differentially expressed genes 
(adjusted p < 0.01), which is a measure of the strength of a perturbation. Figure S3H shows this 
alternative metric, which shows that the regression accurately separates strong vs. weak perturbations. 
Finally, Figure S3I compares the number of differentially expressed genes (adjusted p < 0.01) of the 5 
coefficients computed using either all singlets in the experiment (33681) or all droplets in the experiment 
containing up to 6 cells, showing consistently higher numbers of genes reach significance due to the 
larger number of measurements enabled by droplet overloading. 

Simplified regressions for detecting on-target activation and newly expressed genes 

For genes with very low expression, we cannot fit gene-level correction factors (which would be very 
noisy). To extend our analyses to these genes, we therefore opted for a simplified regression procedure 
that compensated only for the saturation effects described in the main text. We focused on a “light touch” 
approach to minimize distortions that might be introduced when very few events are observed. 

We first constructed a modified design matrix. We begin with a binary design: 

-�	 	 .1 droplet   contains guide 1
0 otherwise

4
 

We are interested in changes relative to control cells, so we add a column that corresponds to a modified 
intercept that we called “control”: 

-�,control 	 � 
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where n is the number of guides/cells detected in droplet i. Each cell within the droplet thus contributes 
two terms to the regression: a “control” intercept term and a perturbation driven by the guide detected. 
We are interested in the values of the latter coefficients, which will measure the deviations introduced by 
the guides to the underlying average cell state (measured by the control term). 

Because we are not normalizing the data as in the previous regression approach, we had to account for the 
UMI saturation effect. Instead of normalizing each row to sum to 1, we computed occupancy-level-
dependent scale factors. Specifically, we calculated within each gemgroup the median UMI count at each 
droplet occupancy level, and normalized each of these by the median UMI counts observed in singlet 
droplets. This produces the factors in Figure 1D. As noted in the main text, there are diminishing returns 
so that e.g. a droplet containing two cells does not contain twice as many UMIs, but instead ~1.77 times 
as many. We use these scale factors to normalize each row of -. For example, if row i is a droplet 
containing 2 cells, we will scale that row by dividing by 1.77 (and not 2, which would not take the 
saturation into account). 

With these modifications in place, we conduct the same regression as before: 

+ 	 -5 

except that + is now unnormalized (raw) gene expression measurements of all genes for which any counts 
are detected in the experiment.  The non-control coefficients in 5 collect the effects induced by different 
guides, with p-values assigned as before. To prevent discoveries driven by extremely rare events, our 
analyses included both a p-value threshold and a hard “count” thresholds on the number of droplets in 
which non-zero counts were observed. These thresholds are described in the methods sections for the 
specific analyses. 

Percentile transformations, related to Figure 2E-G, Supplemental Figure 3E,I 

Low UMI count regressions were used for percentile calculations and characterization of on-target guide 
activation. Expression was transformed into percentiles of control cell, i.e. baseline, expression range to 
characterize expression relative to the normal physiological range. Preparation and normalization: the 
mean expression across control cells was rounded to zero at a minimum value of 0.001 to remove noise 
then log10 transformed with a small constant, (10-6) to avoid undefined logarithmic calculations. 
Construction of Reference Percentile Distribution:  To establish a reference range, we took all values 
greater than zero (-6, after log transformation) and created an evenly spaced distribution from min to max. 
This distribution was then used to arrange log-transformed expression values from 0-100. Percentile 
Calculation and Interpolation: Percentiles for control gene expressions were computed by determining 
the relative position of each log-transformed expression within the established linear distribution. To 
accommodate duplicated expression levels, we averaged percentiles associated with each unique 
logarithmic value. An interpolation function (scipy.interpolate.interp1d) was then generated 
from these averaged percentiles, facilitating the extrapolation of percentile values for gene expressions 
outside the observed range. Analysis of on-target activation: For each guide identity observed within the 
dataset, expression data for the guide target was reconstructed, rounded, and logarithmically transformed. 
Using the interpolation function derived from control data, we predicted percentile rankings for the target 
expression. The percentile results for all analyzed guides are available in Supplemental Table 4, which 
includes predicted percentiles for both control and experimental data. 

Categorization of on-target activation, related to Figure 2B-D, Supplemental Figure 4A,B 
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To classify the effects of guides on the target gene, several statistics were compiled for each guide 
including the adjusted p-value (adj_p) for the target gene, the number of cells containing target transcript 
(count_profile), and the percentile expression of the target gene within the control cells (ctrl_pctl) and the 
guide containing cells (target_pctl). The following criteria was used to classify targets as activated 
(is_activated) 1) positive percentile change: i.e. target percentile minus control percentile, indicating that 
the guide increased gene expression relative to the control. 2) coefficient significance: adjusted p-values 
(adj_p) were used to assess the statistical significance of changes. Only changes with adjusted p-values 
less than a threshold of 0.1 were classified as activated. Guide ranking- post-classification, guides were 
ranked to identify the most effective on-target activation: 1) For each gene, guides were ranked based on 
their target percentile value. The ranking was conducted in descending order, where the highest percentile 
indicated the strongest upregulation of gene expression (guide_rank). 2) The highest-ranked guide for 
each gene was identified (top_guide). This guide represents the most potent inducer of expression among 
the tested guides for that target gene, based on the analysis criteria. Categorization Based on Expression 
Activation Status- Each guide-target pair was categorized based on its activation status and baseline 
expression level: 1) activated expressed: Guide-target pairs were categorized as 'activated expressed' if 
they were activated (i.e., met the above classification criteria) and the control percentile was above a 
threshold of 15, indicating substantial baseline expression. 2) activated non-expressed: If a guide-gene 
pair was activated but the control percentile was at or below the threshold, indicating activation from a 
negligible baseline expression level. 3) inactive expressed: Guide-target pairs that did not meet the 
activation criteria but had a control percentile above the threshold were considered 'inactive expressed,' 
implying that the target is normally expressed but not significantly affected by the guide. 4) inactive non-
expressed: Guide-target pairs that were neither activated nor expressed above the threshold. Guide 
classifications and statistics for all guides can be found in Supplemental Table 4 and classifications are 
visualized in Supplemental Figure 3E.  

Analysis of maximum non-targeted expression, related to Supplemental Figure 4E,F 

For each dataset, we isolated significant sgRNA-induced gene expression changes in transcription factors, 
using a predefined adjusted p-value threshold of 0.05. We then masked the guide-gene matrix at the 
guide-target index to exclude on-target effects, retaining only potential “non-targeted” interactions, i.e. 
potential downstream effects. The expression data was further filtered to ensure significant target 
detection by filtering for a count profile >= 3 (3 or more droplets with that guide must contain the 
transcript). The resulting matrix of filtered percentile expression was then processed to extract the 
maximum expression value for each target gene across all other guides. 

Bulk RNA-seq analysis, related to Supplementary Table 4 

Data was processed using nf-core/rnaseq v3.12.0 of the nf-core collection of workflows108.  The pipeline 
was executed with Nextflow v23.10.0109 with the following command: nextflow run nf-
core/rnaseq -profile singularity --input samplesheet.csv --outdir 
/nextflow/results --fasta /genome_fasta/genome.fa --gtf /annotation/genes.gtf 

--star_index /STAR_Index_nextflow --max_cpus 24 --max_memory 256.GB. Reference 
files from GRCh38, release 34. Bulk transcription factor expression per cell type was compiled from 
salmon.merged.gene_tpm.tsv  

Epigenetic data processing and preparation of model features, related to Figure 2G, Supplemental 
Figure 4G,H 

Raw sequencing reads for ATAC and CUT&RUN libraries were trimmed and filtered for quality (Q>15) 
and adapter content using version 0.4.5 of TrimGalore110 and running version 1.15 of cutadapt and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2024. ; https://doi.org/10.1101/2024.07.31.606073doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.31.606073
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

version 0.11.5 of FastQC(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Version 2.3.4.1 of 
bowtie2111 was employed to align reads to human assembly hg38 and alignments were deduplicated using 
MarkDuplicates in Picard Tools v2.16.0 (https://broadinstitute.github.io/picard/). Enriched regions were 
discovered using MACS2112 with a p-value setting of 0.001, filtered for blacklisted regions113. The 
BEDTools suite114 was used to create bigwig files normalized to 10 million mapped reads. The 
normalized bigwigs were averaged across replicates using version 3.5.4 of deepTools115 bigwigAverage. 

Predicted TF binding bigwigs were generated using version 1.0.6 of maxATAC65 predict with ATAC 
bigwigs, TF model files downloaded from https://github.com/MiraldiLab/maxATAC_data/, and a bed file 
for genomic regions ±10,000 bp surrounding guide PAM positions as input. 

DNA methylation data for dermal fibroblast64 was downloaded from NCBI GEO116 accession number: 
GSE186458 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM5652204, filename: 
GSM5652204_Dermal-Fibroblasts-Z00000423.hg38.bigwig). List of KRAB zinc fingers was 
downloaded from KRABopedia66 (https://tronoapps.epfl.ch/web/krabopedia/ind.php). 

For each TSS, bigwig signals were averaged over a window centered at TSS (200 bp for ATAC and 
predicted TF tracks, 500 bp for CUT&RUN and DNA methylation). For signals other than predicted TF 
binding tracks, which were already scaled to between 0 and 1 by maxATAC, each was log transformed 
and then minmax scaled to between 0 and 1 across all TSSes. 

Categorization of TSS activation of non-expressed genes, related to Figure 2G, Supplemental 
Figure 4G 

Genes with expression below 15 percentiles in control cells were defined as non-expressed genes. Each 
guide was mapped to the genome and assigned to the closest TSS. Analyses were restricted to guides 
mapped to up to 700 bp upstream and 300 bp downstream of a TSS. Sex chromosomes were excluded 
because maxATAC only makes predictions for autosomes. A TSS is defined as activatable if two out of 
three or at least three guides have an adjusted p-value less than 0.01 and percentile change greater than 
15. A TSS is defined as non-activatable if zero guide has an adjusted p-value less than 0.01 or percentile 
change greater than 15 or transcriptional phenotype. 

Feature selection and evaluation of model performance, related to Figure 2G, Supplemental Figure 
4L)  

Logistic regression with L1 regularization was performed using version 1.4.1.post1 of scikit-learn117 
sklearn.linear_model.LogisticRegression with parameters: penalty="l1", 
solver="liblinear", C=0.2, class_weight="balanced". Features that have non-zero 
coefficients were selected. 

Stratified 5-Fold cross-validated predictions were made with selected features using scikit-learn 
LogisticRegression (solver="liblinear", class_weight="balanced"). For each 
fold, true positive rate and false positive rate were calculated using scikit-learn roc_curve. True positive 
rates were then interpolated at 500 evenly spaced points of false positive rates between 0 and 1. Cross-
validated receiver operating characteristic (ROC) curves were created by averaging interpolated true 
positive rates over the folds and plotting against the evenly spaced points of false positive rates. Area 
under the ROC Curve (AUC) was calculated for each fold using scikit-learn roc_auc_score and 
average over the folds to give cross-validated AUCs with standard errors. 

Reduced model training on Hs27 and validation on RPE-1, related to Supplemental Figure 4N 
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A scikit-learn LogisticRegression (solver="liblinear", 
class_weight="balanced") model was trained on Hs27 using three features – pred-YY1, 
H3K27me3, and KRAB zinc fingers. The model was then used to make predictions on RPE-1 cells. The 
predicted probabilities were used to generate a ROC plot using scikit-learn roc_curve and calculate 
AUC using scikit-learn roc_auc_score. 

Comparing predictions for Hs27-specific activation, related to Supplemental Figure 4O 

Genes that are uniquely activatable, by criteria described above, in Hs27 cells were selected. The reduced 
model above was used to make predictions in Hs27 and RPE-1 cells. The predicted activation 
probabilities were compared between the cell types. We could not evaluate RPE-1-specific genes because 
only three were uniquely activatable in RPE-1 by criteria above. 

Enrichr enrichment analysis of activable non-expressed genes, related to Supplemental Figure 4M 

Enrichr67,68 enrichment analysis was performed on Hs27 cells using version 1.0.4 of GSEApy118 
gseapy.enrich, with "ENCODE_Histone_Modifications_2015” as gene-set library 
(https://maayanlab.cloud/Enrichr/#libraries), activatable genes as input gene list, and all non-expressed 
genes as background gene list. Top 10 enriched gene sets were plotted using gseapy.dotplot. 

Identifying active guides by clustering, related to Figure 3, 4 

We first perform the regressions as described in the section Computing mean guide phenotypes using 
linear regression. For each experiment, this produces a matrix 5 that we will orient so that rows are 
guides, columns are genes, and each entry denotes the effect of that guide on that gene (relative to control 
cells). 

Due to the seed-based off-target effects discussed in the main text, we created a procedure for identifying 
active guides based on clustering. Our idea was that if (hierarchical) clustering was performed at a fine 
enough resolution, then active guides against a common target would end up clustering next to each other. 
This test simultaneously assesses both the strength of the phenotype (as guides must induce a phenotype 
that drives clustering) and its reproducibility (as two or more guides must produce the same phenotype). 

To perform the clustering, we first mask the target genes within 5: i.e., if row i corresponds to a guide 
targeting gene j, then we set 5�� 7 �8�. This is done to prevent clustering driven solely by on-target 
activation, which we observed for some highly inducible, highly expressed genes. We then subsetted 5 to 
only the columns corresponding to genes that were differentially expressed (adjusted p < 0.01) by at least 
5 different guides. We next computed a nan-aware guide-guide correlation matrix 6 using the library 
NaNCorrMp, and then converted it into a distance matrix as 9 	 1 , 6. We then clustered this matrix 
using hierarchical clustering (method=’average’) to produce a linkage matrix : and computed 
inconsistency statistics (inconsistent(Z, d=5)). Our use of correlation-based comparisons (as opposed to, 
say, Euclidean distance) ensures that guides with varying effect sizes or incomplete penetrance can still 
cluster together, as in our previous work62. 

We then clustered the linkage : with fcluster at a series of different threshold values (between 0.5 and 3) 
of inconsistency. As the threshold gets higher, clusters merge and grow larger. At each value of the 
threshold, we then checked for guides that clustered based on either guide target or the seed region of the 
guide according to the following criteria: 
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• A cluster was “gene-driven” if guides targeting a common gene formed the plurality of guides in 
a cluster (i.e. make up at least half of the cluster) 

• Similarly, a cluster was “multi-gene-driven” if guides against two or more genes formed the 
plurality of guides in the cluster. (This accounted for some homologous genes or functional 
partners that tightly clustered in effect and are labeled with slashes on Figure 4A. E.g. 
“GATA4/GATA6”) 

• A cluster was “sequence-driven” if the majority of guides (over 75% for more than three items, or 
100% for three or fewer) in the cluster had a common seed region. The common seed could be 
anywhere between 3 and 6 nucleotides, and we chose the longest seed that explained the cluster if 
more than one possibility existed. 

• Finally, a small number of clusters could potentially be explained as both gene-driven and 
sequence-driven (e.g. if two guides against the same gene also happened to share a common seed 
region). 

We picked the final thresholds used for clustering in a dataset-dependent manner based on inspecting the 
size of clusters that formed. (As the threshold was raised, clusters would merge to a point that they 
became incomprehensible.) For the Hs27 fibroblast dataset we used a threshold of 1.5 for routine 
clustering and a threshold of 1.3 for conservative analyses. For the RPE-1 dataset we used a threshold of 
1.4 for routine clustering and 1.2 for conservative analyses. At these choices most clusters are very small, 
containing 1-4 guides. 

Guides that fell into gene-driven or multi-gene-driven clusters were termed “masked_active” (i.e. they 
exhibited clustering despite masking of the target gene). 

Finally, we also attempted to recover some perturbations for which only a single guide was active. We 
called these guides expanded_masked_active. They had to meet several strict criteria: 

• Fell into a gene-driven or multi-gene-driven cluster as described above with a stricter threshold of 
1.2 

• Had on target activity detected in the analysis in Categorization of on-target activation (related to 
Figure 2, Supplemental Table 4) 

• Did not have a bad seed sequence as described in the analysis in Classification of Bad seeds 
(related to Figure 3, Supplemental Table 4) 

The intuition for these guides is that they cluster along guides that we know are producing distinctive 
phenotypes at a high level of stringency (indicated by the threshold of 1.2). In many cases they were 
homologous genes based on similarity of gene names: for example, KLF4, for which we have only a 
single active guide, clusters with KLF5 in this analysis. 
 
Identifying seed-driven clusters, related to Figure 3 

As part of our clustering analysis (Identifying active guides by clustering (related to Figure 3,4)), we 
conducted a parallel analysis aimed at identifying the seeds that most strongly drove clustering. To do this 
we computationally traversed the linkage matrix : that we used for clustering. Each guide initially 
occupies its own cluster, and as the traversal continues these are merged into larger and larger clusters. 
Within each newly formed cluster of 4 or more guides we tested for the presence of a common seed 
sequence. We checked for all possible suffix lengths between 3 and 8 nucleotides. If a common seed was 
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found, we recorded the minimal height of the linkage that would cause that cluster to be formed. Seeds 
that rapidly drove the emergence of distinct clusters thus appeared at lower threshold heights in this 
analysis, which we took as a measure of their strength. 

Classification of bad seeds, related to Figure 3C, Supplementary Table 4 

To classify specific “bad seed” sequences the seed thresholds in RPE-1 and Hs27 cells were ranked, and 
the mean of the ranks taken across the cell types. The top 75 ranked sequences were taken as the “bad 
seeds” and corresponded to those seeds associated with sequence-based clustering across cell types. All 
protospacer sequences containing a bad seed at the 3’ end were classified and the specific seed match(s) 
recorded. 

Embedding to visualize seed-driven clustering, related to Figure S5H 

We produced an embedding for all 11258 perturbations using pymde as described previously62. We then 
computed a correlation-based distance matrix, which we used to cluster the guides using HDBSCAN 
(min_cluster_size=5, min_samples=1, cluster_selection_method=’leaf’). 
This experiment used a dual guide sgRNA expression construct, so each cell received two sgRNAs 
against the same target gene. We then examined whether clusters could be explained by a common seed 
region (at least 70% of protospacers in the cluster terminated in a common sequence of 3 or more bases, 
possibly in distinct positions in the dual sgRNA expression construct). The examples we identified are 
annotated on the figure, though we suspect this is an undercount. 

Extracting seed-dependent effects from fitness experiments via regression, related to Figure S5 

We used linear regression to look for possible seed-dependent effects in existing CRISPRa fitness 
screens. Our approach was to model each guide as having two possible effects: (1) on-target effects on the 
target gene and (2) possible off-target effects due to the seed region of the protospacer, here defined as the 
5 PAM-proximal nucleotides of the protospacer. This amounts to defining two design matrices: 

;�	 	 .1  guide   targets gene 1
0 otherwise

4 

and 

<�	 	 .1  guide   has seed 1
0 otherwise

4
 

We then concatenated these two design matrices and added a constant intercept column to create the final 
design matrix -. To ensure numerical stability we used dataset-dependent filters on representation (e.g. 
included only guides for which 5 or more guides targeted the same target gene and included seeds as 
columns in < only if 20 or more guides had a given seed). We then regressed out experiment-dependent 
fitness phenotypes (different experiments used different metrics) according to: 

= 	 -5 

where = is the fitness phenotype. We assigned p-values using a t-test. Due to differences in effector, 
library composition, sgRNA scaffold sequence, cell type, and experimental design we do not expect the 
same seeds to necessarily rank the same way in all experiments. It is also unclear whether seed-dependent 
off-target effects necessarily always induce fitness phenotypes. Nevertheless, we observed that this 
procedure tended to assign certain seeds significant fitness effects, and those seeds also tended to contain 
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PAM sequences as described in the main text. Notably the same procedure applied to a CRISPRi 
experiment (Figure S5G) did not identify strong effects. All panels with blue dots in Figure S5 were 
computed according to this procedure. 

For experiments that reported phenotypes for many non-targeting guides we also conducted a simpler 
analysis in which we grouped non-targeting guides according to seed (only for seeds that appeared in 10 
or more guides), computed the median fitness phenotype, and plotted histograms (These are the yellow 
histograms in Figure 3 and Figure S5). Non-targeting guides by construction should not have “on-target” 
effects, meaning any identified phenotype is likely a shared off-target effect. 

The origins of the datasets used in these analyses are: 

Panel Reference Source within reference CRISPR effector 
3E, 
S5C, 
S5G, 
S5I 

Genome-Scale CRISPR-Mediated 
Control of Gene Repression and 
Activation16 

Supplemental Table S2 dCas9-SunTag VP64 
for CRISPRa, dCas9-
KRAB for CRISPRi 

S5D A genome–wide CRISPR 
activation screen identifies 
SCREEM a novel SNAI1 super-
enhancer demarcated by eRNAs71 

Supplementary Table S4, CD44 
LOW mageck_sgrna_summary 

dCas9-VP64 SAM 
system + MS2-PH 
(i.e. VPH) 

S5E Optimized libraries for CRISPR-
Cas9 genetic screens with multiple 
modalities26 

Supplementary Data 5, 
pXPR_118 A375 Vem SetA 
analysis 

dCas9 SAM system + 
MS2-PH (i.e. PH) 

S5F Optimized libraries for CRISPR-
Cas9 genetic screens with multiple 
modalities26 

Supplementary Data 5, 
pXPR_109 Mel Sel SetAB 
analysis 

dCas9-VP64 SAM 
system + MS2-PH 
(i.e. VPH) 

S5J Genome-wide programmable 
transcriptional memory by 
CRISPR-based epigenome 
editing72 

Supplemental Table S4, 
CRISPRoff 

CRISPRoff 

Embedding of active guides, related to Figure 4A 

We produced an embedding of all masked_active or expanded_masked_active guides using pymde as 
described in our previous work62. The labels are placed for (1) all multi-gene-driven clusters (which have 
gene names separated by slashes) (2) the top 100 genes (with guides identified as masked_active or 
expanded_masked_active) according to number of differentially expressed genes (adjusted p-values < 
0.05).  

Examining conservation of perturbation effects across cell context, related to Figure 4B 

We first identified perturbations that induced phenotypes in both cell types. We only considered guides 
that were either masked_active or expanded_masked_active in both cell types and that did not have bad 
seeds. For each gene we then picked a single representative guide as the “primary guide” as the one that 
had the highest mean (log) number of differentially expressed genes across the two cell types. This led to 
121 guides in total that had phenotypes in both cell types. 
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We then extracted the expression profiles for these guides from the 5 matrices for each cell type produced 
by our regressions. We only considered genes (columns of 5) that were chosen as part of components by 
our sparse PCA gene program extraction procedure in both cell types. This led to a total of 1702 genes. 
As in the clustering analysis, we masked the targets of guides using nan to prevent effects driven by 
CRISPRa on-target activity. 

We then compared guides in two ways. “Profile correlation” corresponded to the Pearson correlation 
between the expression profile in Hs27 cells vs. that in RPE-1 cells. Next, we computed guide-guide 
correlation matrices in each cell type. We treated the rows of these matrices as “correlation profiles” for 
each guide. The “cophenetic correlation” corresponded to the Pearson correlation between the correlation 
profile in Hs27 cells vs. that in RPE-1 cells. These two perspectives essentially compare whether a 
guide’s absolute effects on gene expression (profile correlation) are preserved across cell context vs. 
whether a guide’s relationships with other guides are preserved (cophenetic correlation).  

Identifying transcription factors that oppose each other, related to Figure 4C 

We reasoned that our gene program profiles (Figure 4A, bottom right) represented more meaningful 
representations of perturbation function. We took the gene program profiles for guides that were either 
masked_active or expanded_masked_active and collapsed them to gene level by averaging according to 
target gene. We then computed the gene-gene correlation matrix. We reasoned that strong negative 
associations in this matrix derived from transcription factors that might functionally oppose each other. 
(Strong positive associations are more difficult to reason about, as they arose frequently from homologous 
transcription factors.) We viewed an association as particularly strong if it fell in the bottom 0.1% of 
entries in the correlation matrix. We constructed a graph using these links. Figure 3C simply plots the 3 
connected components in this graph that contained 3 or more transcription factors. Arcs in the circos plot 
annotate strong negative or positive associations (in the top 0.1% of entries of the correlation matrix) 
among the selected transcription factors.  

Extracting gene expression programs using consensus sparse PCA, related to Figure 4 

We developed a procedure for extracting gene expression programs using sparse PCA. Interpretability is 
aided by a modification we made to sklearn’s SparsePCA class to enforce positivity of the coefficients 
that define the programs. (This is a built-in functionality of sklearn’s dict_learning method, which 
SparsePCA uses to extract components. We simply set positive_code=True.) This modification 
forces the modified class, which we called NonNegativeSparsePCA, to pick components that are 
composed of genes that move up or down together. We thus retain the interpretability benefits of methods 
like NMF, while adding a sparsity constraint that makes programs smaller. 

We apply this method to the (unmasked) 5 matrix from the Identifying active guides by clustering 
(related to Figure 4) section. We subsetted 5 to rows corresponding to masked_active guides identified 
by clustering, and to columns that were differentially expressed  (adjusted p < 0.01) by at least 2 different 
masked_active guides. To identify the correct number of programs to extract, we used a consensus 
procedure. We produced 100 bootstrap resamples of our subsetted 5 matrix and fit 
NonNegativeSparsePCA models to each of them. In each case we extracted 100 components and, based 
on testing, set the sparsity parameter alpha=1. As a result we extracted 10,000 components in total across 
all resamples. 
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To identify components that appeared recurrently across resamples, we then borrowed a consensus 
building procedure from Leland McInnes’s enstop repository (https://github.com/lmcinnes/enstop/). We 
embedded the 10,000 extracted components into a common embedding using UMAP (n_neighbors=15, 
n_components=5, metric=hellinger). We then cluster these embedded components using HDBSCAN 
(min_samples and min_cluster_size were both set at 80, meaning the component must appear in 80% or 
more of the 100 bootstrap resamples). In Hs27 fibroblasts, this produced 57 clusters. We then finally 
reran NonNegativeSparsePCA on the original subsetted 5 (i.e., containing all masked_active guides) with 
n_components set to 57 to ensure deterministic results. The resulting components varied drastically in 
size, with some containing hundreds of positive coefficients and others concentrating on only a handful of 
highly variable genes, showing the versatility of this procedure to extract programs of different scales. 

Finally, to produce representations of guides’ effects as linear superpositions of programs, we used the 
transform method of NonNegativeSparsePCA (inherited from SparsePCA), which fits program scores for 
each guide using ridge regression. We fit these scores for all guides (but used only masked_active guides 
to derive the programs). 

Enrichment analysis associating fibroblast gene programs with in vivo fibroblast states, related to 
Supplemental Figure 10A 

We performed permutation testing to assess the degree of overlap between genes in the CRISPRa 
programs and in vivo fibroblast states defined by Korsunsky et al., 202254. The genes for each gene 
program were defined as the top 50 genes for each program based on sparse PCA. The genes for each 
cluster were defined as any differentially expressed gene in that cluster keeping each tissue separate. The 
Jaccard similarity was computed between the program genes and cluster genes. Permutations were 
generated by concatenating the program genes together and randomly sampling sets of program genes 
equivalent in size to the program. This method allows for duplicate genes which are removed when 
computing Jaccard similarity. A total of 1,000 permutations were performed for each program-cluster 
combination. P-values were computed by computing the number of permutations with a Jaccard similarity 
greater than or equal to the observed Jaccard similarity and dividing by the total number of permutations. 
Overlap coefficients were computed by taking the number of shared genes between the cluster and 
program and dividing by the number of program genes. Permutation-based p-values were then adjusted 
using the Benjamini-Hochberg correction for multiple hypothesis testing. A FDR threshold of 0.1 was 
used to determine significant cluster-program links.   

Analysis of newly expressed genes, related to Figure 5D-E, Supplemental Figure 10D 

Newly expressed genes for each guide were defined from Low UMI count regressions as those showing a 
positive percentile change (pctl_change), with an adjusted p-value less than 0.01, the number of cells 
containing target transcript (count_profile) greater than or equal to 3, and the percentile expression of the 
target gene within the control cells (ctrl_pctl) as less than 15. Counts of guides per target activating each 
gene were used to filter for high confidence new expression.  

Curation of cell state markers, related to Figure 5C, E-F, Supplemental Figure 10C-D 

Fibroblast cell states- Supplementary data tables for human fibroblast clusters were downloaded from 
Buechler and Pradhan et al., 202153 (Supplementary Table 7, “All markers”) and Korsunsky, 202254 
(Supplemental information, Document S2, Supplementary Data ,“TableS8”). From the Buechler and 
Pradhan et al., 2021 dataset, the annotated cluster 8 (human universal state/normal) and cluster 3 
(inflammatory/cancer-associated fibroblasts) were isolated and filtered for avg_logFC > 1 and p_val_adj 
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< 0.05.  For marker genes from Korsunsky et al., 2022 clusters “CD34+MFAP5+ C9” and 
“SPARC+COL3A1+ C4” were isolated. Clusters were further subset by Tissue classification and two 
gene lists generated one for all Tissue classes except “Marginal” and the other limited to the Marginal 
class (i.e. cluster specific effects regardless of tissue of origin). As described within Korsunsky et al., 
2022, markers that were significant across all 4 tissues—SalivaryGland, Lung, Synovium, and Gut—were 
filtered as high confidence cluster markers. The set of significant genes for the Marginal class were also 
incorporated as part of our marker gene sets. Pval < 0.05 and LogFoldChange > 1 was used to filter 
significant marker genes and the top 100 genes from each cluster selected. The final marker gene list was 
further supplemented with selected of differentially expressed fibroblast markers from Smith et al., 202340 
Fig. 1b. 

Retinal markers- known retina marker genes were compiled from the Human Protein Atlas90 retina 
proteome (https://www.proteinatlas.org/humanproteome/tissue/retina) and computational selected from 
the RNA FANTOM tissue gene data (https://www.proteinatlas.org/download/rna_tissue_fantom.tsv.zip). 
Selection was performed by first calculating a specificity score for each gene within all tissues. First, all 
rows and columns of the expression matrix were normalized to have the same sum though an iterative 
procedure. Then, a specificity score was assigned to each gene within each tissue as the ratio of 
expression within the tissue over the sum of all tissues. The top 500 retina specific genes (highest ratio) 
were selected as retinal markers. Additional cell type specific markers were hand compiled from the 
Single Cell Type Atlas2 (https://www.proteinatlas.org/humanproteome/single+cell+type) curated sets of 
cell type markers including glial types (Muller glia cells, Schwann cells) and pigmented cells 
(Melanocytes). 

Visualization of fibroblast marker activation and variation, related to Figure 6F, S10C,D 

Initially, lists of high confidence gene activation (> 2 guides per target) for outlier perturbations (i.e. with 
many genes activated) were compared to known marker genes for fibroblast state including Buechler and 
Pradhan et al., 2021:  universal clusters - PI16, DPT, COL15A1, defined steady state clusters - COMP, 
CCL19, COCH, CXCL12, FBLN1, BMP4, NPNT, HHIP, Korsunsky et al. 2022 named clusters: 
CD34/MFAP5, CXCL10/CCL19, FBLN1, PTGS2/ SEMA4A, SPARC/COL3A1. Subsequently, high 
confidence gene activation for all targets was cross referenced with the full curated list of cell state 
markers. This process was similarly applied to newly expressed genes from RPE-1 perturbations, cross 
referencing with retinal marker genes and curated cell type markers. 

Associating transcription factors with markers of in vivo phenotypes, related to Figure 6A,B 

In this analysis we were took a more inclusive view of which perturbations to include than when 
extracting gene programs. We considered all guides that: (1) were not in seed-driven clusters in either 
Hs27 or RPE-1 datasets; (2) did not contain bad seeds that we had identified; and (3) were either 
masked_active, expanded_masked_active, or showed detectable on-target activation in either Hs27 or 
RPE-1 cells. 5346 guides passed these filters. To collapse these to gene-level program scores, we for each 
program averaged the two guides with the strongest absolute effects for that program. (A large negative 
score by one guide could therefore potentially cancel a large positive score by another.) This led to 
predictions for 1665 transcription factors. For the universal state we used the score of program 31 as the 
in vitro score and for the inflammatory state we used the score of program 32. These scores form the y-
axis of Figure 6A,B. 

We then compared these scores with in vivo expression of state markers for these two states. We 
downloaded rna_single_cell_type_tissue.tsv.zip from the Human Protein Atlas website, which aggregates 
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single-cell RNA sequencing data about 81 cell types in 31 distinct datasets into clusters of single cells that 
have been averaged together. Each cluster is annotated with a cell type. We included clusters annotated as 
either “fibroblasts”, “smooth muscle cells”, or “endometrial stromal cells.” We removed clusters derived 
from the “Early spermatids”, “Leydig cells”, and “Late spermatids” tissues as they exhibited markedly 
distinct expression characteristics from other datasets. We then normalized the expression profiles of all 
clusters to sum to 1, and z-normalized each gene feature. The resulting dataset contains 96 cluster gene 
expression profiles across 20082 genes. 

We extracted the expression of specific state markers from this dataset: PI16 for universal fibroblasts and 
SPARC for inflammatory fibroblasts. To measure similarity of expression patterns, we then correlated 
marker expression with the expression of each of the 1665 transcription factors within the dataset. These 
scores form the x-axis of Figure 6A,B. 

Outliers were identified independently for each variable using the 1.5 interquartile range (IQR) rule, 
where the IQR is the difference between the first quartile (Q1, 25th percentile) and the third quartile (Q3, 
75th percentile). Data points below Q1 - 1.5 * IQR or above Q3 + 1.5 * IQR were considered outliers. 
Positive outliers were defined as data points above Q3 + 1.5 * IQR. We highlighted data points that were 
positive outliers in both variables simultaneously, as they were both (1) capable of inducing the state (y 
outlier) and (2) strongly correlated with the state marker in vivo (x outlier). 

Scoring of transcription factor phenotypes for similarity to in vivo observed transcriptional states, 
related to Figure 6C 

We used the consensus fibroblast cell state lists from from Korsunsky et al., 202254 (see Curation of cell 
state markers) to select genes for scoring, intersecting with the expressed genes used within linear 
regression of mean guide phenotypes (columns of 5�. Guides were then filtered for those within the “final 
library” (i.e. not seed driven, and observed as having on-target activity within either cell type). The top 2 
guides for each target were selected based on the highest number of differentially expressed genes 
observed for each guide (“de_genes_fibro_final”). The mean expression profiles for each target were then 
generated by taking the average of the 5 coefficients across the selected guides, and on-target effects were 
masked. Extreme gene variation (i.e. z-score > 4) was capped at a maximal variation of 4 to limit the 
score contribution from any one outlier gene. For each, “Cluster” and “Tissue” within the differentially 
expressed gene list from Korsunsky et al., 202254 (Supplemental information, Document S2, 
Supplementary Data ,“TableS8”)  we used the differentially expressed genes within that “Tissue” to 
create a weighted score of transcription factor phenotype. Specifically, we multiplied each gene’s 
expression deviation by the “LogFoldChange” observed for each “Tissue” and a final score was created 
by summing the weighted deviations dividing by the total weight (sum of the absolute “LogFoldChange” 
per “Tissue”). In the case of the MYH11+ C13: Synovium very few differentially expressed genes (<10) 
overlapped with the consensus gene list for the MYH11+ C13 cluster (consistent with the previously 
observed absence of the myofibroblasts from the synovium54) and the tissue was dropped from the 
analysis. To visualize the top scoring transcription factors per “Cluster”, each “Tissue” nominated it’s top 
2 scoring transcription factors to be visualized regardless of transcription factor expression within the 
“Tissue”.  Mean expression (mean log normalized counts per cell, generated from ported Seurat object) 
from each cluster for each nominated transcription factor was used to annotate the visualization, with the 
highest expressed transcription factor marked in bold and those with observed expression > 50th 
percentile of all transcription factor expression marked with italic. 

Processing of the Ovarian cancer fibroblasts, related to Figure 6D 
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Annotated fibroblasts from the Vázquez-García et al., 2022 MSK-SPECTRUM dataset were processed 
from raw counts. Briefly, the fibroblast subset was filtered in scanpy with 
scanpy.pp.filter_genes(adata, min_cells=3), the dataset was previously filtered for 
minimum genes >500, >1,000 UMI counts, and <25% mitochondrial genes104. Counts were normalized to 
median total counts and Log(x+1) scaled with scanpy.pp.normalize_total(adata) and 
scanpy.pp.log1p(adata) respectively. Highly variable genes were selected with 
sc.pp.highly_variable_genes(adata, n_top_genes=2000, batch_key="batch"). Batch correction was 
performed with bbknn119 using the workflow from Park et al., 2020120. Specifically:  

bbknn.bbknn(adata) 
scanpy.tl.leiden(adata, resolution=0.4)  
bbknn.ridge_regression(adata, batch_key=['batch'] 

,confounder_key=['leiden']) 
scanpy.tl.pca(adata) 
bbknn.bbknn(adata) 

We observed that patient sample “SPECTRUM-OV-045” exhibited poor batch correction evidenced by 
separation upon visualization of data integration, scanpy.pl.umap(adata, color = [“batch”]), 
and this sample was removed from further analysis. PI16 and KLF4 expression was visualized with 
scanpy.pl.umap(adata, color=['PI16', 'KLF4']). 

CIRCOS plot of program cross regulation, related to Figure 6E 

Gene-level program scores were calculated as described in Associating transcription factors with markers 
of in vivo phenotypes, allowing for program scores from all transcription factors with either observed 
phenotypes or on-target activity. The top 10 program activating (i.e. highest program scores, positive) and 
repressing (lowest program scores, negative) were selected for programs 4 (myofibroblast), 31 
(universal), and 32 (inflammatory) and visualized with pycirclize.Circos 

(https://github.com/moshi4/pyCirclize) with track.heatmap for each TF’s program score and links 
(circos.link) drawn between transcription factors recurring across the programs. Links were 
visualized as “red” if both program scores were positive, “blue” if both were negative, and “purple” if the 
values were opposing (i.e. program cross-regulation).  

Selection of Final Filtered guide library, related to Supplementary Table 4 

The final validated guide library was selected from the sets of “active” and “expanded_active” classified 
guides for each cell line, as well as guides that showed direct on target activation (i.e. “is_activated”). All 
guides were filtered for seed driven clustering (“seed_driven”) or the presence of a categorized 
“bad_seed” within the protospacer sequence. The final guide library can be found in Supplemental Table 
4. 
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