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ABSTRACT

The lethal novel coronavirus disease 2019 (COVID-19) pandemic is affecting the health of the
global population severely, and a huge number of people may have to be screened in the future.
There is a need for effective and reliable systems that perform automatic detection and mass
screening of COVID-19 as a quick alternative diagnostic option to control its spread. A robust deep
learning-based system is proposed to detect the COVID-19 using chest X-ray images. Infected
patient's chest X-ray images reveal numerous opacities (denser, confluent, and more profuse) in
comparison to healthy lungs images which are used by a deep learning algorithm to generate a
model to facilitate an accurate diagnostics for multi-class classification (COVID vs. normal vs.
bacterial pneumonia vs. viral pneumonia) and binary classification (COVID-19 vs. non-COVID).
COVID-19 positive images have been used for training and model performance assessment from
several hospitals of India and also from countries like Australia, Belgium, Canada, China, Egypt,
Germany, Iran, Israel, Italy, Korea, Spain, Taiwan, USA, and Vietnam. The data were divided into
training, validation and test sets. The average test accuracy of 97.11 + 2.71% was achieved for
multi-class (COVID vs. normal vs. pneumonia) and 99.81% for binary classification (COVID-19 vs.
non-COVID). The proposed model performs rapid disease detection in 0.137 s per image in a
system equipped with a GPU and can reduce the workload of radiologists by classifying

thousands of images on a single click to generate a probabilistic report in real-time.
© 2021 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish
Academy of Sciences. Published by Elsevier B.V. All rights reserved.

* Corresponding author at: Centre for Advanced Studies, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, U.P., India.
E-mail address: malaykishoredutta@gmail.com (M.K. Dutta).

https://doi.org/10.1016/j.bbe.2021.01.002

0208-5216/© 2021 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences. Published by Elsevier

B.V. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbe.2021.01.002&domain=pdf
https://doi.org/10.1016/j.bbe.2021.01.002
mailto:malaykishoredutta@gmail.com
http://www.sciencedirect.com/science/journal/02085216
www.elsevier.com/locate/bbe
https://doi.org/10.1016/j.bbe.2021.01.002

240 BIOCYBERNETICS AND BIOMEDICAL ENGINEERING 41 (2021) 239-254

1. Introduction

An eruption of novel coronavirus disease or COVID-19
(previously known as 2019-nCoV) started in China in Decem-
ber 2019. As of 16th September 2020, more than 29.5 million
cases have been reported in more than 188 countries, and it
has arrond 1 million deaths [1]. COVID-19 is a disease caused
by severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2) that can be severe in patients with comorbidities and
has a fatality rate of 2% [2]. There is an urgent need to take an
effective step for the containment of COVID-19 by performing
screening tests on a suspected fellow so that the infected
person can receive immediate care with more specific
treatment and quarantine of the patient can be ensured to
limit the spread of the virus.

The SARS-CoV-2 infection has a wide range of clinical
manifestations ranging from asymptomatic infection and
mild upper respiratory tract illness to severe viral pneumonia
that may culminate in failure of the respiratory system and
sometimes death [3]. Real-time reverse transcriptase-poly-
merase chain reaction (RT-PCR) tests are performed for the
qualitative detection of nucleic acid from upper and lower
respiratory tract specimens (i.e. nasal, lower respiratory tract
aspirates, sputum, nasopharyngeal or oropharyngeal swabs,
nasal aspirate) of infected person [4]. Performing RT-PCR
testing for COVID-19 will most probably remain the main
detection method. However, it is expensive, complicated, and
time-consuming for countless patients with a lack of time.
Because of the shortage of kits for RT-PCR and relatively high
false-negative rate, alternative methods such as the examina-
tion of chest X-rays (CXR) can be used for screening. It may be
noted that the detection of lung involvement may predict a
potentially life-threatening outcome in patients with COVID-
19 [5,6].

CXR is a non-invasive imaging method and X-rays of the
chest are usually done in either anteroposterior (AP view) or
Posterior anterior (PA view) of a suspected patient's chest to
generate cross-sectional images [7]. These X-ray images are
examined by expert radiologists to find abnormal features
suggestive of COVID-19 based on extent and type of lesions.
Imaging features of the X-ray image of coronavirus affected
persons varies as these depend on the stage of infection. The
spectrum of radiological findings varies from normal (18% of
cases) to 'whiteout Lung'. The usual abnormality seen is
bilateral peripheral sub-pleural ground-glass opacities (GGO)
and consolidations. "Crazy-paving" pattern and reversed halo
sign may be seen [5,6]. There may be a rapid progression in the
extent of the lesion in 24-48 h to multilobar to total lung
involvement in severe disease [8]. With an increase in the
number of patients with COVID-19 disease, the medical
community may have to depend on portable CXR images
because of its extensive accessibility and reduced infection
controlling issues which presently limit the sutilisation of
computed tomography (CT) services. With an increase in
patient numbers, the workload on radiologists for this
diagnostic process is also increasing and lack of availability
of radiologists in certain places is also a challenge. Thus, there
is an urgent requirement of a device or system which identifies
the disease with an acceptable level of accuracy, even without

aradiologist's help to save time as well as to preserve the effort
for the neediest in these time-constrained settings.

The main contribution of the work is to develop a deep
learning-based system that can automatically identify the
COVID-19 disease in CXR images. For this purpose, we
collected so far the largest dataset of COVID-19 patients and
examined several different architectures where the most
accurate was identified. The used dataset contains CXR
database of 659 COVID-19, 1660 healthy and 4265 non-COVID
(viral and bacterial pneumonia) samples which were also
extended by 300 abnormal samples. Those samples were
collected from three local hospitals of India and other
countries like China, Italy, Australia, Iran, Spain, Germany,
Vietnam, Israel Belgium, Canada, USA, Egypt, Korea and
Taiwan making the multiple country dataset comprised of the
large variety that may train the model for high robustness. The
dataset was split into training, validation (5-fold cross-
validation) and test sets. Different data configuration were
examined including binary classification (COVID-19 or non-
COVID), three-class classification (COVID-19, pneumonia or
non-COVID), and four-class classification model (COVID-19,
normal, bacterial pneumonia, viral pneumonia). The results
outperform the previous works in terms of accuracy, speed,
and other parameters. CXR images are augmented and
annotated to introduce more variation in the dataset and
develop a robust Convolutional Neural Network (CNN) model.
The proposed framework can be ported into single board
computers for low-cost and portable screening framework.

The variety of the sample images was collected from
various public data sources and globally from several countries
and extended from data collected from several hospitals.
Thanks to this, we expect to achieve high comprehensiveness
of the train model and robustness among a variety of different
imaging devices with various settings. We suppose we
achieved higher acceptance among a wide range of countries.
The image test takes approximately 137 milliseconds per
image (system with NVIDIA GeForce GTX 1060 GPU) thus
making the model suitable for the online screening of COVID-
19 patients on any system equipped with a modern GPU
device. The dataset was released online so anyone can benefit
from the work or can also extend the work in future with other
sources. The experiment is fully reproducible.

The rest of the paper is structured as follows. Section 2
discusses the related works in the field of diagnosis of COVID-
19. Section 3 describes the datasets used in the experiment and
how it was created. It also discusses clinical aspects of the
problem and architectures used for detection of COVID-19
cases, including the methodology used for evaluation. Section
4includes experiments and results for COVID-19 detection and
comparison to other works. Finally, section 5 concludes the
paper and discusses possibilities regarding future work.

2. Related work

Artificial Intelligence assisted image tests can help in rapid
detection of COVID-19 and subsequently control the influence
of the disease. Medical image analysis for disease classification
is one of the highest priority research areas. With the help of
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expert radiologists and based on the aforementioned features
of CXR images, a computer-aided diagnostic system can be
generated to correctly interpret COVID-19 cases from the input
X-ray image. Several studies have been conducted with this
motivation to lower the over-burden on medical professionals
and contribute towards the rapid screening COVID-19 sutilis-
ing artificial intelligence and machine learning.

Several artificial intelligence-based systems using deep
learning [9] as a pre-screening test for COVID-19 detection
using CXR images are discussed in Refs. [10,11]. Narin et al. [12]
and Zhang et al. [13] used ResNet 50 and basic ResNet,
respectively, as a base neural network to classify normal
(healthy) and COVID-19 patients. A range of fine-tuned deep
convolutional neural network (DCNN) based COVID-19 detec-
tion method proposed by Khalid et al. [14] for classification of
CXR image into normal (healthy) and pneumonia. Khan et al.
[15] proposed CoroNet for detection of COVID-19 in which CXR
images are trained on Xception deep neural architecture for
COVID-19 classification.

Wang et al. [16] used deep-learning-based architecture
COVID-Net for CXR image classification, which achieved the
accuracy of 93.3%. Fine-tuned SqueezeNet is proposed by Ucar
and Korkmaz [17] for COVID-19 diagnosis with Bayesian
soptimisation additive giving the accuracy of 98.3% on CXR
images. Ghosal and Tucker [18] used CXR images for comput-
er-aided diagnostic of COVID-19 and normal (healthy)
patients. The CNN model is trained with 70 COVID-19 and
other images of normal subjects and claimed 92% accuracy
with that dataset. Vaid et al. [19] used a public dataset of 181
COVID-19 images, 364 healthy images to detect COVID-19
using deep transfer learning. Their model achieved the
accuracy of 96.3% and loss of 0.151. Brunese et al. [20] proposed
a COVID-19 detection method using deep learning on the
dataset of 250 COVID-19 CXR images. Shi et al. implemented
random forest classifier-based screening system to differenti-
ate between COVID-19 patients and community-acquired
pneumonia with 87.9% accuracy [21]. Khobahi et al. proposed
a novel semi-supervised deep neural network architecture
that can distinguish between healthy, non-COVID pneumonia,
and COVID-19 infection based on the CXR manifestation of
these classes utilising very few numbers of parameters [22]. It
comprised of Task-Based Feature Extraction Network (TFEN),
and COVID-19 Identification Network (CIN). Ozturk et al. used
17 convolutional layers where each layer has different filters
using DarkNet as a feature extractor layer [23]. Abbas et al.
proposed a Decompose, Transfer, and Compose (DeTraC)
method for COVID-19 classification where chest computes
tomography (CT) dataset is trained with pre-trained ResNet
model [24].

Panwar et al. proposed a deep learning neural network
based model nCOVnet for COVID-19 detection using CXR
images where VGG-16 model is trained to perform image
classification for two different classes, i.e. COVID-19 and
healthy [25]. Sarker et al. proposed an approach using the
Densenet-121 for effective detection COVID-19 patients and
make use of another deep-learning model CheXNet which was
already trained on radiological dataset [26]. Accuracies of
96.49% and 93.71% were obtained for binary and 3-class
classifications, respectively. The feasibility of decision-tree
classifier is also investigated in the detection of COVID-19 from

CXR images [27]. Three binary decision tree are trained by deep
learning model and each tree is given to the classifier. The first
decision tree is for normal-abnormal classification, second for
tuberculosis, and third for COVID-19, which obtained the
accuracy of 98%, 80%, and 95%, respectively. Grad-CAM based
colour-visualisation approach is also employed for a more
visual interpretation of CXR images through deep learning
models. It took around 2 s time to process a single CXR image
[28].

Table 1 summarises similar existing and reported methods
for screening of COVID-19 using CXR images (Acc. = accuracy,
Sens. = sensitivity, Spec. = specificity, Pre. = precision). For all
previous works dataset for COVID-19 patients is too small or
limited in size to make the training model robust.

Thus, deep learning-based computer-aided screening tool
is needed to be developed, which is economical as well as more
efficient and accurate for deploying in real-world situations.
The dataset collected from multiple places and multiple
conditions to train the deep learning model can be helpful to
develop a diagnostic system which will be less prone to errors
with universal acceptance and such dataset can contribute to
further research in this field. Data augmentation can also
further enhance the performance of the training model and
give more impactful results. Further, the screening systems
should be developed in the way to diagnose the CXR of the
person and classify that image according to the probability of
the diagnosed disease. It creates a need for a user-friendly
diagnosis system where there is no need for trained human
resources. The whole framework should be standalone and for
practical reasons, there is often required to be independent on
internet connectivity. The system should work fast to reduce
workload and give results much faster than human experts.
Unlike many existing works [25-30] that only consider a
classification task on COVID-19 and non-COVID classes, the
trained deep-learning network on comprehensive dataset
belonging to various countries used in proposed work can
extract the best region in the X-ray images to be further fed
into the succeeding classifier network.

3. Materials and methodology

The experiment conducted in this research consists of data
collection, data analysis, model architecture, and consequent
experimental results evaluated in terms of various perfor-
mance parameters. These parts are described in the following
sections.

3.1. Dataset—chest X-ray images

Experiments are performed on the dataset collected from
different sources for binary classification (COVID-19 vs. non-
COVID) and multi-classification of diseases. The following
classes are subjected to classification: COVID-19, Normal
(Healthy), Bacterial Pneumonia, Viral Pneumonia, Abnormal,
and Non-COVID. Non-COVID represents the combination of
normal (healthy), bacterial pneumonia, viral pneumonia and
abnormal categories of images. Abnormal cases are those
cases which do not belong to COVID-19, normal and
pneumonia category of CXR images. As abnormal images
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Table 1 - Comparison with state-of-the-art methods.

Work Dataset Methodology Classification Time Acc. Sens. Spec. Pre. Fl-score
(in seconds) (%) (%) (%) (%) (%)

[13] 70 COVID-19, 1008 Pneumonia ResNet-18 Binary class - - 9% 70.65 - -

[29] 455 COVID-19, 2109 Non-COVID MobileNet V2 Binary class = 99.18 97.36 9942 - =
Images

[31] 224 Covid-19, 504 Normal, 400 MobileNet Binary class = 96.78 98.66 9646 - =
Bacteria Pneumonia, 314 Viral
Pneumonia

[33] 250 COVID-19, 3520 Normal, 2753 VGG-16 Binary class 2.5 97 87 94 = =
Other Pulmonary Diseases

[34] 305 COVID-19, 1888 Normal, 3085 Stacked Multi- Binary class - 97.4 97.8 94.7 96.3 97.1
Bacterial Pneumonia, 1798 Viral Resolution
Pneumonia CovXNet

[23] 127 COVID-19, 500 Normal, 500 DarkCovidNet Binary class <ls 98.08 95.13 953 98.03 96.51
Pneumonia Images (CNN) 3-class <ls 87.02 8535 9218 89.96 87.37

[30] 231 COVID-19, 1583 Normal, 2780 Inception 3-class 0.1599 92.18 9211 96.06 92.38 92.07
Bacterial Pneumonia, 1493 Viral ResNetV2
Pneumonia

[32] 180 COVID-19, 8851 Normal, 6054 Concatenation 3-class - 91.4 - - - =
Pneumonia of Xception and

ResNet50V2

[16] 266 COVID-19, 8066 Normal, 5538 COVID-Net 3-class - 93.3 91 - - -
Pneumonia

[15] 284 COVID-19, 310 Normal, 330 CoroNet Binary class - 99 99.3 98.6 98.3 98.5
Bacterial Pneumonia, 327 Viral 3-class 95 96.9 97.5 95 95.6
Pneumonia Images 4-class 89.6 89.92 96.4 90 89.8

are limited in number in its category, so these are considered
only for binary (COVID-19 vs. non-COVID) classification and
not considered for multi-classification in 3 and 4 classes.

For this study, datasets of CXR images are taken from two
publicly available databases which were supplemented by
data collected from different hospitals in India. Indeed, the
public database and collected X-ray images bring diversity and
richness in the classification and performance assessment
phase:

a) Dataset A is from the open-source repository [35] that has
237 COVID-19 CXR images from various parts of the world
like Australia, Belgium, Canada, China, Egypt, Germany,
Iran, Israel, Italy, Korea, Spain, Taiwan, USA and Vietnam
on (12th May, 2020). This open repository contains a
database of chest images of COVID-19, acute respiratory
distress syndrome (ARDS), severe acute respiratory syn-
drome (SARS) 1, SARS 2, Middle East respiratory syndrome
(MERS) patients.

b) Dataset B consists of chest X-ray images of pneumonia
infected and normal (healthy) people of 5848 images from
open source repository [36]. It is a combination of 1583
normal images, 2772 bacterial pneumonia images, and 1493
viral pneumonia CXR images.

c) Dataset C' is collected by the authors from 3 different
hospitals from Uttar Pradesh and Rajasthan, India.

e 188 images (28 COVID-19, 83 abnormal, 77 healthy images
were collected from King George's Medical University (K.G.
M.U.), Lucknow, Uttar Pradesh, India.

1 COVID-19 local hospitals datasets: https://doi.org/10.17632/
4n66brtp4j.1 (Mendeley database)

68 images of COVID-19 patients were collected from Uttar
Pradesh University of Medical Sciences (U.P.U.M.S.), Saifai,
Etawah, Uttar Pradesh, India.

e 543 X-ray images (326 COVID-19, 217 abnormal) from
Government Medical College, Kota, Rajasthan, India.

The statistics of the number of images in the datasets are
given in Table 2.

CXRimages from all the databases are divided into training,
validation, and test sets. Test dataset contains 3112 samples
for multi-class classification in 4 classes (194 COVID vs. 583
normal vs. 1772 bacterial pneumonia vs. 493 viral pneumonia
cases) whereas 3042 samples for binary classification and
COVID-19 detection (194 positives and 2848 non-COVID
samples). Sample CXR images of COVID-19, healthy, viral
pneumonia, bacterial pneumonia is shown in Fig. 1.

CXR images of COVID-19 contain patches and opacities
which look similar to viral pneumonia images. At the initial
stage of the COVID-19 infection, images do not show any kind
of abnormalities. But with the increase of viruses, the images
gradually become unilateral. The lower zone and the mid-
zone of the lung started transforming into patchy and get
smudged.

3.2 Clinical perspective of X-ray images for COVID-19
detection

Bilateral and peripheral opacities (areas of hazy opacity) are
the common characteristic features of COVID-19 affected
patients X-ray report [37] with consolidations of the lungs
(compressible lung tissue filled with fluid instead of air). The
presence of air space opacities in more than one lobe is
unlikely bacterial pneumonia since bacterial pneumonia is
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Table 2 - Chest X-ray images in different datasets.

Dataset Non-COVID Total
COVID-19 Normal (healthy) Viral Pneumonia Bacterial Abnormal (used
Pneumonia only for Binary
classification)
Training & Test Training& Test Training& Test Training& Test Training & Test
validation validation validation validation validation
Dataset A 237 0 0 0 0 0 0 0 0 0 237
Dataset B 0 0 1000 583 1000 493 1000 1772 0 0 5848
Dataset C 228 194 77 0 0 0 0 0 230 70 799
Total 465 194 1077 583 1000 493 1000 1772 230 70 6884

(d)

Fig. 1 - Chest X-ray example images: (a) healthy person; (b) COVID-19 patient; (c) viral pneumonia patient; (d) bacterial

pneumonia patient.

likely to be unilateral and involves a single lobe [38]. Other
significant signs for COVID-19 are consolidation, peripheral,
and diffused air space opacities. Initially, the researcher of
COVID-19 found the air-space disease likely to have a lower
lung distribution and is most commonly bilateral and
peripheral [39]. These kinds of peripheral lung opacities also
have characteristics to be confluent, either patchy or,
multifocal, and can be easily srecognised on CXR images.
Diffused lung opacities in COVID-19 patients have a similar
pattern of CXR as other prevalent inflammatory or infectious
processes such as in ARDS. Some other rare findings in COVID-
19 affected patients are pneumothorax, lung cavitation, and
pleural effusion (water in pleural spaces of the lung) which

e

(@) (b)

were mostly found at the later stage of the disease [40]. Some of
the COVID-19 CXR features are depicted in Fig. 2.

The conceptual schematic diagram of the proposed work is
given in Fig. 3. Once the model is trained using a deep learning
algorithm it can be sutilised for rapid screening in health care
centres. Mobile van-based screening can be performed in hot
spot areas and public places. For pre-screening, a digital X-ray
machine is required to generate CXR image which will be taken
as an input to the deep learning model.

Thereafter, the image can be tested on any computing
device which contains the proposed model. The model can
classify the image in 0.137 s. It can classify thousands of
images on a single click and generate a report.

— -

© (d)

Fig. 2 - Chest X-ray images of COVID-19 infected patients: (a) diffuse ill-defined hazy opacities (black arrows); (b) diffuse lung
disease and right pleural effusion (black arrows); (c) subtle ill-defined hazy opacities in right side (black arrows); (d) patchy

peripheral left mid to lower lung opacities (black arrows).
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Fig. 3 - Conceptual schematic representation of the proposed COVID-19 screening framework.

3.3.  Methodology

Deep learning (DL) is a part of machine learning which is
sutilised to solve complex problems with the state-of-the-art
performance on computer vision and image processing [41]. DL
methods are widely used for medical imaging giving a high
performance in segmentation, classification, and detection
tasks including breast cancer detection, tumour detection and
skin cancer detection [42]. The block diagram for dataset
preparation, training and analysing using the deep learning
model in the proposed work is depicted in Fig. 4.

All the collected images from various sources of different
countries were merged into one large dataset. Most of the
collected samples were in Digital Imaging and Communica-
tions in Medicine (DICOM) format with extension ".dcm". All
digital X-ray files were converted into one common image
format. The samples were then pre-processed where CXR
images were cropped to remove redundant portions and
resized to fit better to dimensions of used artificial neural
networks. Augmentation was carried out, which increases the
dataset, gives robustness to the trained model and mitigates
the occurrence of overfitting problems. Rotation, shear,
scaling, flips, and shifts are few of the augmentation
techniques which were used to prepare the model to increase
the efficiency of test images in a different orientation. Dataset

was labelled in different classes as per the opinion of the
medical experts which are annotated and scategorised
accordingly. CXR images are annotated manually for proper
training and bounding boxes made around the targeted area.
The respective information about the labels and area is saved.
After dividing the dataset of CXR in training, test, and
validation set, deep learning models are trained for multiple
iterations with the prepared dataset. The validation set is used
for tuning the parameters and for escaping overfitting of the
training model. After sufficient training, the model adjusts its
weights and the final trained model is tested on the new set of
CXR images of various categories which were analysed for
performance evaluation of the trained model.

For the image recognition and classification tasks, various
architectures of convolutional neural networks or CNNs have
proven their accuracy and are used widely. CNNs are
commonly composed of multiple building blocks of layers
consisting of convolution layer, activation layers, pooling
layers, and fully connected (FC) layers which are designed to
learn spatial hierarchies of features automatically and
adaptively through backpropagation to perform vision task.
The convolutional layer is an important part of the deep
learning neural network, which extracts the features from the
input images. Input images are convolved with a filter or
kernel to generate a convolved feature matrix using different

| paa i Testing
" ﬁ ? g i Lan::zilng Dataset
‘ g : by Spemahsts EQF W‘“‘I: Il
\L)Raw X-Ray Pre-processing B .“
Chest Data .‘ = |
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Fig. 4 - Methodology of training and testing of the deep learning based COVID-19 detection algorithm.
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strides. After convolution, the output is passed through an
activation function (ReLU, Tanh, or Sigmoid). The activation
layer is used to increase non-linearity without effecting its
receptive field. Convolution layers are interleaved with pooling
layers that are used to decrease the spatial size of the
convolved feature matrix. It looks for a larger area of the input
image matrix and takes aggregate information (maximum,
average, and sum). FC layer is a dense layer which is the final
learning phase of CNN architecture performing classification
tasks.

3.3.1. Training model
Architecture selection for backbone network plays an impor-
tant role in feature extraction in object detection tasks.
Stronger the backbone network, stronger the detection speed
and accuracy of the detection result. DarkNet-53 is used as a
backbone network which consists of 53 layers pre-trained on
ImageNet [43]. Instead of random weights for sinitialisation of
training of the model, pre-trained weights using transfer
learning is used in the proposed work, which reduces the
training time and makes more efficient training. The DarkNet-
53 network composed of 3 x 3 and 1 x 1 filters with shortcut
connections. To perform detection tasks, 53 additional layers
are merged with DarkNet layers resulting in a total of 106
network layers. The considered YOLO-v3 based-architecture
[44] for the proposed work with processed data to train with
different CXR images of various classes, is shown in Fig. 5.
This neural network architecture provides high speed of
detection and desired precision. Due to the multiscale search,
it can detect large or as well as smaller objects. DarkNet-53
reaches the highest measured floating-point operations per
second, resulting in higher sutilisation of GPU by the structure
of the network, which offers higher performance.
DarkNet-53 uses residual networks for better feature
extraction. Detection takes place at three different scales like
feature pyramid network (FPN) [45], which is done by down-
sampling the input image dimensions by 32, 16, and 8. FPN is
used to extract both spatial and semantic information-rich
feature maps from a given CXR image of dimensions
416 x 416. The last layer of the DarkNet-53 network generates
the first feature map and additional convolution operation of
1x1 3x%x3, 1x1, 3x%x3, 1x1, and 1x 1 are applied to

generate the second feature map which is up-sampled by a
factor of two. Then the up-sampled feature map from the last
step is concatenated with a feature map generated from the
fourth residual layer of DarkNet-53 backbone network. Same 5
layers of convolution layer with a different number of filters to
generate the third feature map from the second feature map
which later up-sampled by a factor of a two and concatenated
with the third residual layer of DarkNet-53. Detection at three
different scales makes the deep learning model detect the
smallest objects. The last layer of the training network
performs a bounding box and class prediction for an input
CXR image.

For training the proposed model with CXR images in a
computationally efficient manner, an advanced form of ReLU
activation function, leaky ReLU (LRelLU) is used. LReLU
activation function saves the value of gradients from getting
saturated in case of constant negative bias alike in ReLU.
Instead of pruning the negative part to completely zero (as
ReLU does), the negative part is multiplied by «, which is a
small constant value and non-zero number, usually taken as
0.01. The output of the LReLU activation function used in the
trained model can be represented as:

X, ifx>0
Roo = {8520, )

In the proposed methodology, max-pooling is sutilised
together with convolutional layers for extraction of sharp
features such as edges from input CXRs. In max-pooling, the
maximum value from the rectified feature map is selected. For
a CNN architecture, where s is the pooling size and f is pooling
function, the output feature on j™ local receptive for i" pooling
layer is:

Xy = f(Xi,s) 2

Binary cross-entropy loss is used during training for the
class predictions of input CXR images. The input CXR images
are divided into N x N grids. In the proposed work, predictions
were made on three different scales as shown in Fig. 8. Thus,
an input CXR image of 416 x 416 dimension is divided into

DarkNet-53 (Backbone Network) Feature Pyramid Network
Type Filters  Size Output Type (Filters, Size)
Convolutional 32 353 416 % 416 Convolutional (128,1x1) | !
Convolutional 64 3x3/2  208%208 C (256,3x3) | | [a ional (256, 3 x 3)
Convolutional 32 1x1 [ (128,1x1) | | | (181x1) | (il
1 x | Convolutional 64 3x3 C (256,3x3) | | D
Residual 208 % 208 C (1287070) 7
Convolutional 128 3x32 __104x 104 i [ s2x52x18 [ E
Convolutional 64 1x1 |
2 | Convolutional 128 33 i T
e 1045104 Convolutional (28, 1x1) | | . S —
Convolutional 256 3x32  52x52 hok)
» Convolutional 128 1x1 2 {255,151 | | |7 convolutional (18, T 1) E Predicted Class
a Convolutional (512, 3 % 3)
416 8 x [{Convolational B256 558 [T Convolutional (256, 1 x 1) ————3 C . » Pr o
Residual 52x52 obability
416 i c (512,3x3)
5 Convolutional 512 3x32 26726 = e T
Pre-processed Convolutional 256 3x3 - |
Input g« | Convolutional 512 3x3 | I
i Lo [~ 2 Up-samping ]
Convolutional 1024 3x3/2  13x13 Convolutional (256, 1x1) | |
Convolutional 512 1x1 = L3 T e ional (1024, 3 % 3) o
3 ,1x
4 < (SSEITioR U 2 B Convolutional (1024, 3x3) | | & () N
Residual 13x13 = EGRE !
c H028BE) | 13x13x18 ]3—‘5
Convolutional (512, 1x 1)

Fig. 5 — Architecture of deep learning model for COVID-19 detection with processed dataset.
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Fig. 6 — Detection task through the trained model in an image.

grids of 13 x 13, 26 x 26 and 52 x 52 for the respective stride
values of 32, 16, and 8. Detection of the targeted object for input
CXRimage in the proposed methodology is shown in Fig. 6. The
cell which contains the centre of ground truth box is
responsible for predicting the trained object class of CXR.
The red grid cell in Fig. 6 is depicting the center of ground truth
which responsible for detecting COVID-19 related features.
The grid cells are responsible for detecting the objects if the
centres of the objects lie in those grid cells. The grid cells
predict bounding boxes and determine the confidence score
associated with those boxes. The confidence score describes
the confidence of the model that the object lies in the box and
the accuracy of the box is predicted. Each grid in the input CXR
image predicts B number of bounding boxes with confidence
scores, as well as C class conditional probabilities. B represents
the number of bounding boxes predicted per single grid cell,
which is 3 for each detection at a different scale. All three
boxes will be used for the estimation of the parameters of
predicting bounding box. Confidence score formula is given in

Eq. (3):

Con fidence = pred(Obj) + IoUyah

(3)

where IoUgﬂ‘ represents the common value in between pre-
dicted and reference bounding box and pred(Obj) = 1, if the

target is in the grids, otherwise it would be 0.

Attributes of the bounding box contain coordinate points of
the bounding box, objectness score, and target classes (COVID-
19 and non-COVID). Objectness score is defined as the
likelihood of containing the targeted object in a given
bounding box. Objectness score is calculated by logistic

regression for each bounding box and it should be one if the
ground truth object has more overlapping of bounding box
prior as compared to others. The best bounding box is selected
out of multiple bounding boxes with the help of non-
maximum suppression (NMS). It suppresses less likely
boundingbox and keeps the best bounding box. NMS considers
objectness score and intersection over union (IoU) parameters
of the bounding box where IoU is the ratio between the area of
overlap and area of the union of the predicted bounding box
and true bounding box. NMS chooses the box with the highest
score for multiple iterations and eliminates higher overlapping
bounding boxes after the computation of overlap with other
boxes. The deep neural network computes four coordinate
points for each bounding box, S, Sy, Sw, Sk. Then, correspond-
ing predictions for respective x-coordinate, y-coordinate,
width and height of bounding box represented by By, By, By,
and By, respectively calculated as:

Bx = O'(Sx) + COX (4)

By

O'(Sy) + COy

S
Bw = Bpwe™”

Sh
By = Bphe

)

where the cell is offset from the top left corner of the image by
(Cox, Coy)- Bpw and Bpy are bounding box width and height
prior, respectively. For training, the dataset sum of squared
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error loss is used. Logistic regression is used for predicting
each class score and threshold for multiple labels for multi-
labels prediction on CXR images. Objects which has higher
class score value than the defined threshold value are assigned
to the respective bounding box. In the testing stage, images
will pass through the same neural network and the same
operations will be executed on the test image. It will calculate
the score which will be projected to the fully connected layer.
The score obtained during the testing phase is compared with
responses got during the training, then it will make a decision
in favour of that class which was giving similar response
during the training of CXR images of different categories. Then,
corresponding predictions for respective x-coordinate, y-coor-
dinate, width and height of bounding box represented by By,
By, Bw, and By, respectively.

The trained deep-learming network on the comprehensive
dataset can extract the best region in the X-ray images to be
further fed into the succeeding classifier network. As the
predictive framework works on detection rather than the only
classification task, it can sometimes predict more than one class
in a given CXR image. For an input CXR image for testing the
trained model, single or multiple detection results can be
predicted based on the values of threshold probability (0.5 in the
proposed work), the best one is chosen as output to make
screening processes rapid for a large number of testing samples.
When CXR image is tested with the trained model, it predicts
the class according to the detection probability percentage. In
most of the cases, the detection percentage is greater than 80%.
In few images having some artefacts, it can detect the multiple
numbers of class, but the prediction probability is greater than
80% for the highest and nearly 50% for the others. In those cases,
the best one is chosen as output to make screening processes
rapid for a large number of testing samples with the threshold
value of 50%. Otherwise in general scenarios, it may be due to
some improper CXR images and if the results are not clear or
percentage probability of detection is close, the subject can be
tested again for better diagnostic results. Suppose for an input
CXR image sample, the network is predicting it is in viral
pneumonia category with 83% probability as well as 61% for
Healthy category. Thus, only the highest predicting results are
considered, which make the testing rapid in the time of COVID-
19 pandemic. Otherwise, in general scenarios, it may be due to
some improper CXR image and if the results are not clear, the
subject can be tested again for better diagnostic results.

4. Experimental results and discussion

All training and testing of the deep learning models is done on
Python language based framework in a system with Intel
Xenon processor equipped with graphics processing unit
(GPU). Considering the memory limitations of the server, the
batch size of the training model is taken as sixteen. Other
factors such as momentum to accelerate network training, an
initial learning rate to affect the speed at which the algorithm
reaches the optimal weights, weight decay to sregularise the
training model are given in Table 3, with complete software
and hardware specifications for training different CXR images.

Training and validation sets were kept constant while test
dataset was kept updating with new CXR images during the

Table 3 - Parameters for training a deep learing model.

Name Parameters

Development Environment Anaconda, Jupyter Notebook,
Tensorflow, Keras, OpenCV
Intel Xenon Gold 5218 CPU @
2.30 GHz, 2.29 GHz

64 GB

Windows 10, 64 bit

NVIDIA, Quadro P600

Processor

Installed RAM
Operating System
Graphics

Graphics Memory 24 GB
Programming Language Python

Input Image Dataset
Input dimension 416 x 416
Batch Size 16

Decay 0.0001

0.001 (will reduced to 1072 times
after every 50,000 steps)
Momentum 0.9

Epochs 250

Optimisation algorithm Stochastic Gradient Descent (SGD)

Initial Learning Rate

experiments. Apart from keeping images in the test set, the
remaining dataset from all the sources is divided into training
and validation set, which is further cross-validated. The deep
learning model is trained with CXR images of different
categories for several iterations until the loss gets saturated.
Generated trained models are analysed with multiple images
in test dataset to get overall performance.

Performance metrics used for the calculation of the
experiment are:

TP

Sensitivity or Recall = TP 1IN (8)

P TN

Specificity = 7y~ pp ©)
.. TP

Precision = TP TP (10)

Precision * Recall
F1S = 2% ——————— 11
core * Precision + Recall (11)

TP +TN

Accuracy = S —
y Positivity + Negativity

where true positive (TP) are those cases where the model
correctly predicts the positive labelled image, false positive
(FP) is the case where the model predicts as COVID-19 although
the image is labelled as non-COVID-19. True negative (TN) is
when the model correctly predicts negative image and false-
negative (FN) is the case where the model incorrectly predicts a
positive labelled negative image. The confusion matrix is used
for measuring the performance of the machine learning clas-
sification problem. It is a combined representation of ground
truth and predicted classes. First, image data is analysed
without augmentation and later the proposed methodology
is tested with the application of augmentation techniques.
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Table 4 - 5-fold cross validation result for 2-class classification: COVID-19 vs. non-covid on dataset (A + B + C).

Parameter Accuracy Sensitivity Specificity Precision Fl-score
Standard deviation +0.19 +2.08 +0.11 +0.77 +0.81
Overall results (95% CI) 99.61 + 0.17 98.57 + 1.83 99.76 + 0.10 98.30 + 0.68 98.42 + 0.71

Table 5 - Averaged test result after cross validation for 2-class classification: COVID-19 vs. non-covid on dataset (A + B + C).

COVID-19 Non-COVID TP TN FP FN Accuracy Sensitivity ~ Specificity Precision F1-Score

194 2918 188.8 2916.8 1.2 5.2 99.79 97.32 99.96 99.37 98.33

Standard deviation +0.12 +2.04 +0.02 +0.22 +1.00

Overall results (95% CI) 99.79 + 0.10 97.32 £ 1.79 99.96 + 0.02 99.37 + 0.20 98.32 4+ 0.88
Predicitions COVID, which contains 465 images (237 images from dataset A

and 228 from dataset C) of COVID-19 and 3307 CXR images

COMID=ED: | Bon-covID (3000 images from dataset B and 307 from dataset C) belonging

Total Precision
to non-COVID cases.
£ | covip-19 188.8 59 194 .Conﬁd.ence inter\(al (@] i.s used to anglyse t}.1e results,
= 99.368% which give more information than point estimates. It
2 measures the degree of certainty and uncertainty in a
3 . . LT
o
& | Non-covip 12 2016.8 1918 samphng method and gives the range of values wblch hkelly
99.822% to contain the unknown parameter. 95% confidence interval is
e oo the most commonly used criteria for such estimations. The
Total 190 2922 3112

confidence intervals are calculated in terms of the mean value
Recall 97.320% 99.959% and standard deviation for different folds of cross-validation

. . . . . . as in Eq. (13):
Fig. 7 - Confusion matrix for binary classification (COVID-19 a- (13)

vs non-COVID) on test dataset.

Z %
Confidence Interval = x =+ (2 o) (13)
Predicitions \/N
covip-19 | N " Bacterial Viral h is th : t dard deviati d N is th

-19 | Normal | 20 0% | onia o o where x is the mean, o is standard deviation an is the
ota recision sample size. The constant z = 1.96 is confidence level value for

covID-19 187.8 16 0.2 4.4 194 95% confidence interval.

98.842% . . .

i To better examine the classification model generated by a
= | Momns 02 [N 14 22 i deep learning algorithm, 5-fold cross-validation is performed.
%’ Baciarial The complete CXR image dataset is divided into five different
G| preumonia | 2 24 2 L parts and trained for five iterations. The model is trained with
viral o5 w0 o5t 166 103 the four-fifth part and validated with remaining one-fifth part
Pneumonia ' ' ' 32.412% of CXR image dataset. After having 5-fold cross-validation,
Total 190 6504 11014 11002 3042 overall performance evaluation of detected outputs in binary

Recall N - e . .. . .
eca e UL L classification is achieved as in Table 4. The values of TP, TN, FP

and FN are averaged for 5-fold cross-validation and that mean
value is used to calculate those parameters. The standard
deviation of all the obtained results after different fold of
cross-validation is calculated. Results are also interpreted in
terms of the confidence interval (95%). Accuracy in terms of
confidence interval (95%) is achieved as 99.61 + 0.17%, which
4.1.  Binary classification shows very less false positives and false negatives cases.
Tests are performed on new 3112 number of test CXR
The combined database of datasets A, B, and C are used for images belonging to different classes for each of the 5 models
performing the binary classification, i.e. COVID-19 or non- received after cross validation. Results of the binary classifi-

Fig. 8 - Confusion matrix for multi-classification on the test
dataset.

Table 6 - 5-fold cross validation for 4-class classification: normal vs. viral pneumonia vs. bacterial pneumonia vs. COVID-19.

Parameters Accuracy Sensitivity Specificity Precision Fl1-score
Standard deviation - 4 classes +3.89 +9.50 +2.52 +5.82 +6.69
Overall results — 4 classes (95% CI) 94.79 + 3.81 90.82 + 9.31 96.48 + 2.47 91.35 + 5.70 90.88 + 6.56
Standard deviation — COVID-19 +0.26 +1.72 +0.09 +0.61 +0.91

Overall results for COVID-19 (95% CI) 99.70 + 0.23 98.14 + 1.51 99.91 + 0.08 99.42 + 0.53 98.77 + 0.80




Table 7 - Averaged test result after cross validation for 4-class classification: normal vs. viral pneumonia vs. bacterial pneumonia vs. COVID-19 on dataset (A + B + C).

Class Samples of Samples of TP TN FP FN Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1l-score (%)
testing category other classes

COVID-19 194 2848 187.8 2845.8 22 6.2 99.72 96.80 99.92 98.85 97.81

Normal 583 2459 556.4 2365 94 26.6 96.04 95.44 96.18 85.61 90.24

Bacterial Pneumonia 1772 1270 1004.2 1172.8 97.2 767.8 71.56 56.67 92.35 91.18 69.89

Viral Pneumonia 493 2549 356.6 1773.8 743.6 136.4 70.03 72.33 70.45 32.43 44.77

Standard deviation - 4 classes +15.72 +19.35 +13.22 +30.22 +23.74

Overall results - 4 classes (95% CI) 84.34 + 15.41 80.31 + 18.96 89.72 + 12.95 77.02 £+ 29.61 75.68 + 23.27

Standard deviation - COVID-19 +0.07 +0.99 +0.06 +0.84 +0.54

Overall results for COVID-19 (95% CI) 99.72 + 0.06 96.80 + 0.87 99.92 + 0.05 98.85 + 0.74 97.81 + 0.47

Table 8 — Averaged cross validation test result for 3-class classification: normal vs. COVID-19 vs. pneumonia (viral pneumonia + bacterial pneumonia) on dataset (A + B + C).

Class Samples of Samples of TP TN FP FN Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) Fl-score (%)
testing category  other classes

COVID-19 194 2848 187.8 2845.8 2.2 6.2 99.72 96.80 99.92 98.84 97.81

Normal 583 2459 556.4 2365 94 26.6 96.04 95.44 96.18 85.55 90.22

Pneumonia 2265 777 2170.6 746 31 94.4 95.88 95.83 96.01 98.59 97.19

Standard deviation +2.18 +0.70 +2.21 +7.57 +4.21

Overall results (95% CI) 97.21 + 2.46 96.02 + 0.80 97.37 + 2.50 94.35 + 8.57 95.08 + 4.76
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Fl-score (%)

FN Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

TN FP

TP

Samples of

Samples of
testing category other categories

Class

Classification

98.45 99.90 98.45 98.45

3 99.81

3

2915

2918

194

COVID-19

Binary (COVID-19

vs. Non-COVID)
Multi-class (4-Class)

97.42 99.93 98.95 98.18

96.91

5 99.77

2

2848 2846

2459

194
583

COVID-19

92.40
77.74

88.28
55.11

96.95

96.94
78.07
78.21

75 18

2384
1210
1972

565

Normal

95.10
41.36

95.28
77.36

65.74
82.56

1165 607
407

1270
2549

1772
493

Bacterial Pneumonia
Viral Pneumonia

577

+14.96 +10.20 +26.74 +19.20

+11.73

Standard deviation

80.86 *+ 18.82

98.96
89.66

80.92 + 26.21

99.48
84.73

92.38 + 9.99

99.96
95.93

96.01

85.66 *+ 14.66

98.45

88.25 + 11.49

99.87

Average (class interval 95%)

COVID-19

191 2847 1 3

555

2848
2459
777

194
583

Multi-class (3-Class)

95.20
95.54

100 28 95.79
101

31

2359
746

Normal

Pneumonia

97.04

98.59

95.66

2164

2265

+1.79 +2.30 +8.27 +4.91

+2.39

Standard deviation

95.22 + 5.56

94.27 + 9.36

97.30 + 2.61

96.40 + 2.02

97.11 = 2.71

Average (class interval 95%)

cation on test images are shown in Table 5. The values of TP,
TN, FP, and FN are averaged and other parameters values are
calculated. Overall results are represented in terms of the
confidence interval of 95%.

The confusion matrix for binary classification using
averaged values of results obtained from 5 different weights
of the trained model after cross-validation, is shown in Fig. 7.

The testing results for new images gives an accuracy of
99.79 £ 0.10 %, which is signifying the robustness of the
proposed model. Hence, this model can be sutilised for
performing detection and classification of COVID-19 and
non-COVID X-ray images.

4.2.  Multi-class classification

The combined database, i.e. dataset A, B, and C, which
contains 465 images of COVID-19, 1077 normal CXR images,
1000 bacterial pneumonia and 1000 viral pneumonia images
are trained. In this set, CXR images of 77 normal classified
people and 228 COVID-19 diagnosed patient data from local
hospitals are also involved along with images of the dataset A
and B for multi-class classification.

Overall performance evaluation after performing 5-fold
cross-validation for detected outputs in multi-classification is
given as in Table 6. The accuracy for 95% confidence interval is
achieved as 94.79 + 3.81% whereas the results concerning only
the COVID-19 patients the achieved accuracy is for
99.70 + 0.23%, which shows significantly less false positives
and false negatives cases.

The model made the decision based on the dataset division
and search for features which can distinguish between the
classes of objects used to train the model. The abnormal
samples may have similarity with both COVID-19 and normal
healthy CXR image samples because the abnormal samples
are COVID-19 suspected samples which were declared nega-
tive after the conventional RT-PCR test. The abnormal CXR
image sample removal in the multi-classification task help the
detection task easier for the trained model and performance
enhancement, as interpreted in the last two rows of Table 6.

Testing of trained models is done after different cross-
validation folds to authenticate the performance. Trained
model after each cross-validation has been tested on new test
images and the mean values of different parameters for all 5
trained models are shown in Table 7.

The confusion matrix for multi-classification using aver-
aged values of results obtained from 5 different weights of the
trained model is shown in Fig. 8. The overall accuracy for this
classification is achieved as 69.2%.

If only the COVID-19 results are taken into consideration,
classification accuracy is achieved as 99.72 + 0.06%, the
sensitivity of 96.80 + 0.87%, specificity if 99.92 + 0.05%, the
precision value of 98.85+ 0.74% and Fl-score value of
97.81 + 0.47%. While considering all four classes, the average
accuracy is achieved as 84.34 + 15.41% in terms of 95% CI. After
analysing the testing results, the classification of bacterial
pneumonia and viral pneumonia is giving lower classification
results when compared with other classes, as shown in
Table 4. Chaos occurs for a model to classify more precisely the
CXR images of viral and bacterial pneumonia. So, the results
after training a deep neural network for 4-class classification is
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Table 10 - Comparision of the obtained test results using the proposed methodology.

Augmentation Classification

Sensitivity (%)

Specificity (%)  Precision (%)  Fl-score (%)

Without augmentation Binary (COVID-19 vs. Non-COVID)
Multi-class (4-classes)
Multi-class (3-classes)
Binary (COVID-19 vs. Non-COVID)
Multi-class (4-classes)

Multi-class (3- classes)

With augmentation

97.32 + 1.79 99.96 + 0.02 99.37 + 0.20 98.32 4+ 0.88
84.34 + 15.41 80.31 + 18.96 89.72 + 12.95 77.02 + 29.61
96.02 + 0.80 97.37 + 2.50 94.35 + 8.57 95.08 + 4.76
98.45 99.90 98.45 98.45

85.66 + 14.6 92.38 + 9.99 80.92 + 26.21 80.86 + 18.82
96.40 + 2.02 97.30 + 2.61 94.27 + 9.36 95.22 + 5.56

represented in the form of 3-class classification where the
results of bacterial and viral pneumonia are considered as a
single class of pneumonia. After combining both pneumonia
classes in one output class, results are significantly improved.
Table 8 represents the test result after 5-fold cross-validation
for performing three classifications.

The testing results show the enhancement in the average
classification accuracy for all classes from 84.34 + 15.41% to
97.21 + 2.46%, signifying high accuracy results in this repre-
sentation. The values of other parameters are also substantially
increased. Thus, this consideration can be used for 3 class
classification for more surety in case of rapid large scale testing.

4.3. Dataset augmentation

After performing the augmentation on the training and
validation set with rotation (15 degrees clockwise and anti-
clockwise) and scaling (half and double) of images, the dataset
of 3772 CXR images is increased to 18,860 images, 5 times that
of the original dataset. After augmentation, CXR images are
used for training which was tested on the test dataset of 3112
images for binary and 3042 images for multi-class classifica-
tion. The results are shown in Table 9, where average test
accuracy of 99.81%, 88.25 + 11.49%, and 97.11 + 2.71% is
achieved for binary(COVID-19 vs. non-COVID), 4-class
(COVID-19 vs. Normal vs. Bacterial Pneumonia vs. Viral
Pneumonia), and 3-class (COVID-19 vs. Normal vs. Pneumo-
nia), respectively. The overall accuracy for 3-class and 4-class
classification is achieved as 95.66% and 76.46%, respectively.

The performance comparison table for all kind of classifi-
cation with and without augmentation is given in Table 10.
The data augmentation enhanced the performance of the
proposed methodology. Binary classification is giving the best
output among others.

In the testing dataset which is collected, consists of only
normal images without much rotational or scaling variation,

(b)

so both augmentation and without augmentation accuracies
are nearby (in binary classification it is more). The deep
learning model trained on the augmented dataset will help to
get better detection results in new CXR images with various
images transformations.

All these generated models can be used in primary
health care centres for performing the screening test on CXR
images. It can also be sutilised at places where there is a
lack of availability of expert radiologists or to validate
expert's opinion and can assist them to make an accurate
diagnosis whenever there are more patients. The model can
be sutilised as a real-time screening setup that has an
average detection time 0f 0.137 s perimage for detection and
its classification from input CXR images with dimensions of
416 x 416 pixels in another system with 6 GB GPU
(NVIDIA GeForce GTX 1060). Some of the detected CXR
images are shownin Fig. 9, where the boundingbox is drawn
around the detected portion with respective prediction
probability.

Different models are also compared with the collected
dataset after augmentation as given in Table 11 where the
proposed method achieved higher accuracy than other deep
learning based methods.

Table 12 compares different existing works for the diagno-
sis of COVID-19 detection using CXR images which gives a
reference of some similar existing and reported methods. The
proposed method achieved good accuracy with low time
complexity for detection of COVID-19 using CXR images, which
is encouraging. The comparison is questionable due to
different datasets, but illustrative to a certain degree.

As multiple datasets are not available publicly, the
collected dataset for proposed work can act as a remedy for
more research in this domain. A large open-access dataset will
be made available to the research community, which will help
the researchers to try and develop different methods for better
outcomes.

(d)

Fig. 9 - Prediction results of trained model on augmented dataset for multi-classification: (a) normal - 96.76%; (b) bacterial
pneumonia - 95.83%; (c) COVID-19 - 98.34%; (d) viral pneumonia - 99.98%.
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Table 11 - Comparision of various deep learning models with the proposed methodology.

Classification Class Accuracy (%)

MobileNetV2 [46] VGG-16 [47] Faster-RCNN [48] ResNet-50 [49] Proposed method

Binary (COVID-19  COVID-19 97.39 95.63 96.34 93.76 99.81
vs. Non-COVID)
Multi-class COVID-19 94.12 91.16 94.74 90.76 99.87
Normal 86.52 86.26 89.41 84.91 95.79
Pneumonia 88.13 88.26 89.41 83.10 95.66
Average (95% CI) 89.52 + 4.53 88.56 + 2.788 91.1867 + 3.482 86.257 + 4.531 97.11 4+ 271

Table 12 - Comparision of the proposed methodology with state-of-the-art methods.

Work Classification Time Overall Acc. (%) Sens. (%) Spec. (%) Pre. (%) F1-Score (%)
(in seconds)

MobileNet [31] Binary class - 96.78 98.66 96.46 - =

Stacked Multi-Resolution CovXNet [34]  Binary class - 97.4 97.8 94.7 96.3 97.1

DarkCovidNet (CNN) [23] Binary class <ls 98.08 95.13 95.3 98.03 96.51
3-class <1ls 87.02 85.35 92.18 89.96 87.37

CoroNet [15] Binary class 99 99.3 98.6 98.3 98.5
3-class 95 96.9 97.5 95 95.6
4-class 89.6 89.92 96.4 90 89.8

Proposed Approach Binary class 0.137 99.81 98.45 99.90 98.45 98.45
3-class 95.66 96.40 97.30 94.27 95.22
4-class 76.46 85.66 92.38 80.92 80.86

Table 13 - Clinical input by radiologist for misclassified images.

Images Ground truth Prediction Clinical input
COVID-19 Normal X-ray image of the pediatric patient has less filed of the lung than
rs-a¥ mediastinum, so the software learning algorithm picks up as normal (healthy).
Z R
F=
[TC
COVID-19 Normal No explanation has to correlate with chest auscultation findings.

Normal COVID-19 X-ray image has an area of retro cardiac opacity and cardiac silhouettes
o deviation, so the software learning algorithm may have picked up as COVID-19.
B W
Bacterial Pneumonia COVID-19 X-ray image has hilar lymph nodes and peripheral opacity, so the software

learning algorithm may have picked up as COVID-19.

COVID-19 Normal No explanation has to correlate with chest auscultation findings

\Y“,g

2
4.4. Misclassified images clinical input given by radiologists as a possible reason for

misclassification.

On the analysis of the experimental results, it was found that In Table 9, three COVID-19 images were classified as
most of the misclassified images were low-quality images or normal, whereas one bacterial image is misclassified as
had some artefacts. Table 13 includes some of the images COVID-19, and one normal image is classified as COVID-19.

classified either as false-positives or false-negatives and has a Clinically it was found that since the lungs of children are not
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fully developed, it is difficult to predict the diseases using their
CXR image.

5. Conclusion and future work

The 2019 novel coronavirus (COVID-19) pandemic appeared in
Wuhan, China in December 2019 and has become a serious
public health problem worldwide. In the proposed work, a deep
learning algorithm-based model is proposed for pre-screening
of COVID-19 with CXR images. To make the system robust, it
was trained with a dataset of chest X-ray images collected from
local hospitals of India and also from countries like Australia,
Belgium, Canada, China, Egypt, Germany, Iran, Israel, Italy,
Korea, Spain, Taiwan, USA, and Vietnam. The database has
been manually processed and trained with a deep convolu-
tional neural network. In order to detect COVID-19 at an early
stage, this study uses transfer learning methods. The perfor-
mance of the convolutional neural network after 5-fold cross-
validation was giving the average accuracy of 99.61 + 0.17% for
binary classification (is or is not COVID-19 disease) using 1132 CXR
image samples and average accuracy of 94.79 + 3.81% for
multi-class classification of COVID-19, normal (healthy),
bacterial pneumonia, and viral pneumonia using 1063 CXR
image samples. The test accuracy for COVID-19 detection in the
augmented dataset is achieved as 99.87% for 3112 CXR images
samples for 3-class classification data (COVID-19, normal
(healthy), and pneumonia) and 99.81% for binary (COVID-19
vs. non-COVID) classification of 3042 different CXR image
samples in respective classes. Since the current scenario
identification of the COVID-19 infected cases is the most
important task, the experimental results of the proposed work
support the COVID-19 identification with very high accuracy.
For the future, the model can be trained with images of more
diseases to make an automatic prediction for those diseases.
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