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Abstract: Reinforced concrete is used worldwide in the construction industry. In past eras, extensive
research has been conducted and has clearly shown the performance of stress–strain behaviour
and ductility design for high-, standard-, and normal-strength concrete (NSC) in axial compression.
Limited research has been conducted on the experimental and analytical investigation of low-strength
concrete (LSC) confinement behaviour under axial compression and relative ductility. Meanwhile,
analytical equations are not investigated experimentally for the confinement behaviour of LSC by
transverse reinforcement. The current study experimentally investigates the concrete confinement
behaviour under axial compression and relative ductility of NSC and LSC using volumetric transverse
reinforcement (VTR), and comparison with several analytical models such as Mander, Kent, and Park,
and Saatcioglu. In this study, a total of 44 reinforced-column specimens at a length of 18 in with a
cross-section of 7 in× 7 in were used for uniaxial monotonic loading of NSC and LSC. Three columns
of each set were confined with 2 in, 4 in, 6 in, and 8 in c/c lateral ties spacing. The experimental results
show that the central concrete stresses are significantly affected by decreasing the spacing between
the transverse steel. In the case of the LSC, the core stresses are double the central stress of NSC.
However, increasing the VTR, the capacity and the ductility of NSC and LSC increases. Reducing the
spacing between the ties from 8 in to 2 in center to center can affect the concrete column’s strength by
60% in LSC, but 25% in the NSC. The VTR and the spacing between the ties greatly affected the LSC
compared to NSC. It was found that the relative ductility of the confined column samples was almost
twice that of the unrestrained column samples. Regarding different models, the Manders model
best represents the performance before the ultimate strength, whereas Kent and Park represents
post-peak behaviour.

Keywords: confinement behaviour; quantitative analysis; numerical modeling; low strength concrete;
axial compression; stress–strain

1. Introduction

Concrete is the most widely used construction material in all civil engineering projects
across the world. A manufactured product, concrete is composed of cement, fine and
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coarse aggregate, water, and admixture(s) [1]. Concrete is relatively strong in compres-
sion and weak in tension; thus, the failure mode becomes brittle [2]. It is essential to
know the properties of concrete and its use worldwide because most engineering and
non-engineering projects are based on concrete structures. Instead of high and standard
strength concrete (HSC) (>7000 psi), most of the engineering projects in Pakistan and other
developing countries are from normal- and low-strength concrete (NSC (3000 to 5000 psi) &
LSC (2900 psi)) [3]. According to the American Concrete Institute (ACI-318-08), a concrete
structural member’s strength should be not less than 3000 psi [4].

A column is a compressive structural member that takes all the vertical load from
the slabs and beams and safely transfers it to the ground. Columns are also designed to
resist lateral forces that come from the wind and earthquakes. Additionally, columns are
frequently used to support beams, slabs, or arches on which the upper part of the wall or
ceilings rests [5]. A column is a critical structural member in a structure, and its failure may
lead to the collapse of the whole structure [6,7]. The stability of the column plays a crucial
role in structural stability. It has been documented that the axial capacity and relative
ductility of an Standard Strength Concrete (SSC) and HSC used in reinforced cement
concrete (RCC) columns of a structure are improved by the use of tightly braced lateral
transverse steel anchors [8,9]. Different techniques were used to improve the stability,
axial capacity, and ductility of reinforced columns. Steel bars are used with concrete to
improve a structural member’s quality in tension and compression, which are the essential
requirements of a structure [10,11].

The work on confinement concrete was started in the early 1900s. For the first time,
the concrete strength improvement with the closing effect was initially reported by the Con-
sideration in 1903 for concrete with NSC [12,13]. After investigating concrete confinement,
most of the researchers work on the analytical equations without proposing stress–strain
curves. The modelling effect of confinement was experimentally investigated for the first
time by Richart et al. in 1928 [14,15], and the introduced analytical model by Richart et al.
1928 was modified by Balmer (1949) [16]. Instead of a circular section, the rectangular
segment of the confinement reinforcement in the reinforced concrete was investigated by
King (1946) and Balmer (1961) [17,18]. The stress–strain relationship was proposed by
Soliman & Yu (1967) and Sargin (1971) for the confinement concrete [19,20]. Mander (1988)
investigated circular, spiral, and ties lateral reinforcement for both cyclic and monotonic
loading. The model was modified for both the static and dynamic loadings in early 1988 by
Mander et al. [21]. The change in length of concrete concerning longitudinal compression
and the energy balance stress–strain curve equation in the model was derived from the
Popovics (1973) [22].

When a column is loaded with an external force parallel to its central axis, the external
force is called the axial loading force. Axial loads are classified into concentric and eccentric
axial loads [23]. This study is limited to concentric axial loading on concrete column
samples. When an external axial compressive force acts directly along the structure’s
central axis, the compressive force causes a single compression of the column without any
bending moment, known as axial concentric load forces [24]. However, if the external
axial compressive force is offset relative to the central axis, it will cause an eccentric axial
load force [25]. When an external axial load was applied to the column, it is resisted by its
internal molecular structure. The internal resistance to deformation of a structure is known
as stress [26].

During a concentric axial compressive load, the centre concrete shortens in the lon-
gitudinal direction and expands in the lateral direction due to the effect/action of poison
ratio [27]. Core concrete tends to bulge out, which produces pressure on the lateral reinforce-
ment of the column. This lateral pressure on the tie will generate stress on the core concrete
and keep the core concrete in a constrained state until the longitudinal steel bars yield or
the transverse tie fracture [23]. The confinement in close spacing ties provided through
transverse reinforcement and the coiled helix is considered a passive restraint [28–30].
This lateral restraint can be provided externally using fiber-reinforced polymer (FRP).
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Numerous features affect the confinement pressure, such as ties spacing/the distance of
the connections, yield strength/flow resistance of the longitudinal bar, the longitudinal
bar’s size, and the nature of transverse reinforcement [31–35].

HSCs have been used in multi-story buildings and long-span bridges to reduce struc-
tural element size and take up little space. However, the stress–strain curve of the HSC
is a relatively steep and short post-peak branch which become more brittle than the NSC
and LSC. Most HSC columns with a concrete cylindrical strength of 100 MPa could be
very brittle if sufficient confinement reinforcement was not provided [36]. Most engineers
mainly focused on the potential strength and paid little attention to ensure that the HSC
have adequate ductility. HSC columns under axial load are generally more brittle than NSC
columns. Therefore, HSC and NSC’s ductility and axial compression strength become a ma-
jor concern [37]. The ductility of the HSC should not be less than the NSC/LSC structures.

The confinement effect of lateral transverse steel cannot be judged based on analytical
models for low strength concrete. [38] suggested that most of the 2005 earthquake failure
was due to low quality and concrete strength. In underdeveloped countries (Pakistan),
local concrete construction methods are typical for lower strength than ACI-318-014 design
standard, mainly due to less machine use, inadequate inspection, lack of skilled labor,
and lack of knowledge and awareness [4,39]. The outcome of low concrete construction
can be seen in the 2005 earthquake, which damaged structures such as 6300 educational
institutes, 796 health units, and 600,000 houses in which a relatively average percentage
was prefabricated reinforced concrete structures. Most of the columns were failed due to
low ductility and cannot achieve maximum elongation. Meanwhile, in the 2005 earthquake,
some designs were spoiled due to poor detailing of the beam’s column connection and
poor concerting [40]. Based on the comprehensive review of Pakistan’s northern region,
the concrete in the column was determined to have a strength of 2000 psi [3], and there
was more distance between the anchors.

In previous decades, the utmost scientists and researchers have worked on various
methods to advance concrete performance and ductility [41,42]. However, the researcher
developed transverse steel confinement to enhance concrete performance and relative
ductility [21,43]. The confinement behaviour is a complex phenomenon, and numerous
researchers have investigated it experimentally and analytically. Previous research has
clearly shown the confinement behaviour for the ductility improvement [44] and axial
compression of standard and high-strength concrete columns [45–48] with and without
the use of additives [49–52]. However, recent and past studies have rarely investigated the
confinement behaviour of low-strength concrete using different ties spacing and grades of
reinforcement. The current study uses different grades of volumetric transverse reinforce-
ment (VTR) with different spacing to evaluate the NSC and LSC’s confinement behaviour
under axial compression and relative ductility. Numerous features affect the confinement
pressure, such as ties spacing/the distance of the connections, the yield strength/flow
resistance of the longitudinal bar, the longitudinal bar’s size, and the nature of transverse
reinforcement. Several analytical models were proposed to predict axial capacity and duc-
tility of confined NSC and HSC columns [21,53–55]. However, there is a lack of research on
the analytical models for low-strength concrete confinement behaviour. This research work
is put forward to experimentally investigate low-strength concrete behaviour confined
with close ties spacing to overcome this deficiency and select the best analytical model that
predicts low strength concrete behaviour confined with compact transverse steel.

Previous research has experimentally investigated SSC and HSC’s confinement be-
haviour and validated it analytically with several analytical models [56]. However, recent
and past studies have rarely evaluated NSC and LSC’s confinement behaviour under
axial compression and relative ductility. The current research focuses on the experimental
investigation of LSC confinement behaviour and validates it with several analytical models
to choose the adequate model for predicting LSC under axial compression. Moreover, a
total of forty-four (44) reinforced and unreinforced column specimens at a length of 18 in
with a cross-section of 7 in × 7 in were prepared. Three columns of each set were confined
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with 2 in, 4 in, 6 in, and 8 in c/c lateral ties spacing. Universal Testing Machine (UTM) at a
capacity of 200 t was used for the axial compressive strength and relative ductility.

2. Materials and Methods

Most of the research work is performed on the analytical model of SSC and HSC per-
formance, but minimal work is carried out on LSC (2000 psi) and NSC (3000 psi). With the
absence of experimental work, it is impossible to use the same theoretical model as standard
and HSC to determine low-strength concrete performance subjected to axial compression.
An in-depth study/research is required to find LSC confined performance under compres-
sion restricted with the least spacing of transverse reinforcement. The current research
mainly focuses on tie spacing, volumetric transverse ratio, relative ductility, and concrete
strength. The flowchart shown in Figure 1 illustrates the research methodology Flow Chart.
Materials that are used for the preparation of the mix design are discussed below.
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Figure 1. Methodology Flow Chart.

2.1. Materials

Different materials were used in the mix design and concrete column specimens,
such as fine and coarse aggregate, hydraulic cement, and reinforcement. As per ASTM
C136-14, the results obtained from the sieve analysis of fine aggregate are presented in
Table 1 [57]. The finesse modulus was 2.73, whereas the specific gravity was 2.65 as per
ASTM C128-15 [58]. Meanwhile, the sieve analysis for coarse aggregates was carried out
under ASTM C136-14 [57]. The bulk density of coarse aggregate was 102.68 lb/ft3, whereas
the specific gravity is 2.69, and the absorption rate was 0.53 per unit by weight as per ASTM
C128-15 [58]. However, the elongation and the flakiness were 11.26% and 8.3%. In contrast,
several tests were performed on type-1 hydraulic cement to characterize the cement as
per ASTM C150-20 [59]. As per ASTM C150-20, the finesse of cement was 88.5%. Using
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the Vicat needle test to determine the initial and final setting time of cement as per ASTM
C191-19 [60], that was 90 and 229 min.

Table 1. Gradation of fine aggregate.

Sieve No.
(ASTM)

Sieve Opening
(mm)

Passing Weight
(g)

Total Weight
(%)

Retain
(%)

Passing
(%)

No. 4 4.75 0 0 100 0
No. 8 2.36 4 0.689 99.31 0.69

No. 16 1.18 110 18.96 80.35 19.65
No. 30 0.60 218 37.58 42.77 57.23
No. 50 0.30 203 35.00 7.77 92.23
No. 100 0.15 45 7.75 0.02 99.98

Total weight - 580 - - 2.73

In this research, deformed bars were used as longitudinal and transverse reinforce-
ment. Before using steel as a reinforcement, it is necessary to evaluate and know a material’s
properties. UTM has a capacity of 200 t was used to find the reinforcement’s tensile and
bending properties. In all column specimens, the deformed steel bars of 4 bars #4 bar with
a grade of 60 were used as longitudinal reinforcement. Two different randomly deformed
steel bars of #3 and #2 bars were used for the transverse reinforcement in the concrete
columns. For the tensile strength of the randomly selected transverse and longitudinal
reinforcement, the UTM capacity of 200 t was used. The results obtained from the UTM are
represented in Tables 2 and 3.

Table 2. Tensile properties of longitudinal reinforcement.

S.
No.

Bar
Diameter

Yield
Strength

(psi)

Ultimate
Strength

(psi)

Percentage
Elongation

Effective Dia.
(in)

Weight
(lb/ft)

Yield
Strength
(Mean)

Standard
Deviation

1
#4

71,036.5 89,105.07 16.40 0.48 0.595
70,705.45 265.902 70,178.3 88,336.32 17.19 0.48 0.600

3 70,901.5 88,873.09 16.40 0.48 0.598

Dia stand for Diameter, whereas the # shows the bar number.

Table 3. Tensile properties of Transverse reinforcement.

S.
No.

Bar
Diameter

Yield
Strength

(psi)

Ultimate
Strength

(psi)

Percentage
Elongation

Effective Dia.
(in)

Weight
(lb/ft)

Yield
Strength
(Mean)

Standard
Deviation

1
#3

70,036.5 88,305.07 15.90 0.48 0.595
70,898.76 266.602 72,178.3 86,936.32 16.89 0.48 0.600

3 70,841.5 88,553.09 15.70 0.48 0.598

Dia stand for Diameter, whereas the # shows the bar number.

2.2. Mix Design of Normal Strength Concrete and Low Strength Concrete

Mixture proportioning is a process of selecting suitable ingredients and determining
their relative proportions with the objective of producing concrete with a certain mini-
mum workability, strength, and durability as economically as possible. The theoretical
experimental method was used to determine the recipe of the concrete mix. The design
of the concrete mixture began with determining the qualitative features of components
and determining their basic properties. On the basis of general formulas, the proportions
of aggregates were selected, followed by the amount of individual concrete components.
Using the properties of fine and coarse aggregate and cement as mentioned above, the mix
design of concrete was carried out for 28 days of 3000 psi strength. The concrete mix ratio
was taken by its weight of 1:2.28:2.76 (cement:fine aggregate:coarse aggregate), with a w/c
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of 0.57. The volume of one cylinder is 0.0144 m3, whereas the mix proportion of cement is
238.41 kg/m3 (3.43 kg), fine aggregate is 603.96 kg/m3 (8.64 kg), and coarse aggregate is
822 kg/m3 (11.84 kg) for a single column. Using a 0.57 w/c ration, the proportion of water
is 1.955 L. Twenty-two NSC and LSC casing specimens were cast in two sets of three, each
with the same size, having the same longitudinal but different transverse reinforcement.
The slump ranged from 1–2 in, and the absorption rate of coarse aggregate was 0.53 per
unit by weight. In contrast, the fine aggregate’s specific gravity and fineness modulus were
2.73 and 2.69, respectively. As per ASTM C39/C39M-20 [61], three cylinders were cast and
tested for 7 and 28 days. Similarly, the mix design for the LSC of 2000 psi was taken by its
weight of 1:2.92:3.28 (cement: fine aggregate: coarse aggregate) and with a w/c of 0.66.

2.3. Preperation, Casting and Curing of Specimens

A column specimen with a length of 18 in and a cross-section of 7 in × 7 in was
designated for the concentric axial compression. Each sample is reinforced with longitudi-
nal/vertical bars of 4 bars #4 bars. The horizontal/transverse reinforcement is provided in
square hoops with variable ties spacing #3 and #2 bars. Due to the limited height available
between the two jaws of the Universal Testing Machine (UTM) loading unit, the height
of the column specimen was kept at 18 in. Column specimens were fabricated and cast
for mix designs of 3000 psi (NSC) and 2000 psi (LSC) cylinder compressive strength. The
column specimen details and terminology are given in Tables 4 and 5.

Table 4. Description of the sample preparation.

Cylindrical
Strength (psi)

Transverse Steel
Bar #

Ties Spacing
(in c/c) No. of Specimens VTR Remarks

2000/3000

#3

2 6 0.021 confined
4 6 0.0062

un-confined6 6 0.011
8 6 0.0047

#2
3 6 0.007 confined
4 6 0.005 un-confined

Un-confined - 8 - un-reinforced
Total 44 specimens

Table 5. Nomenclature of column specimen.

Strength
(psi) Ties Bar Spacing (in) Codes Code Details

2000
#3

2 C232

C = Column
2 = Concrete strength (2 ksi)

3 = #3 Ties Bar
2 = Spacing

4 C234
6 C236
8 C238

#2
3 C233
4 C234

3000
#3

2 C232
4 C234
6 C236
8 C238

#2
3 C233
4 C234

Mixed designs were used for concrete strength of 2000 and 3000 psi. The steel cages
were placed in the formwork with a transparent cover of 3/4 in between the centre line of
rectangular hoops at the formworks’ inner surface. The columns were cast in three layers,
and each layer was vibrated before placing the next layer through a vibrator. The casting
of the concrete column specimens is shown in Figure 2a.
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Figure 2. (a) Casting, (b) instrumental setup, (c) steel cages (d) crushed samples after the compressive strength test.

After casting the sample, all concrete columns and cylinders are covered with a wet
hessian sack for thoroughly moist curing. After the curing, the concrete columns were
instrumentally set up and placed in the UTM for testing.

2.4. Instrumentation and Testing of Column Specimen

The testing setup arrangement is a critical stage to acquire accurate data from testing
column specimens. Each column sample was fully equipped and arranged to collect
the desired data. For longitudinal deformation of the column sample, two displacement
transducers with a capacity of 60 mm were connected on the front and rear face sides of
the column sample to achieve the deformation on both sides. The calibration length was
9 in on both sides of the sample. Displacement sensors were fixed in each face’s middle, as
shown in Figure 2b. The record date comprises the axially applied load and longitudinal
deformation due to the applied load on the column specimen. Further visible observations
were recorded with the camcorder while testing the column samples.

As shown in Figure 2c, the confined column specimens were tested in the Engineering
material lab at the University of Engineering Technology (UET), Peshawar, Pakistan. A
UTM with a capacity of 200 t was used for the application of monotonic axial compressive
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load. For the recording of load and displacements in real time, the National Instruments
LabVIEW data acquisition system was used.

Both sides of the column specimen were caped with plaster of Paris with a depth of
12 mm to distribute the load on the column specimen uniformly. Furthermore, for the
uniform distribution of loads, a steel plate of cross-sectional 8 in × 8 in was placed on the
column specimen’s upper surface. The deformation gauges with a 60 mm capacity were
installed on both sides to record the deformation before spalling the concrete cover. The
gauge length for each displacement was kept at 9 in and was calibrated and connected
with the data acquisition system.

The samples were strictly aligned with the UTM loading unit to certify concentric axial
loading on the sample. The loading rate was 20–50 psi and remained constant throughout
the test. The load continues until the column sample collapses due to the longitudinal bars’
compliance or rupture of the transverse hoops. After testing the column samples, the data
were documented and saved in a system for further analysis.

As the load advanced to the peak/ultimate value, the cracks appeared on all sides of
the column specimen, as shown in Figure 2d. It was detected that the confined column
specimen’s behaviour was quite peculiar compared to the unconfined column specimen’s
behaviour. Meanwhile, the load dropped to a certain value when spalling concrete occurs
and increased again, especially in the closed concrete column pattern. From the test results,
it was observed that unconfined column samples failed due to yielding/deformation of
longitudinal bars, while the confined column samples failed due to rupture/breakage of
transverse hoops/rings. To calculate and report the CS (Compressive Strength) of each
specimen, refer to Equation (1).

Compressive strength (CS) =
W
A

(1)

where the CS measured in psi, W = load in a pound (lb), A = average of the gross area of
the upper and lower bearing surfaces of the specimens (in2).

Table 6 shows the cylinder strength for the 3000 psi by using a concrete mix ratio was
1:2.28:2.76 by weight and 0.57 w/c ratio. The cylinder’s average strength for 7 and 28 days
was found to be 2271 psi and 2978 psi, respectively. The recent studies found that the
maximum (99.9%) CS can be achieved at 28 days of curing for the NSC and LSC; therefore,
the scope of the study was limited to 28 days [39]. Meanwhile, the cylinder strength for the
2000 psi by using a concrete mix ratio was 1:2.92:3.28 by weight, and 0.66 w/c ratios are
shown in Table 7. Average concrete strength for 7 days and 28 days was found at 1504 psi
and 1976 psi, respectively.

Table 6. 7 days concrete compressive strength.

S. No.
Desired
Strength

(psi)

UTM
Load (t)

Strength
(psi)

Average
Strength

(psi)

Standard
Deviation

1
2000

20.6 1606.302
1594.605 4.212 20.3 1582.909

5
3000

29.8 2323.5
2378.262 8.136 31.2 2432.84

A column’s ductility is greatly influenced by the concrete strength, the ratio of steel
in longitudinal and transverse directions, axial load, and the distance between the ties.
All of these factors must be considered before evaluating the ductility of columns. When
the axial load level is higher than the balanced axial load level, the column becomes a
compression failure.
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Table 7. 28 days concrete compressive strength.

S. No.
Desired
Strength

(psi)

UTM
Load (t)

Strength
(psi)

Average
Strength

(psi)

Standard
Deviation

1

2000

25.1 1842.77

1805.74 55.63
2 26.1 1800.93
3 24.5 1754.16
4 26.41 1825.10
5

3000

38.14 2973.49

2978.94 84.08
6 38.8 3024.95
7 37.9 2954.78
8 38 2962.58

2.5. Analytical Models

The researcher has proposed several analytical equations based on the experimental
results to forecast concrete confinement behaviour. The work on the confined concrete was
started in the early 1900 century. Considere initially reported the strength enhancement in
concrete with the confinement effect in 1903 for the normal strength of concrete. Later on,
Richart et al., in 1929 [14], experimentally investigated the strength of concrete columns
due to lateral confinement. After these studies, most of the work in this direction has
been completed. No stress–strain curve has been proposed; only analytical equations were
presented. This model was in a series of short column specimen tests.

Blume et al., 1961 [18], introduced the influence of yield strength in various analytical
equations for describing the confinement behaviour of normal concrete. In their analytical
model, the stress–strain curve consisted of three parts; εco, εcc, εcu show the strain, whereas
fcc and 0.85f′c show the stress as shown in Figure 3a. The analytical equation is given by
Equations (2)–(5).

fcc = 0.85 f ′c + 4.1
Acc

sh
(2)

εco =
0.22 f ′c + 400 psi

106 psi
(3)

εco = 5εy (4)

εcu = 5εsu (5)

where fcc is the maximum concrete stress and εcc/εcu is the corresponding strain in the
Blume et al. model [18]. However, fc is the longitudinal compressive concrete stress, and f′c
is the compressive strength of confined concrete, whereas εc is the longitudinal compressive
concrete strain.

In 1967, Soliman and Yu [19] developed a model that focused on the geometry of
the cross-section, ties spacing, effectiveness of ties, and the area of steel used for the ties.
However, in 1971, Kent and Park [62] introduced a model in which they assumed that the
maximum capacity was the same for confined and unconfined concrete. The stress–strain
curve starts from the origin to ultimate compressive strength. The confined concrete curve
is of a straight line descending from the peak strength followed by a flat line showing
unlimited deformation capacity. In the unconfined concrete curve, the descending part
curve is in a straight line, but a smaller amount straining capacity the proposed curve is
shown in Figure 3b.

Equation (6) is for the ascending:

fc = f ′c

[
2εc

εco
−
(

εc

εco

)2
]

(6)
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Equation (7) is for the descending:

fc = f ′c [1− z(εc − εco)] (7)

Manders et al., 1988 [21], proposed a model based on the same concept put forwarded
by Shiekh and Uzumeri (1982) [55]. As the confining lateral pressure was based on the
cross section’s geometry, this model was suitable for any cross-section [54]. One of the
advantages of the Manders model is the combination of both static and dynamic load types.
Manders adopted the energy balance method in the stress–strain curve model to measure
the strain in the concrete in longitudinal compression and were based on the research
of Popovics 1973 [22] in which he derived a stress–strain equation for the longitudinal
compression in concrete.

3. Results and Discussion
3.1. Compressive Strength of LSC and NSC

Experimental results illustrate that decreasing the amount of spacing between the ties
will increase the axial CS in both the NSC and LSC. Figure 4 shows that when there is no
reinforcement in the concrete column, the strength ranges from 1500 to 2500 psi which is
the only strength of concrete and longitudinal bars; however, the strength increases by
providing the transverse bars and decreasing the spacing between them. Reducing the ties’
spacing increases the number of ties in the concrete columns and leads to increased CS and
relative ductility in both the NSC and LSC. The 8 in c/c spacing shows the CS of 2662 psi
in LSC, and 3967 psi in NSC, whereas the 2 in c/c offer the highest CS of 5550 psi in both
NSC and LSC. As the LSC should not be less than 2500 psi and the HSC is above 5000 psi,
the current study’s benchmark was selected as 2500 psi to 5000 psi. Moreover, the present
study follows the HSC and SSC and compares the results with several analytical models,
such as Mander and Kent models. Therefore, the analytical models were the benchmark
for the current study.
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Figure 4. Compressive strength of Low Strength Concrete (LSC) and Normal Strength Concrete (NSC) with different ties
spacing of #3 bar.

Furthermore, volumetric transverse reinforcement (VTR) also affects axial compression
and relative ductility. Changing the bar number from #2 to #3 positively affects and
increases the concrete columns’ CS and ductility. Figure 5 compares LSC and NSC’s CS
with a ties spacing of #2 bar. When comparing the LSC core strength with the NSC core
strength, it was observed that the lateral steel confinement effect was more effective with
the LSC compared to the NSC. The results in unconfined column specimens were practically
the same, whereas LSC’s core strength was double the NSC central strength of the confined
column. The bar number used for the confinement and the ties’ spacing between the
transverse reinforcement greatly affects the CS. Figure 6 illustrates the comparison of VTR
of #2 and #3 and the spacing of the ties between transverse reinforcement. As the number
of spacing decreases between the ties and increases the bar number, improve the concrete
cylinder’s CS in both NSC and LSC. However, NSC shows better CS than LSC in terms of
ties spacing and VTR because of the difference in the mix design ratio of the NSC and LSC.

Materials 2021, 14, x FOR PEER REVIEW 11 of 22 
 

 

 

Figure 4. Compressive strength of Low Strength Concrete (LSC) and Normal Strength Concrete (NSC) with different ties 

spacing of #3 bar. 

Furthermore, volumetric transverse reinforcement (VTR) also affects axial compres-

sion and relative ductility. Changing the bar number from #2 to #3 positively affects and 

increases the concrete columns’ CS and ductility. Figure 5 compares LSC and NSC’s CS 

with a ties spacing of #2 bar. When comparing the LSC core strength with the NSC core 

strength, it was observed that the lateral steel confinement effect was more effective with 

the LSC compared to the NSC. The results in unconfined column specimens were practi-

cally the same, whereas LSC’s core strength was double the NSC central strength of the 

confined column. The bar number used for the confinement and the ties’ spacing between 

the transverse reinforcement greatly affects the CS. Figure 6 illustrates the comparison of 

VTR of #2 and #3 and the spacing of the ties between transverse reinforcement. As the 

number of spacing decreases between the ties and increases the bar number, improve the 

concrete cylinder’s CS in both NSC and LSC. However, NSC shows better CS than LSC in 

terms of ties spacing and VTR because of the difference in the mix design ratio of the NSC 

and LSC. 

 

Figure 5. Compressive strength of LSC and NSC with different ties spacing of #2 bar. 

0

1000

2000

3000

4000

5000

6000

No-R 8-Inch 6-Inch 4-Inch 2-Inch

C
o

m
p

re
ss

iv
e 

S
tr

en
g
th

 (
p

si
)

Ties Spacing (in)

LSC NSC

0

1000

2000

3000

4000

5000

6000

No-R 8-Inch 6-Inch 4-Inch 2-Inch

C
o

m
p

re
ss

iv
e 

S
tr

en
g
th

 (
p
si

)

Ties Spacing (in)

LSC NSC

Figure 5. Compressive strength of LSC and NSC with different ties spacing of #2 bar.
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Figure 6. Comparison of axial strength of LSC and NSC with different Volumetric Transvers Reinforcement (VTR).

3.2. Realtive Ductility of LSC and NSC

The ratio of crushing strain to the peak strain is defined as relative ductility. The bar
number and spacing between ties affect concrete columns’ relative ductility. Figure 7 shows
LSC and NSC’s relative ductility with different ties spacing of #3 bar, whereas Figure 8
shows this for the #2 bar. Moreover, Figure 9 compares the relative ductility of LSC and
NSC with different VTR and ties spacing. The VTR of #3 bar with a spacing of 2 in c/c
shows the greatly enhanced concrete columns in both LSC and NSC, whereas the low
relative ductility was found in the LSC #2 bar with no transverse reinforcement. Similarly,
with core compressive strength, the relative ductility is also greatly affected by the bar’s
spacing than the size of the bar.
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Figure 7. Relative ductility of LSC and NSC with different ties spacing of #3 bar.
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Figure 8. Relative ductility of LSC and NSC with different ties spacing of #2 bar.
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Figure 9. Comparison of relative ductility of LSC and NSC with different VTR.

As the number of bars increases and the spacing between them decreases, it increases
the relative ductility in concrete columns. The relative ductility at VTR #3 and #2 bar of
LSC is more than the NSC in 8 in and 6 in c/c, but the opposite in 4 in c/c due to the
effect of ties spacing and VTR. The spacing between the ties and VTR greatly affect the LSC
relative ductility than that of the NSC. However, reducing the spacing between the ties at a
maximum (4 and 2 in c/c) greatly affects the relative ductility of NSC, as shown in Figure 7.
Compared to the NSC, the LSC shows high relative ductility, except for at 4 in c/c.

In comparing NSC and LSC at different VTR, the NSC shows better ductility in both
#2 and #3 bars than LSC. The highest relative ductility was found in the LSC with 2 in c/c
of VTR #3 bar, which means that the VTR and the bar spacing greatly affected the LSC.
However, overall, the NSC’s relative ductility at both #2 and #3 bar shows high ductility, as
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shown in Figure 9. As a 2-inch increase in the ties spacing increase two times the relative
ductility in NSC and LSC.

3.3. Stress–Strain Curve of NSC and LSC for Various Confinement Spacing

In order to study the effect of confinement and ties spacing on confined concrete behaviour,
we compare the response curves of the confined concrete, as shown in Figures 10 and 11. The
stress–strain curves were drawn after the data were obtained from the data acquisition
system. The stress–strain curve provides multiple information on different points, which
are: elastic limit, yield point, strain hardening, ultimate strength, necking, peak point,
and fracture. Figure 10 illustrates the stress–strain curve for the VTR of #3 bar with a
spacing of 2, 4, 6, and 8 in c/c and no reinforcement for NSC. The concrete column with
a spacing of 2 in c/c shows the highest CS of 5038 psi with a strain of 0.0017 at elastic
limit whereas, the ultimate strength is 5432 psi at a strain of 0.005 which give a modulus of
elasticity (stress/strain) 1,086,400 psi (7.49 GPa). In addition, the fracture strength of 2 in
c/c was near to the peak/ultimate strength of the 8 in c/c and was more significant than the
columns with no reinforcements, as shown in Figure 10. As the amount of spacing between
the ties increases from 2 in c/c to 8 in c/c, the CS decreases. Further, the column with no
reinforcement shows the lowest CS and becomes fractured with minimal strain changes.
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Figure 10. Stress–strain curve of NSC for various confinement spacing.

The core concrete stresses are greatly affected by decreasing transverse steel spacing
compared with the bar’s size. The core stresses in LSC are twice the core stresses of NSC.
In contrast, the ductility of NSC and LSC remains approximately the same.

Figure 11 illustrates LSC’s stress–strain curve for the VTR of #3 bars and ties spacing
of 2, 4, 6, and 8 in c/c and no reinforcement. Like NSC, the LSC shows the highest strength
at 2 in c/c. However, LSC’s strength is relatively higher than NSC’s strength, which is
5497 psi at a strain of 0.0017. The modulus of elasticity in LSC is 3,233,529.4 psi, equal
to 22.29 GPa, and is higher than the modulus of elasticity of NSC, but the fracture point
occurs at a strain of 0.015. Besides the columns having 4 in c/c, ties spacing shows the
highest strain at a fracture point. Compared to NSC, the LSC shows the highest strength
only at 2 in c/c, whereas the rest are the opposite. After the ultimate strength, the NSC
takes sufficient loads and sustains for a great strain until the fracture, whereas the LSC
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reaches the ultimate with a very little strain and goes to fracture, which behave like a brittle
material. Additionally, both the NSC and LSC come under the ASTM and ACI standards.
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3.4. NSC vs Analytical Stress–Strain Curve for Various Confinement

After testing the concrete columns, the experimental results were compared with
the analytical models introduced by Mander et al. in 1988 and Kent and Park in 1972.
As different types of confinement were used with different ties spacing, the graphs are
consequently different. A comparison was made among the specimens with 8-, 6-, 4-, and
2-in tie spacing column specimens. It has been observed that the relationship suggested by
various analytical models are to address the ultimate strength and strain increment of the
concrete stress–strain curve. The comparisons conducted here with numerous experimental
data provide an adequate correlation with a wide range of relevant parameters. It turns
out that a well-generalized relationship works, especially for confined-core concrete with
low concrete strength.

Figures 12–15 show the comparison of NSC columns with analytical models using
8-, 6-, 4-, and 2- in c/c ties spacings. The Manders model best represents the performance
before the peak strength, whereas the Kent and Park model best represents NSC’s perfor-
mance after the peak strength. The concrete with 2-inch c/c ties spacings shows a smaller
lateral expansion under the axial compression load than the 8 in c/c due to its higher
modulus of elasticity. At the same strain for all the ties spacings (0.0016), the 8 in c/c
shows the highest 4007 psi strength, whereas the 6, 4, and 2 in c/c show 4879 psi, 4914 psi,
4949 psi, respectively. As the spacing between the ties decreases from 8 in to 2 in c/c and
increases the number of ties, the strength increases without changing the strain. However,
a 0.003-in increase in the strain can affect concrete columns’ strength by 80% with a spacing
of 8 in c/c, whereas 6, 4, and 2 in c/c affect it by 27.2%, 26.5%, and 9.76%. Initially, the
concrete achieved high strength and reached peak/ultimate strength with a very small
strain of 0.001 in/in, but after the peak, a small change in load produced a greater change
in the original length. The Manders model best represents the elastic stage and sustains
for a large change in length, whereas the Kent and Park model goes to fracture after the
ultimate load.
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Compared to 8 and 6 in c/c, the 4- and 2-inch c/c spacings show a large change in the
original length and sustain for a long time without fracture. The lateral expansion in the
2 in is meagre due to the internal microcracking and the ties’ spacing. Test results show
that significant strength and ductility can be achieved if lateral reinforcement is provided.

3.5. LSC Vs Analytical Stress–Strain Curve for Various Confinement

Likewise, the NSC, the different confinement, and the VTR of LSC were also compared
with the analytical models. In LSC, the Kent and Park model best represents the core
concrete strength’s performance before, during, and after the peak/ultimate strength until
the fracture, as shown in Figures 16–19. There are several reasons why there is a discrepancy
between the analytical models and experimental results. The main reason is the current
study adopted by LSC. In contrast, the analytical models are adopted for the NSC and HSC;
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that is why there is a variation in the curve lines of the experimental results and analytical
models, especially the Manders model. Moreover, there is also a human and instrumental
error in the experimental results, which shows the discrepancy. In addition, most of the
concrete work done in Pakistan is for low-strength concrete. Further, those specimens that
have more than 3000 psi strength follow the analytical models. Moreover, the strength of 8-
and 6-inch c/c ties spacing in the LSC is relatively low compared with the NSC, whereas
the strength in 4 and 2 in c/c is relatively higher than the NSC. Like NSC, the LSC also
shows the highest strength in the 2 in c/c and decreases by increasing the spacing between
the ties. The strength becomes more than double by increasing the spacing from 8 in c/c
(2259 psi) to 2 in c/c (5600 psi) at the same strain.
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Figure 14. C334 NSC vs Analytical Model (4 in c/c).
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Figure 16. C238 LSC vs Analytical Model (8 in c/c).
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Figure 17. C236 LSC vs Analytical Model (6 in c/c).

Less lateral expansion due to the close confinement in 2 in c/c provides a high strength
and modulus of elasticity. The spacing between the ties increasing will provide low strength
and cause buckling in the column. The columns with closed ties of 2 in c/c go to the plastic
limit and give warring before the fracture. In contrast, the columns with 6 and 8 in c/c
suddenly fracture after achieving the peak/ultimate load, which is more dangerous in civil
engineering projects. The lateral restraint pressure on the core concrete is directly related to
the concrete columns’ lateral reinforcement. Thus, the larger confining pressure results in
better confining efficiency. Figures 17–19 shows the confinement of concrete columns using
different spacing. Increases in strength from 2259 psi to 5600 psi are because of reducing
the spacing of ties from 8 in c/c to 2 in c/c, which can affect the concrete column’s strength
by 60%.
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Figure 18. C234 LSC Vs Analytical Model (4 in c/c).
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Figure 19. C232 LSC Vs Analytical Model (2 in c/c).

Compared with NSC, the LSC shows higher strength in 2 in c/c, whereas the rest
are the opposite. Moreover, the NSC’s Manders model shows better performance before
the ultimate strength, whereas the Kent and Park model offers the best performance
after the peak strength. However, the Kent and Park model shows the best performance
before and after LSC’s ultimate strength. Overall, it can be seen that there is a slight
variation in the experimental and analytical model. In addition, both the models are
validated experimentally.

4. Conclusions and Discussion

The current research experimentally evaluates the compressive strength and relative
ductility of confined and unconfined NSC and LSC with varying VTR and ties spacing. In
contrast, the experimental results were compared with the analytical models and select the
best analytical model that best described low-strength concrete’s detention behaviour with
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low-pitch cross-sections. Based on the experimental results, the following conclusions can
be drawn.

Experimental results show that the concrete core stresses are greatly influenced by
reducing the transverse steel spacing. As the spacing between the ties increases, the strength
of the concrete-reinforced column become decreases. The enhancement in the concrete
core’s compressive capacity due to confinement was almost double in LSC confinement
than in the NSC column specimens. Keeping VTR the same and by reducing the transverse
steel spacing, the axial core compressive strength increases. Therefore, the confinement
effect due to transverse steel is more in LSC compared to NSC.

Additionally, the axial compressive strength and relative ductility were greatly af-
fected by the spacing between the ties in the reinforced concrete column. Moreover, the
reinforcement grade used for the ties also affects the concrete compressive strength and
relative ductility. Change in the bar number from #2 to #3 bar increases the compressive
strength. Therefore, bar #3 shows the highest compressive strength than the #2 bar.

In terms of relative ductility, there was a slight variation in the concrete core’s relative
ductility in NSC and LSC. The relative ductility was found to be almost equal for NSC and
LSC by comparing the same VTR column specimens. It was found that the relative ductility
of the confined column samples was almost twice that of the unrestrained column samples.

In comparing experimental results with the analytical models, for NSC columns, the
behaviour of the concrete column before the peak is better described by the Manders
model, whereas the Kent and Park model better describes the post-peak behaviour of the
concrete column. However, there is a variation in behaviour of LSC columns. The Manders
model shows high strength, whereas the Kent and Park model shows better behaviour
before and after the peak. Overall, it can be seen that there is a slight variation in the
experimental results and analytical models. In addition, both the Mander and Kent models
are validated experimentally.
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