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Abstract

Background: Although genome-wide association studies (GWAS) have successfully located various genetic variants
susceptible to Alzheimer’s Disease (AD), it is still unclear how specific variants interact with genes and tissues to
elucidate pathologies associated with AD. Summary-data-based Mendelian Randomization (SMR) addresses this
problem through an instrumental variable approach that integrates data from independent GWAS and expression
quantitative trait locus (eQTL) studies in order to infer a causal effect of gene expression on a trait.

Results: Our study employed the SMR approach to integrate a set of meta-analytic cis-eQTL information from the
Genotype-Tissue Expression (GTEx), CommonMind Consortium (CMC), and Religious Orders Study and Rush Memory
and Aging Project (ROS/MAP) consortiums with three sets of meta-analysis AD GWAS results.

Conclusions: Our analysis identified twelve total gene probes (associated with twelve distinct genes) with a
significant association with AD. Four of these genes survived a test of pleiotropy from linkage (the HEIDI test).

Three of these genes — RP11-385F7.1, PRSS36, and AC012146.7 — have not yet been reported differentially expressed
in the brain in the context of AD, and thus are the novel findings warranting further investigation.
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Background

Alzheimer’s disease (AD) is a complex neurodegenera-
tive disease commonly characterized by memory impair-
ments, cognitive problems, and the presence of both tau
and Ap plaques [1]. As the leading cause of dementia,
AD is influenced by environmental and genetic factors [2].
There is no current cure for AD, necessitating larger-scale
approaches.
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Since genetic factors play an important role in AD,
genome-wide association studies (GWAS) have been
employed to find specific loci and genes that may be
instrumental in both AD treatments and prognosis. So far,
GWAS has successfully identified numerous loci suscep-
tible for AD [3]. However, translating these findings has
proven extremely difficult. GWAS provides insights into
potential genetic risk loci likely to harbour causal variants.
Despite having multiple analytical techniques including
fine-mapping, advanced annotation tools, and colocaliza-
tion, difficulties remain in inferring which variants are
truly causal in AD. Understanding the mechanisms by
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which these variants influence disease phenotypes includ-
ing AD provides additional challenges [4]. These chal-
lenges arise from factors such as complex linkage disequi-
librium and potential effects on distant genes. Addition-
ally, the dynamic, context-specific effect of variants are
likely to vary depending on the time, cell type, and the
context being studied.

In addition to direct genetic analyses, studying gene
expression of AD-relevant genes may provide more infor-
mation about the mechanism of AD. Unfortunately, how-
ever, this is extremely difficult as there is a lack of
in-vivo Alzheimer’s studies involving human brain tis-
sue. As such, we resort to data from landmark projects
such as the Genotype-Tissue Expression (GTEx) project
[5] — an ongoing effort to build a comprehensive pub-
lic resource to study tissue-specific gene expression and
regulation. Researchers can now access increasingly large
amounts of valuable information that connect significant
variants with the expression of specific genes in vari-
ous tissues. The findings that make up these datasets
are often referred to as expression quantitative trait loci
(eQTL). Various projects including the GTEx project and
ROS/MAP [6, 7], which refers collectively to both the
Religious Orders Study and the Rush Memory and Aging
Project, find and store significant eQTL's for several tissues
throughout the human body, including the brain. How-
ever, almost none of this information incorporates knowl-
edge currently known about pathologies or diseases —
including AD - in highlighting specific genes or variants.
Currently, many GWAS hits for diseases including AD
reside in intronic or intergenic regions and as such may
not make attractive druggable targets. Outside of rare mis-
sense or nonsense coding variants, moving from GWAS
findings into druggable targets has not proven extremely
successful. As such, integrating eQTL studies with previ-
ous GWAS hits may prove to be more successful. With
the advent of Summary-Data-Based Mendelian Random-
ization (SMR), it is possible to employ an instrumental
variable approach in integrating independent GWAS and
eQTL studies [8]. Doing so is especially powerful in that
it allows for researchers to find specific genes with a
strong functional component in the context of a specific
disease — e.g., Alzheimer’s. Through this analytical tech-
nique, we aim to identify novel genes that are differentially
expressed in AD, which may help reveal the biological
pathway from genetic determinants to transcriptomic fea-
tures to phenotypic outcomes and help disease modeling
and therapeutic target discovery.

Results

Using the above specified ADNI genotyping data, three
sets of meta-analytic GWAS summary statistics, and one
set of meta-analysis cis-eQTL information, three SMR
analyses were performed. Given that each SMR analysis
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reports the significance of each proposed gene-phenotype
association in terms of a P-value, a standard Bonferroni
correction was used to determine significance given the
occurrence of multiple trials. For each analysis performed,
given the varying number of relevant SNP’s and gene
expression probes that passed the program’s strict eligibil-
ity thresholds, the Bonferroni correction was determined
by the number of gene probes tested per analysis. As such,
this threshold fluctuated slightly among the three analy-
ses, and is as follows: for the SMR based on Lambert et al.,
2013 [9], the threshold is 6.90 x 10~°; for the SMR based
on Jansen et al., 2019 [10], the threshold is 6.89 x 10~%; for
the SMR based on Kunkle et al., 2019 [11], the threshold
is 6.85 x 107.

Figure 1 shows a heatmap visualizing our statistically
significant findings. Our analysis highlighted 12 gene
probes linked to 12 distinct genes between the three sum-
mary GWAS studies using the single meta-eQTL. Some
findings, such as TOMM40 and CR1, have been explic-
itly studied as top AD genes. For reference, we also wish
to examine the significant GWAS and eQTL relationships
that lead to these significant SMR results. We start by
comparing the GWAS p-values and eQTL p-values for
each of our twelve significant genes and the SNP with the
highest eQTL and GWAS p-values that is less than 1 Mb
away from the gene (Table 1).

Of note, we are more interested in identifying
pleiotropic associations, where the same underlying
causal variant affects the gene expression and the trait.
In contrast, we are less interested in the LD-based asso-
ciations, which could also be detected by SMR. In these
associations, the relevant cis-eQTL is in LD with one
causal variant affecting gene expression and the other
affecting the trait. Thus, to confirm the significance of
our results and test for a pleiotropic association versus a
LD-based association, we performed a HEIDI test using a
p-value threshold of 0.05 as used in [8]. Out of the twelve
original genes highlighted, we detected heterogeneity for
eight genes with Pygip; < 0.05. The four remaining genes
passed the HEIDI test, leading us to not reject the null
hypothesis that there is a single causal variant affecting
both gene expression and the AD diagnosis outcome phe-
notype. Hence, these four remaining genes — NDUFS2,
RP11-385F7.1, PRSS36, and AC012146.7 — are the most
functionally relevant genes underlying the GWAS hits and
may be prioritized in future functional studies.

Additionally, we searched multiple sources to deter-
mine the roles these four genes may play in leading to
AD or other diseases. As such, we initially attempted to
discover if these genes have been previously declared to
be differentially expressed in the brain in relation to AD
in the studies [12—14]. The gene NDUFS2 was reported
as differentially expressed in [14]. The other three genes
have never been reported differentially expressed in
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Fig. 1 This heatmap shows the p-values of our SMR analyses. Along
the x-axis are the three GWAS studies implemented in our GWAS;
along the y-axis are the genes with associations to our phenotype
(AD diagnosis) that have survived the corresponding Bonferroni
significance thresholds. The heatmap is employing a negative
logarithmic scale

Alzheimer’s: RP11-385F7.1, PRSS36, and AC012146.7.
These novel findings warrants further replication stud-
ies in independent cohorts. To visualize the results of our
SMR analysis, we created locus plots for the above three
novel findings: RP11-385F7.1 (Fig. 2), AC012146.7 (Fig. 3),
and PRSS36 (Fig. 4) . These three figures show that the
SMR and eQTL P-values instrumental in highlighting the
significance of these genes in AD in particular.
Furthermore, we also wished to confirm the direction-
ality of the effects found via this SMR analysis between
specific genes and our phenotype of AD. As such, we pro-
vide the effect plots in Figs. 5, 6, and 7. They show the cor-
relation between the eQTL effect sizes and GWAS effect
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Table 1 This table shows the relevant cis-eQTL and summary
GWAS p-values factored in to our SMR analysis. The index/
leftmost column includes both the gene analyzed along with the
SNP with the strongest associations with both gene expression
and our AD phenotype; these are the gene and SNP directly
analyzed via SMR via the instrumental variables estimation. The
first data column (denoted cis-eQTL?) contains the cis-eQTL
p-values used from [29]; the final three data columns (denoted
GWASP, GWASS, and GWAS?) contain the summary GWAS
p-values used (from [11], [10], and [9], respectively); note these
are different

Gene SNP cis-eQTL? GWASP GWAS® GWASY
PVR rs11540084 257E-30  512E-8  1.87E-8  190E-6
TOMMA40 157259620 4.05E-22  4.99E-148 578E-216 3.25E-125
NDUFS2 154379692 4.12E-19  302E-2  7.84E-8  807E-2
ZNF296 rs8100183 481E-11  452E-10 221E-8  825E-6
SNX32 rs17854357 <100E-300 3.50E-1  3.12E-6  133E-1
PRSS36 151549299 336E-18  1.14E2 68768  321E3
CEACAM19 5714948 ~ 7.00E-20  135E-16 1.14E-25 626E-13
HLA—DRB1 159271069 179E-95  1.10E-3  226E2  753E-8
CR1 rs679515  2.10E-18  155E-16 6.83E-19 4.10E-15
AC012146.7  rs73976310 6.19E-31  2.14E-2  650E-8  5.92E-4
CTB171A81 555710026 <1.00E-300 9.32E-13 5.59E-16 8.00E-16
RP11—385F7.1 159473119 267E-13  187E-7 10268  459E-8

sizes for our novel findings (RP11-385F7.1, AC012146.7,
and PRSS36) with the GWAS summary data sets from
Jansen et al., 2019 and our single source of meta-analysis
cis-eQTL data from Qi et al., 2018. Each plot shows the
correlation between GWAS effect sizes and our set of
meta-analysis cis-eQTLs. In particular, we are compar-
ing the effect sizes of SNPs (used for the SMR and the
relevant HEIDI tests) from GWAS plotted against those
for SNP’s from our meta-analysis cis-eQTL data. Notably,
from these plots one can see the existence of negative cor-
relations between our GWAS effect sizes and eQTL effect
sizes in Figs. 5, 6, and 7.

Discussion
In this section, we provide a brief discussion on our three
novel findings to determine the larger context of their
significance in AD. RP11-385F7.1 is a long intergenic non-
coding RNA (LinkRNA) gene on Chromosome 6. Accord-
ing to the GTEx Portal’s page for this gene, although we
have seen that this gene is decently expressed in the brain
tissues, it is most strongly expressed in the kidneys and
pituitary gland [15]. This locus has also been found by
[16] to likely have a functional effect within AD, which
corroborates the findings of this study.

PRSS36 is a protein-coding gene on chromosome 16.
According to OMIM, it codes for Serine Protease 36, a
protease that may be instrumental in hydrolyzing serine
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Fig. 2 A locus plot showing the significant gene RP11-385F7.1, its location within chromosome 6, and the negative log of the significant p-values
instrumental in deeming this locus significant in the SMR analysis using Qi et al,, 2018 meta-analysis eQTL data and Jansen et al,, 2019 GWAS data.
The SMR p-value noted in this visualization for the gene RP11-385F7.1is 6,61 x 107, Y-axis represents the negative log of the p-values; x-axis
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protease substrates. Additionally, a northern blot analy-
sis shows a 5 kb transcript of this gene in fetal kidney
and adult skeletal muscle, the liver, the placenta, and the
heart [17]. To confirm if this gene’s native protein, ser-
ine protease 36, plays a role in AD, a search in the Open
Targets Platform was performed. PRSS36 has been high-
lighted in [10] and [18] for its high genetic association with
AD (p = 4 x 1078 in the former; p = 3 x 108 in the lat-
ter.) This is the only one of our findings found in the Open
Targets Platform; perhaps as these gene targets are stud-
ied more, more significant correlations may be found in
the future.

ACO012146.7 is another non-coding gene (specifically,
processed transcript) located on chromosome 17. Not
much is known about its function or clinical significance,
though it is located near the protein coding genes USP6
and ZNF232 [19]. ZNF232 is a protein encoding gene
that encodes for Zinc Finger Protein 232. Zinc finger
proteins are involved in the regulation of several cellular
processes, including transcriptional regulation, signal
transduction, and DNA repair [20]. Meanwhile, USP6
encodes Ubiquitin-specific Peptidase 6, which is com-
monly associated with psuedosarcomatous fibromatosis
and fasciitis [21].

With the above observations, these genes can be studied
in more detail going forward. SMR-based replication stud-
ies can be performed in independent cohorts. The poten-
tial of these genes to serve as molecular targets for AD
studies within specific tissues of the brain as determined
by these causal analyses also warrants further biologi-
cal investigations, potentially including but not limited to

the analysis of brain-related functional data, brain ATAC,
brain-related HiC, and brain-related pcHiC in an indepen-
dent cohort. These additional analyses may demonstrate
the regulatory mechanism by which these variants- and
genes-of-interest act or elucidate an underlying function
these variants play in AD pathogenesis.

Our approach using Summary-data-based Mendelian
Randomization has allowed for the inclusion of indepen-
dently collected and curated GWAS and cis-eQTL data.
This has provided our study a significant amount of sta-
tistical power it may not have had otherwise due to the
small number of samples that include AD diagnosis data,
full genotyping data, and extensive gene expression data.
Implementing an instrumental variables estimation using
meta-anlaysis GWAS and eQTL data in particular has
allowed us to analyze an unprecedented number of indi-
viduals in a very short amount of time. However, one
limitation of our approach is that our implementation of
the instrumental variable estimation has included the use
of stringent Bonferroni method for multiple comparison
correction. As a result, it is likely some significant sig-
nals were missed in our analyses. Alternatively, it may be
possible to instead employ corrections based on the false-
discovery rates (FDR) provided by the SMR analyses to
determine significance in a less conservative fashion [22].

Conclusions

We have performed an SMR analysis that integrated
meta-analytic cis-eQTL summary statistics from GTEX,
CMC, and ROS/MAP studies with three sets of meta-
analysis GWAS results in AD. We aim to discover genes
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Fig. 3 A locus plot showing the significant gene AC012146.7, its location within chromosome 17, and the negative log of the significant p-values
instrumental in deeming this locus significant in the SMR analysis using Qi et al., 2018 meta-analysis eQTL data and Jansen et al,, 2019 GWAS data.
The SMR p-value noted in this visualization for the gene AC012146.7 is 9.77 x 107/ . Y-axis represents the negative log of the p-values; x-axis

differentially expressed in AD for better understanding
of the molecular mechanism of the disease. Our analy-
sis identified twelve total gene probes (associated with
twelve distinct genes) with a significant association with
AD. Four of these genes survived a test of pleiotropy from
linkage (the HEIDI test). One of the four genes, NDUES2,
has been previously reported as differentially expressed
in the brain in the context of AD. The remaining three
genes — RP11-385F7.1, PRSS36, and AC012146.7 — have
not yet been reported differentially expressed in the brain
in the context of AD. However, there exist prior stud-
ies suggesting some indirect connections between these
genes and AD. Thus, further investigations, including per-
forming SMR-based replication studies in independent
cohorts and/or conducting molecular validation using
brain-related tissues in AD research, may study these
genes in more detail.

Methods

Genotyping reference data

To assist in checking the consistency of allele frequency
and effect-allele information between the GWAS and
eQTL datasets in each respective SMR analysis, the SMR
program by default requires a reference panel of genetic
data. In our analysis, we used the genome-wide geno-
typing data sourced from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database [23, 24]. This data
is publicly accessible on the ADNI Data Archive at http://
adni.loni.usc.edu/.

ADNI was launched in 2003 as a public-private part-
nership led by Principal Investigator Michael W. Weiner,
MD to test whether serial MRI, PET, and biological
markers can be combined with clinical and neuropsycho-
logical assessments to accurately measure the progres-
sion of mild cognitive impairment (MCI) and early AD.
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Fig. 4 A locus plot showing the significant gene PRSS36, its location within chromosome 16, and the negative log of the significant p-values
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For more information about the ADNI project, please
see [23, 241].

Participants were limited to individuals who were sub-
jects of the ADNI cohort. To reduce the likelihood of pop-
ulation stratification effects, only non-Hispanic Caucasian
participants were involved. As such, there were 1,576 indi-
viduals whose genotyping data were included. 521 of these
individuals are healthy controls and the remaining 1,055
individuals are patients with AD or mild cognitive impair-
ment (MCI, a prodromal stage of AD), and are all coded
as cases in this study.

Genotyping data were quality-controlled, imputed using
the 1000 Genomes Project reference genomes, and com-
bined as described in [25, 26]. Briefly, genotyping was
performed on all ADNI participants following the man-
ufacturer’s protocol using blood genomic DNA samples
and Illumina GWAS arrays (610-Quad, OmniExpress, or

HumanOmni2.5-4v1) [27]. Quality control was performed
in PLINK v1.90 [28] using the following criteria: 1) call
rate per marker > 95%, 2) minor allele frequency (MAF) >
5%, 3) Hardy Weinberg Equilibrium (HWE) test P <1.0E-
6, and 4) call rate per participant > 95%. As a result, a total
of 5,574,300 SNPs were included in our analysis.

GWAS summary data
To ensure the highest levels of statistical power, we opted
to utilize the results of large-scale meta-GWAS studies in
AD in our analysis. As such, there are three best-known
landmark AD GWAS analyses we examined in our study.
The first is a meta-analysis of 74,046 individuals
which studied 7,055,881 directly genotyped or imputed
SNPs, which summarized the results of the International
Genomics of Alzheimer’s Project (IGAP) [9]. This project
included 17,008 AD cases and 37,154 controls, which
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represent the synthesis of 4 previously published GWAS
data sets and has found 11 loci newly associated with
AD. Summary statistics from this study included SNP
chromosome, position, and effect/non-effect allele infor-
mation along with statistics summarizing GWAS linear
regression results (i.e. effect size, standard error of this
effect size, and the meta-analysis p-value using regression
coefficients). The SMR analytical program also required
frequency information for the effect alleles reported. As
the IGAP chose to not share allele frequency data due
to privacy concerns, however, we instead extracted this
information using PLINK v1.90 [28] from the genotyp-
ing reference panel data discussed above. The summary
statistics for the IGAP study can be found at https://www.
niagads.org/datasets/ng00036. To maximize the power of
our analyses, the most updated combined Stage 1 and
Stage 2 data was used.

The second analysis used in this work conducts a meta-
analysis that included clinically-diagnosed AD as well
as AD-by-proxy, which included a total of 71,880 cases
and 383,378 controls [10]. As [10] is not specifically an
AD study, AD status of individuals in their cohort was
determined by examining their family history. If one or
more biological parents were diagnosed with late-onset
AD sometime in their life, the individual (child) would be
coded as AD-positive. This is possible given the strong

genetic basis of AD. Given that this study did not/could
not directly assess an individual’s AD status, AD results
from this study have been termed ‘AD-by-proxy. AD-by-
proxy has been shown to have very strong genetic ties
to clinical AD with a r, = 0.81; thus, individuals who
have AD-by-proxy may be coded as ‘case’ individuals sim-
ilar to those with a clinical AD diagnosis from a genetics
standpoint. This greatly enlarges the number of individ-
uals included in the study and thus increases statistical
power. With this significantly larger data set, this analy-
sis was able to identify 29 risk loci for AD. The summary
statistics used for this study can be found at (https://ctg.
cncr.nl/software/summary_statistics) under the heading
‘Summary statistics for Alzheimer’s dementia from Iris
Jansen et al.,, 2019 Our analyses utilized the most updated
version of the data, which was published in December
2019.

The third analysis used is also a meta-analysis [11];
this is a continuation of the first analysis noted above.
In addition to expanding the population size from indi-
viduals of European descent to non-Hispanic Whites,
this analysis uses a larger discovery sample which has
implemented 17 new datasets, leading to a total n =
21,982 with 41,944 cognitively normal controls. The
main projects involved with this meta-analysis include
the Alzheimer Disease Genetics Consortium (ADGC),
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Cohorts for Heart and Aging Research in Genomic
Epidemiology Consortium (CHARGE), The European
Alzheimer’s Disease Initiative (EADI), and Genetic and
Environmental Risk in AD/Defining Genetic, Polygenic
and Environmental Risk for Alzheimer’s Disease Consor-
tium (GERAD/PERADES). The genotypic datasets were
imputed using a 1,000 Genomes reference panel to include
a total 36,648,992 SNP’s; 1,380,736 indels; and 13,805
structural variants; this analysis leads to the identifica-
tion of five novel genome-wide loci associated with AD,
two of which have also been found in the second analy-
sis. The summary statistics can be found on NIAGADS
at (https://www.niagads.org/datasets/ng00075). The most
recent version of this data, which was published in Febru-
ary 2019, was used in the analysis.

cis-eQTL summary data

cis-eQTL data used in this study was derived from a
meta-analysis of cis-eQTLs between independent brain
and blood samples [29]. The exact meta-analysis cis-eQTL
information in the format required by the SMR tool can
be downloaded in full at https://bit.ly/3gRNbGC.

This study integrated eQTL information from multi-
ple sources, including the GTEx project gene expres-
sion data derived from both the blood and ten separate
brain tissues, CommonMind Consortium gene expression
data derived from the dorsolateral prefrontal cortex, and
ROS/MAP gene expression data. cis-eQTL’s, as defined by
having the distance between a SNP and gene probe being
less than 1 Mb, were chosen in favor of trans-eQTL data
because trans-eQTL data was not available for most of the
data sets chosen by the study.

In their study, due to the use of biomarkers from the
blood as well as the brain from several different cohorts,
Qi et al. quantitatively established the similarity of genetic
effects at the top-associated cis-eQTLs between blood
and brain-derived measures. They show the correlation
of cis-eQTLs between brain and blood is fairly high, with
r, ~ 0.79 between the GTEx WholeBlood and Hip-
pocampus cis-eQTL’s, for instance. This allows for the
integration of cis-eQTL’s taken from blood-derived tissues
in our analysis.

Such a meta-analysis is extremely powerful due to the
enlarged sample size of such an analysis. Previous analy-
ses utilizing gene expression data from any one of these
three sources alone, especially those that studied brain tis-
sues, were somewhat hindered by the small sample sizes
of each respective study. However, synthesizing these data
sets and including the blood-based biomarkers from the
GTEx project would allow for an adequately large and
statistically powerful analysis. As such, it was important
to determine if this could be properly done and if these
individual cis-eQTL'’s lead to similar conclusions despite
being sourced from very different tissues. Fortunately, this
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was proven to be possible, as shown by a 7, = 0.70 for
cis-eQTL’s, which show that there is a high correlation
between independent brain and blood samples, allowing
for the combination of these cis-eQTL’s and our proposed
analysis.

Given these reassurances, the meta-analysis of cis-eQTL
data was performed with # ranging from 526 to 1194.
The meta-analysis of these cis-eQTLs has been calcu-
lated using a program called MeCS [8], which uses the
summary-level cis-eQTL data provided from these three
consortiums to perform meta-analyses of cis-eQTLs. In
the MeCS calculation, cis-eQTL's were selected based on a
definition of locality limited to only SNP’s within 1 Mb of
the gene probe in question, as defined above. More infor-
mation can be found about MeCS, including a copy of
the software, at https://cnsgenomics.com/software/smr/#
MeCS.

The SMR method

Summary-data-based Mendelian Randomization (SMR)
uses an instrumental variable estimation in order to accu-
rately integrate independent GWAS and eQTL summary
data. A diagram visualizing the vital relationships this
approach utilizes is shown in Fig. 8. Briefly, an instrumen-
tal variable estimation can be used to better understand
the correlation between an independent variable and a
dependent variable, especially when our independent and
dependent variables are endogenous [30]. Mendelian Ran-
domization (MR) as a whole is a biological adaptation of
this approach [31, 32].

The scientific basis of MR relies on a variant of the
central dogma of biochemistry: the ideal that genetic
variations (DNA) affect how certain genes are expressed
(RNA), which in turn affect the proteins produced by the
cell, potentially leading to changes on a systemic level
(phenotype). It has been previously shown that if a specific
genetic variant (i.e. one of the SNP’s studied in the meta-
analysis cis-eQTL) were to affect the expression of a gene
— a relationship potentially found via a cis-eQTL analy-
sis [33] — then there will be differences in gene expression
levels among individuals with different genetic ‘versions’
of the studied SNP (i.e. heterozygous versus homozygous
dominant versus homozygous recessive). These differ-
ences, in turn, are analogous to the overexpression (in
our case, positive AD diagnosis, assuming our SNP and
gene are risk factors for AD) and/or suppression (a lack
of a diagnosis) of the phenotype studied [8]. A MR anal-
ysis takes a very similar approach, in using a SNP as an
instrumental variable to test the magnitude and presence
of a causal effect of the expression of a specific gene on
our outcome of interest. In principle, it is thus possi-
ble to use a MR approach to search for the genes at the
loci of the SNP’s highlighted in our summary GWAS that
have the highest functionality in AD. In finding highly
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Fig. 8 Flowchart outlining the instrumental variable procedure of SMR. Known relationships represented by eQTL between genetic variants and
gene expression and GWAS between genetic variants and AD are represented by solid arrows. The gene expression - AD (causal) relationship that
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significant/impactful gene probes, this analysis may lead
to the discovery of certain genes that have yet to be
declared differentially expressed in AD.

Up until recently, it was highly likely that in order to
perform an accurate Mendelian Randomization approach,
a full set of data involving GWAS, eQTL, and phenotype
data for a large cohort was necessary to produce statis-
tically robust results. With the work of Zhu et al. 8], it
is now possible to perform a Mendelian Randomization
using only summary data potentially using GWAS and
eQTL data from different studies. Their approach makes
this possible using a series of corrections and assump-
tions about the input data, which allows for maximum
efficiency while implementing conservative screens that
ensure only the most statistically significant correlations
between gene expression and phenotype are highlighted.

First, as the given genetic variants are the primary
bridge between the comparisons with phenotype and gene
expression data, the program performs a quality-control
effect allele frequency check to verify the SNP information
used in both the eQTL and GWAS studies are congru-
ous. Next, given the need for a significant SNP-eQTL
relationship to exist in order to perform the Mendelian
Randomization analysis as mentioned above, only cis-
eQTL’s (as defined by the standard 1 Mb radius from the
gene probe) with a top P.qrr < 5 X 108 are included for
the SMR analysis. Furthermore, SNP’s with eQTL minor,
effect, and/or GWAS allele frequencies < 0.01 were also
removed. Then, only SNP’s with eQTL p-values that sur-
vive a Bonferroni-corrected p threshold as defined by the
number of SMR calculations ran per command are fully

analyzed. Lastly, to correct for linkage disequilibrium scat-
tering results, SNP’s with a 72 > 0.90 or 2 < 0.05 with the
top SNP for that cis-eQTL are excluded, with one result of
every pair of SNP’s that satisfy these LD requirements also
being excluded.

With this procedure, it is possible to gain insight as to
the significance of certain genes relevant to AD. However,
an SMR analysis is not all that is needed to confirm the
causal relationship between gene expression and pheno-
type.

Of note, a strong association in a SMR test doesn’t
necessarily mean that gene expression and the trait in
question are both directly affected by the same underlying
genetic variant. It is possible that the association is due to
the top associated cis-eQTL variant being in linkage dis-
equilibrium with two separate variants, one of which may
influence gene expression and the other which may affect
our phenotypic outcome. This type of linkage is signifi-
cantly less powerful than the pleiotropic relationships we
wish to find instead.

To differentiate between the pleotropic relationships we
wish to find and the linkage relationships we wish to avoid,
Zhu et al. [8] created the Heterogeneity in Dependent
Instruments (HEIDI) test. This technique specifically tests
against the null hypothesis that there is a single null vari-
ant, which is biologically equivalent to testing if there is
heterogeneity in the effect sizes estimated for SNP’s in the
cis-eQTL region of interest. Since the HEIDI test has been
shown to help identify variants that are most likely to have
a strong effect on both gene expression and our AD phe-
notype, it was used to distinguish pleiotropy from linkage
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in the context of our analyses, similar to the work pre-
sented in [8]. Of course, variants highlighted by the SMR
technique and HEIDI test also warrant further biological
investigation.

We have performed an SMR analysis that integrated
meta-analytic cis-eQTL summary statistics from GTEXx,
CMC, and ROS/MAP studies with three sets of meta-
analysis GWAS results in AD. We aim to discover genes
differentially expressed in AD for better understanding
of the molecular mechanism of the disease. Our analy-
sis identified twelve total gene probes (associated with
twelve distinct genes) with a significant association with
AD. Four of these genes survived a test of pleiotropy from
linkage (the HEIDI test). One of the four genes, NDUFS2,
has been previously reported as differentially expressed
in the brain in the context of AD. The remaining three
genes — RP11-385F7.1, PRSS36, and AC012146.7 — have
not yet been reported differentially expressed in the brain
in the context of AD. However, there exist prior stud-
ies suggesting some indirect connections between these
genes and AD. Thus, further investigations, including per-
forming SMR-based replication studies in independent
cohorts and/or conducting molecular validation using
brain-related tissues in AD research, may study these
genes in more detail.
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