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Deconvolution improves the detection and
quantification of spike transmission gain from spike
trains
Lidor Spivak1, Amir Levi 1, Hadas E. Sloin 1, Shirly Someck1 & Eran Stark 1✉

Accurate detection and quantification of spike transmission between neurons is essential for

determining neural network mechanisms that govern cognitive functions. Using point process

and conductance-based simulations, we found that existing methods for determining neu-

ronal connectivity from spike times are highly affected by burst spiking activity, resulting in

over- or underestimation of spike transmission. To improve performance, we developed a

mathematical framework for decomposing the cross-correlation between two spike trains.

We then devised a deconvolution-based algorithm for removing effects of second-order spike

train statistics. Deconvolution removed the effect of burst spiking, improving the estimation

of neuronal connectivity yielded by state-of-the-art methods. Application of deconvolution to

neuronal data recorded from hippocampal region CA1 of freely-moving mice produced higher

estimates of spike transmission, in particular when spike trains exhibited bursts. Deconvo-

lution facilitates the precise construction of complex connectivity maps, opening the door to

enhanced understanding of the neural mechanisms underlying brain function.
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Neurons in the brain act as information gates, each
receiving inputs from thousands of different sources and
deciding which to pass on to other neurons. The cap-

ability of transmitting relevant inputs to other cells is at the very
core of sensory processing, action, and cognition. One way for
investigating how information is transmitted between two neu-
rons is to measure the postsynaptic potential (PSP) in one cell
following a spike of a presynaptic cell1–3. When excitatory PSP
(EPSP) magnitude is larger, the probability that the postsynaptic
neuron will fire following a presynaptic spike is higher2. However,
EPSP magnitude is affected not only by synaptic strength, but also
by the instantaneous membrane potential of the postsynaptic
neuron4. Moreover, even constant EPSP magnitude cannot pre-
dict whether a postsynaptic neuron will fire after a presynaptic
spike. When an EPSP is generated at lower membrane potentials,
cells are less likely to fire5. Thus, EPSP magnitude alone is
insufficient for determining whether a postsynaptic neuron will
fire following a presynaptic spike, thereby allowing information to
pass on to other cells.

An alternative approach for determining connectivity between
two neurons is to directly quantify whether presynaptic spikes
generate spikes in the postsynaptic neuron. The spike-to-spike
cross-correlation histogram (CCH)6–8 has been used for mea-
suring the transmission of spikes between two neurons9–11.
However, most CCH applications employ spontaneous spiking,
and are therefore correlative measurements which cannot dif-
ferentiate causal transmission from non-causal spike patterns. For
example, firing of two cells may be co-modulated by another
source such as visual input or a third neuron, causing the two
cells to fire in synchrony12. Thus, the CCH is influenced not only
by spike transmission properties but also by co-modulation of the
pre- and postsynaptic trains13–15.

To differentiate between direct spike transmission due to inter-
neuronal coupling and other indirect sources, several methods
have been proposed16–20. An underlying assumption in these
approaches is that while direct connections exhibit fast transients
in the CCH, indirect sources produce slower fluctuations. Based
on this assumption, timescale separation can be used to detect
and estimate synaptic connectivity, differentiating between fast
transients (which are presumably due to direct connectivity), and
slower fluctuations (which are presumably due to other sources).
Indeed, when timescale separation methods are employed, spike
transmission measurements derived from casual methods are
consistent with measures derived from spontaneous spiking
CCHs21. However, it is still unclear to what extent timescale
separation methods can differentiate between transmitted spikes
and third-party, synchronous spiking. Moreover, the CCH is
influenced not only by the interaction between the pre- and
postsynaptic spike trains, but also by the spiking activity pattern
of each neuron8. When one of two connected neurons exhibits
high-frequency periodicity or burst spiking, fast features appear
in the CCH22,23. These features cannot be differentiated from
transmitted spikes by timescale separation. Thus, even when
timescale separation methods are used, transmitted spikes cannot
be fully differentiated from non-transmission patterns such as
burst spiking activity.

To remove non-transmission features from the CCH and
improve the estimation of functional connectivity from spike
trains, we formulated a mathematical framework for CCH com-
position. We found that the CCH can be expressed as a sum of
three distinct elements. Based on this finding, we developed a
deconvolution-based algorithm for removing second-order spike
train statistics from the CCH. Using deconvolution in concert
with timescale separation methods removed the effect of burst
spiking, improving the accuracy of both detection and quantifi-
cation of neuronal connectivity in synthetic data. Consistent with

simulation results, application to neuronal data recorded from
CA1 of freely-moving mice showed that deconvolution increased
estimates of spike transmission, in particular when the spike
trains exhibited bursts.

Results
Spike transmission gain between two neurons can be accurately
estimated from spike-to-spike cross-correlation. Neurons can
transmit spiking information to other neurons via different
connections including chemical synapses (e.g., AMPA, GABA,
NMDA, or other receptors)24,25, electrical synapses (gap
junctions)26, or ephaptic coupling (electromagnetic fields)27.
Whether spiking information will propagate in the brain depends
on the effective connectivity between neurons. When membrane
potentials are accessible, connectivity between two neurons can
be quantified by the magnitude of the EPSP in the postsynaptic
neuron following a single presynaptic spike1–3. However, EPSP
magnitude does not indicate whether the postsynaptic neuron
will pass information onward to other neurons in the form of
spikes. Alternatively, the spike trains themselves may be used for
estimating the effective connectivity between two neurons,
defined here as spike transmission.

To determine the relations between EPSP-based estimates and
spike transmission, we simulated a two-cell network in which
coupling strength was varied (Fig. 1). The presynaptic neuron
exhibited Poisson spiking modified by a 2 ms refractory period
(λ1= 5 spk/s). The postsynaptic neuron was modeled as a
conductance-based leaky integrate and fire (LIF) neuron. In the
lack of connectivity, the postsynaptic neuron did not emit any
spikes when membrane potential variability, quantified using σ,
was low (Fig. 1a). When σ was increased, spontaneous spike rate
increased monotonically (Fig. 1a). Specifically, in the range of
noise observed in intact preparations (σ < 4mV)5,28, spike rate
was in the range observed in freely-moving animals (<25 spk/s)29.

Next, we connected the pre- and postsynaptic neurons via a
synaptic conductance. Conductance magnitude was calibrated to
produce unitary EPSPs (uEPSPs) in the range of 0–2 mV, as
observed in vivo2,28,30,31. When membrane potential variability
was low (σ < 2mV), even the stronger uEPSPs failed to generate
postsynaptic spiking. However, when σ was higher (2–4 mV),
uEPSPs of the same magnitude induced postsynaptic spikes in
addition to the spontaneous noise-induced spikes (Fig. 1b, red
curve). To quantify effective connectivity, we defined “real spike
transmission gain” (rSTG) as the number of extra postsynaptic
spikes generated following every presynaptic spike. In the range
of biologically-relevant noise, rSTG increased monotonically with
σ. Furthermore, for every σ, rSTG increased monotonically with
uEPSP magnitude (Fig. 1b, top inset). While even relatively-large
EPSPs fail to produce postsynaptic spikes in the lack of
membrane potential variability, weaker EPSPs (0.2–1 mV) could
induce consistent spiking when noise was sufficiently high.
Moreover, the uEPSP magnitude required to generate a fixed
rSTG decreased monotonically with σ (Fig. 1b, bottom inset).
Thus, EPSP magnitude alone does not suffice for estimating spike
transmission.

To determine whether effective connectivity associated with
weak EPSPs can be detected from spike timing alone, we
constructed CCHs for pre- and postsynaptic spike train pairs
(Fig. 1c). We defined the “spike transmission curve” (STC) as the
impulse response of spike transmission between the pre- and
postsynaptic neurons. Empirically, an estimated STC (eSTC) can
be determined by the difference between the CCH and the
baseline. Here, we defined the baseline using the “tails” predictor,
namely the CCH count at longer time lags (|τ| ≥ 11 ms). We then
defined the estimated STG (eSTG) as the area under the STC peak
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in a temporal region of interest (ROI; defined here as
0 < τ ≤ 5 ms32; Fig. 1c, gray bins), divided by the number of
presynaptic spikes. For an STC below baseline, the STG is a
negative quantity. Previous studies have referred to the STG using
various other names: “effectiveness”33, “asynchronous gain”34,
“synaptic efficacy”11, and “spike transmission probability”21,32.
For the CCH in Fig. 1c, generated using relatively weak EPSPs

(0.6 mV; σ= 3.4 mV), the eSTG (0.032) was of the same order of
magnitude as the rSTG (0.028, 116%; Fig. 1c). Considering all
non-zero rSTG values, the mean eSTG error (eSTG–rSTG)/rSTG,
was 2.5% (456 spike train pairs with non-zero rSTG; smaller than
5%, p < 0.05, one-tailed Wilcoxon’s signed-rank test; Fig. 1d).
Thus, the STG estimated from the CCH between spike trains
closely matches the real spike transmission gain.
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Fig. 1 Spike transmission between two neurons can be estimated from spike times. a Increased membrane potential variability increases spontaneous
spiking. A leaky integrate and fire (LIF) model neuron was simulated with different levels of membrane potential variability, quantified by the noise SD, σ
(n= 6 repetitions for each of n= 11 σ values, from 0 to 5mV with 0.5 mV increments; each 180min). The firing rate (λ2) of the simulated neuron is shown
for each σ value; here and in (b), error bands indicate SEM. The trace next to the cartoon shows 300ms of simulated membrane potential, and the
histograms show the distribution of membrane potentials (σ= 3mV). b Even small-magnitude EPSPs induce observable spike transmission gain in the
presence of noise. The simulated LIF neuron (2) was driven via an excitatory synapse by a presynaptic neuron (1) with Poisson spiking (λ1= 5 spk/s)
modified by refractoriness. Synaptic conductance was modified to yield n= 11 different unitary EPSP (uEPSP) magnitudes (from 0 to 2mV with 0.2 mV
increments), and the real spike transmission gain (rSTG) was computed for every σ and uEPSP combination (n= 121). Both uEPSP magnitude and
membrane potential variability control spike transmission. c A cross-correlation histogram (CCH; bins size: 1 ms) was computed from a pair of simulated
spike trains as in (b); σ= 3.4 mV, uEPSP magnitude= 0.6mV. For deriving an estimated STG (eSTG) from the CCH, the level of baseline joint counts (blue
line) was first estimated using the “tails” predictor, averaging CCH values at time lags |τ|≥ 11 ms. The spike transmission curve (STC; black line) was
estimated as the above-baseline curve with a peak in the temporal region of interest (ROI; defined here as 0 < τ≤ 5ms; gray bins), with zeros in all other
bins. The eSTG is the area under the estimated STC. d Spike transmission gain estimated from the CCH is an accurate estimate of the real STG. For every
simulation run (n= 6 repetitions for each of 121 σ and uEPSP combinations), rSTGs and eSTGs were computed. Different colors correspond to different
uEPSP magnitudes as in (b), and the black circle corresponds to the example in (c). Spearman’s correlation coefficient between eSTG and rSTG is ρ= 0.94
(n= 726 random samples, p < 0.001, permutation test).
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The cross-correlation between two spike trains can be expres-
sed as a sum of three elements. The foregoing discussion (and
Fig. 1) focused on a specific configuration in which the pre-
synaptic spike train was generated via a homogenous Poisson
process modified by refractoriness. Furthermore, all statistical
dependencies between the two spike trains were captured by a
single modeled synapse. In general, dependencies within and
between spike trains may be richer (Fig. 2a). Individual spike
trains typically deviate from Poisson processes, conforming to
higher-order gamma processes or exhibiting spike bursts35,36.
Connectivity between neurons is often not purely feedforward,
exhibiting reciprocal excitation1 or feedback inhibition37,38.
Furthermore, dependencies between two spike trains may result
from covariance of other inputs to the two neurons6,8,14,39 rather
than from synaptic connections between the neurons. These and
other possible sources of complexity give rise to the observed
spike trains (Fig. 2b) from which the CCH is derived (Fig. 2c).

Therefore, the STC estimated from a pair of spike trains is gen-
erally not identical to the real STC. As a direct consequence, the
eSTG is not identical to the rSTG.

In general, the STC is not necessarily identical to the difference
between the CCH and the baseline. However, if the STC is fixed
(more precisely, if the system is linear time-invariant), there is an
exact mathematical dependency between the STC and the CCH.
In the absence of external input to the postsynaptic neuron, all
postsynaptic spikes (s2) are due to spontaneous presynaptic spikes
(s01). In that case, the CCH is identical to the convolution (*)
between the spike-to-spike auto-correlation histogram (ACH) of
neuron 1 spikes, and the STC from neuron 1 to neuron 2
(Fig. 2d):

CCH ¼ ACH1 � STC21 ð1Þ
When external input is added to the postsynaptic neuron (s02),

the CCH is equal to the sum of the above convolution and the
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Fig. 2 The cross-correlation between two spike trains can be expressed as a sum of three elements. a Cartoon of two neurons, driven by external
sources and coupled by reciprocal excitatory and inhibitory monosynaptic connections. In the example, both neurons exhibit spiking activity which deviates
from a Poisson process: the excitatory neuron exhibits burst spiking, and the inhibitory neuron exhibits second-order gamma spiking activity. b The spike
trains of the two neurons result from all of these (and possibly other) sources. c An example CCH created from the synthetic spike trains described in
(a, b). The rSTG is 0.04, whereas the eSTG provides an inaccurate estimate (0.054; 135%). The example demonstrates that in the presence of complex
dynamics, the STG cannot be estimated accurately by the “tails” method. d The CCH between two coupled spike trains, s1 and s2, can be expressed as a
sum of three elements. The first element is the convolution of the auto-correlation histogram of the first train (ACH1) with the STC from neuron 1 to neuron
2 (STC21). The second element, denoted as “other inputs”, is equal to the cross-correlation between the uncoupled spike trains. The third element is the
convolution of ACH2 with STC12. e Based on the composition (d), a decomposition procedure may recover the other inputs and the two STCs from
the CCH.
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cross-correlation (⋆) between the spike trains which are not due
to the direct connectivity:

CCH ¼ ACH1 � STC21 þ s01 ? s
0
2 ð2Þ

When the connectivity between the neurons is bidirectional,
and external (possibly correlated) inputs are added to both
neurons, the CCH can be approximated as a sum of three
elements:

CCH ¼ ACH1 � STC21 þ s01 ? s
0
2 þ ACH2 � STC12 ð3Þ

The approximation is valid as long as the product of the two
STGs (i.e., the loop gain) is small. Thus, a CCH can be described
as a sum of three elements: (1) the convolution between the ACH
of neuron 1 and the impulse response from neuron 1 to neuron 2;
(2) the convolution between the ACH of neuron 2 and the
impulse response from neuron 2 to neuron 1; and (3) the cross-
correlation between the background spike trains, those not due to
direct connectivity between the two neurons. The last expression
has the conceptual benefit of opening the loop, effectively
describing a feedback system (Fig. 2a) as a feedforward system
using an arithmetic decomposition (Fig. 2e). Moreover, under-
standing that the CCH is a sum of three elements allows
reconstructing hidden elements, namely the STCs, from the CCH
using numerical methods.

Deconvolution eliminates burst spiking effects and enables
accurate STG and PSP estimation. To estimate inter-neuronal
effective connectivity from spike trains, several methods have
been proposed20,32,40–42. These and other procedures rely on the
concept of timescale separation, in which processes that occur at
fast timescales (e.g., monosynaptic spike transmission) are dis-
tinguished from processes occurring at slower timescales (e.g., co-
modulated other inputs, such as external inputs or network
oscillations). However, in addition to other inputs, the CCH is
comprised of the convolution products of each ACH with the
corresponding STC (Fig. 2d), which occur at fast timescales.
Hence, even if an optimal estimate of the other inputs is removed,
a CCH between two synaptically-connected neurons will still
contain contributions from the ACHs of each neuron.

To demonstrate the effect of second-order spike train statistics
on connectivity estimation, we simulated two spike trains coupled
by an excitatory monosynaptic connection (rSTG= 0.04;
833 min; Fig. 3a–c). The spike train of the presynaptic neuron
was initially simulated as a Poisson process modified by an
absolute refractory period (ARP; ARP1= 2 ms; λ1= 2 spk/s), and
exhibited bursting activity (Fig. 3b). The extent of bursting was
controlled by a “burst fraction” (BR) parameter, defined as the
probability of each spike to be followed by another spike within a
short inter-spike interval (3–7 ms). BR was set to 0.4. The spike
train of the postsynaptic neuron realized a second-order gamma
process modified by refractoriness (λ2= 8 spk/s; ARP2= 2 ms;
Fig. 3a). Consistent with the construction, the CCH between the
coupled spike trains exhibited a peak within the causal ROI
(Fig. 3c). In addition, the CCH exhibited side lobes: secondary
peaks with increased counts on both sides of the causal peak,
which are due to the bursting activity of the presynaptic neuron.
Similar patterns were previously reported in real datasets22.

To quantify the effect of the ACH on the estimation of effective
connectivity, we used five different methods: tails, jitter, median,
GLMCC40, and CoNNECT41. While the tails, jitter, and median
filtering methods yield estimates of effective connectivity
measured as gain (STG; Fig. 1), the GLMCC and CoNNECT
methods produce estimates in units of mV (PSP). The estimates
yielded by the PSP-based methods cannot be gauged directly in
the case of the synthetic CCH depicted in Fig. 3c, since no ground

truth for PSP exists in the point process simulations. The tails
predictor overestimated the rSTG (eSTG= 0.053, 133%; Fig. 3d),
and the jitter and median predictors underestimated the rSTG
(jitter: 0.023, 58%; median filtering: 0.028, 70%). Thus, when
burst spiking activity is present, the tails, jitter, and median
methods fail to produce an accurate eSTG.

For accurate estimation of effective connectivity from the CCH
in the presence of arbitrary second-order spike train statistics
(e.g., bursting or periodicity), we developed a deconvolution
algorithm that takes advantage of the CCH mathematical
properties described in Fig. 2d, e. In a nutshell, the algorithm
mitigates the effect of bursting activity by deconvolving the ACHs
from the CCH, resulting in a CCH which does not exhibit ACH-
induced side lobes (Fig. 3f). The outcome is a “deconvolved CCH”
(dcCCH). The dcCCH still includes the additive effect of other
inputs (Fig. 2d). However, the other inputs element can be
estimated using timescale separation methods and removed by
subtraction. Thus, deconvolving the ACHs from the CCH before
applying timescale separation removes ACH artifacts, and may
improve connectivity estimates.

To test whether deconvolution indeed improves STG/PSP
estimation, we first applied the algorithm to the CCH and ACHs
of Fig. 3a–c and re-estimated the STG and PSP from the resulting
dcCCH (Fig. 3g). Compared to the estimates derived from the
CCH (Fig. 3d, e), all STG estimates based on the dcCCH were
improved (Fig. 3h), and both PSP estimates were higher (Fig. 3i).
Specifically, the tails predictor yielded an eSTG of 0.0408 (102%
of the rSTG); the jitter predictor underestimated the rSTG
(0.0276, 69%); and median filtering yielded an eSTG of 0.0392
(98%; Fig. 3h). We then carried out simulations in which the
presynaptic burst fraction was varied in an orderly manner (from
0 to 0.4 with 0.05 increments; rSTG= 0.04; 30 repetitions each;
other parameters were kept the same as in Fig. 3a–c). For each
simulation, estimated STGs and PSPs were computed from the
CCH and dcCCH using all five methods (Fig. 3j, k). For the tails,
jitter, and median predictors, eSTGs derived from the dcCCH
were more accurate than the eSTGs derived from the CCH when
burst fractions were above 0.15 (p < 0.001, Mann–Whitney U-
test). For the GLMCC method, only the PSP estimations derived
from the raw CCH depended on the burst fraction (GLMCC
without deconvolution: p < 0.001; with deconvolution: p= 0.13;
permutation test). For comparing STG and PSP-based estimates,
we used the normalized slope of the best linear fit, after dividing
all values by the mean estimates at zero burst fraction. With the
exception of CoNNECT, deconvolution reduced the effect of
bursting for all methods (p < 0.001, bootstrap test; Fig. 3l). Thus,
in the presence of burst spiking activity, deconvolution improves
STG and PSP estimation of excitatory monosynaptic connections.

Second, to test whether deconvolution also improves the
estimation of inhibitory monosynaptic connections, we repeated
the simulations of Fig. 3g–l with inhibitory connections (rSTG=
−0.02; Fig. 3m–r). The spike train of the presynaptic neuron
realized a second-order gamma process modified by refractori-
ness (λ1= 8 spk/s; ARP1= 2 ms). The spike train of the
postsynaptic neuron was simulated as a Poisson process modified
by refractoriness (λ2= 2 spk/s; ARP2= 2 ms) which also exhib-
ited bursting activity, varied in an orderly manner. For the tails,
jitter, and median predictors, eSTGs derived from the dcCCH
were more accurate than the eSTGs derived from the CCH when
burst fractions were above 0.15 (Fig. 3p; p < 0.001, U-test). We
then computed the normalized slope of the best linear fits
(Fig. 3r). For all methods except CoNNECT, deconvolution
reduced the effect of bursting (tails, jitter, median: p < 0.001;
GLMCC: p= 0.015; bootstrap test). Thus, in the presence of burst
spiking activity, deconvolution improves STG and PSP estimation
for inhibitory monosynaptic connections.
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Third, to test whether deconvolution improves the estimation
in the case of two directly-connected neurons which both exhibit
bursty behavior, we simulated two bursting neurons coupled by a
monosynaptic excitatory connection (rSTG= 0.04; Fig. 3s–u).
The burst fraction of the postsynaptic neuron was 0.1 (Fig. 3s),
and the burst fraction of the presynaptic neuron was varied from

0 to 0.4 with 0.05 increments. For every simulation, we estimated
STGs and PSPs from the CCH and dcCCH using all five methods
(Fig. 3u–x). We found that for the tails, jitter, and median
predictors, eSTGs derived from the dcCCH were more accurate
than eSTGs derived from the CCH for burst fractions above 0.1
(p < 0.001, U-test). For the CoNNECT method, only the ePSPs

Fig. 3 In the presence of spike bursts, deconvolution enables accurate recovery of spike transmission gain. a–e Simulated spike trains of two neurons
coupled by an excitatory monosynaptic connection. a ACH of the postsynaptic neuron. b ACH of the presynaptic neuron, exhibiting bursting activity. “Burst
fraction” (BR; the probability of each spike to be first in a burst) is 0.4. c CCH between the two neurons. In addition to a peak within the causal ROI
(0< τ≤5ms), the CCH exhibits side lobes which are due to the burst spiking of the presynaptic neuron. d Conditional rate histograms, derived from the
CCH in (b). e CCH with slow (black) and fast GLM coupling filters (pink and gray). f Burst spiking affects the ACH (b) and the CCH (c) and causes
inaccurate STG estimates (d). The scheme illustrates the deconvolution process for removing ACH artifacts from the raw CCH. g A deconvolved CCH
(dcCCH; green) is derived from the ACHs (a, b) and CCH (c). The dcCCH is free from the effect of spike bursts, recovering the unidirectional spike
transmission curve STC21 used in the simulation. h Conditional rate histograms. i dcCCH with PSPs estimated by the CoNNECT and GLMCC methods.
j, k CCH deconvolution improves STG estimation in the presence of burst spiking. Spike trains coupled by an excitatory monosynaptic connection were
simulated while modifying BR (n= 30 repetitions at n= 9 BR values, from 0 to 0.4 with 0.05 increments). j eSTG-to-rSTG ratio as a function of BR for the
three STG estimation methods using CCHs (solid lines) and using dcCCHs (dashed lines). In the presence of bursting, deconvolution improves STG
estimation. k Estimated PSP as a function of burstiness for the CoNNECT and GLMCC methods using CCHs and dcCCHs. l Normalized slope of the best
linear fit of the curves in (j, k). Error bars, SEM. With the exception of CoNNECT, deconvolution reduces the effect of bursting for all methods (n= 270
random samples; n.s./***p > 0.05/p < 0.001, bootstrap test, n= 300 iterations). m–o Spike trains were coupled by an inhibitory monosynaptic connection.
m Example CCH. n dcCCH for the same example. o dcCCH with slow GLM (black) and fast GLM coupling filters (pink and gray). p, q Same as (j, k), for
simulated inhibitory connections (n= 30 repetitions at every BR value). r Same as (l), for inhibitory connections (n= 270 random samples; n= 300
bootstrap iterations). s–v Two spike trains with bursts were coupled by an excitatory monosynaptic connection. s ACH of the postsynaptic neuron
(BR= 0.1). t ACH of postsynaptic neuron (BR= 0.4). u CCH of the two neurons. v dcCCH for the CCH in (u). w, x Same as (j, k), for two spike trains with
bursts (n= 30 repetitions at every BR value). y Same as (l), for two spike trains with bursts (n= 270 random samples; n= 300 bootstrap iterations).
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derived from the raw CCH depended on the burst fraction
(without deconvolution: p= 0.01; with deconvolution: p= 0.053;
permutation test). For comparing STG and PSP-based estimates,
we used the normalized slope of the best linear fit, after dividing
all values by the mean estimates at zero burst fraction.
Deconvolution reduced the effect of bursting for all methods
(CoNNECT: p= 0.025; all other methods: p < 0.001, bootstrap
test; Fig. 3y). Thus, when both neurons exhibit burst spiking
activity, the deconvolution improves STG and PSP estimation.

Deconvolution improves effective connectivity estimation and
detection. To evaluate the contribution of deconvolution to the
performance of the various methods in a more realistic, noisy
scenario, we generated 1250 individual neuronal pairs. Con-
nectivity strengths, burst fractions, co-modulation, and recording

durations were varied widely between pairs (Fig. 4a). A thousand
pairs were generated with either an excitatory or inhibitory
connection, and 250 pairs were unconnected. For the excitatory
and inhibitory pairs, connection strengths were drawn randomly
from a log-normal distribution43–45 (mean ± SD excitatory rSTG:
0.019 ± 0.01; inhibitory: −0.014 ± 0.007; Fig. 4b). Burst fractions
were drawn randomly from a uniform distribution in the [0 0.4]
range. Recording duration was set randomly between 90 min and
five hours.

First, we compared estimation performance with and without
deconvolution by computing the mean square error (MSE) for the
STG-based methods, for which a ground truth exists (Fig. 4c–e).
We found that deconvolution reduced the MSE for all STG-based
methods (p < 0.001; Wilcoxon’s paired signed-rank test; Fig. 4h).
Of the three STG-based methods, median filtering with

Fig. 4 Deconvolution improves quantification and detection of inter-neuronal connections. a, b A thousand pairs of neurons with monosynaptic
connections and 250 unconnected pairs were simulated. Connectivity strengths (rSTG), burst fractions, co-modulation, and recording durations were
varied between pairs. a Example CCHs from the noisy point process simulations, sorted by rSTG values. BR, burst fraction. b Empirical distribution of the
n= 500 excitatory (red) and n= 500 inhibitory (blue) rSTGs of the pairs used in the simulations. c–g STGs or PSPs are plotted against the ground truth
(rSTG) for dcCCHs (n= 1000 connected pairs), estimated using the tails (c), jitter (d), median (e), GLMCC (f), and CoNNECT (g) methods. Colored (or
gray) dots depict estimated STGs or PSPs which were (or were not) detected as connections. In all methods (except CoNNECT), the significance threshold
used was α= 0.001. In (c–e), solid black lines represent perfect estimation (i.e., eSTG= rSTG). h Mean square errors (MSE) for the STG-based methods,
in which the ground truth and the estimates have the same units. Error bars, SEM. Deconvolution reduces the MSE for all STG-based methods (n= 1000
connected pairs; ***p < 0.001, Wilcoxon’s paired signed-rank test). The smallest errors are obtained for median filtering with deconvolution. i–m STG (i–k;
or PSP, l, m) ratio as a function of burst fraction. STG ratio is defined as the STG estimated from the CCH, divided by the STG estimated from the dcCCH.
The PSP ratio is defined in an analogous manner. For all methods except CoNNECT, deconvolution reduces the effect of burstiness. n Slope of best linear fit,
computed for (i–m) (n= 1000 connected pairs; n.s./***p > 0.05/p < 0.001, bootstrap test, n= 300 iterations). o–t Effect of deconvolution on detection.
o–s False-positive (FP) and false-negative (FN) rates were computed for excitatory (Exc.) and inhibitory (Inh.) connections, using CCHs (dark bars) and
dcCCHs (light bars). Fractions are out of a population of {Exc. FP: n= 2000; Exc. FN: n= 500; Inh. FP: n= 2000; Inh. FN: n= 500} connections. t Mean f1
scores for all connections, with and without deconvolution. Error bars, SEM. Deconvolution improves detection performance for the tails, median, and
GLMCC methods (n.s./***p > 0.05/p < 0.001, bootstrap test, n= 3500 iterations).
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deconvolution had the lowest MSE (1.27 × 10−5). Median without
deconvolution and jitter with deconvolution had the second and
third lowest MSEs, respectively (median: 2.73 × 10−5; jitter with
deconvolution: 3.48 × 10−5; jitter: 5.34 × 10−5). Thus, deconvolu-
tion reduced the errors approximately two-fold. To evaluate the
effect of deconvolution for all five methods, we computed the
estimated STG (or PSP) ratio for both excitatory and inhibitory
connections. For the “tails” method, the eSTG ratio increased
with burst fraction (ρ= 0.297, p < 0.001, permutation test; Fig. 4i).
For the jitter, median, and GLMCC methods, the estimated STG
(or PSP) ratio decreased as burst fraction increased (p < 0.001,
permutation test; Fig. 4j–l). For all methods (except CoNNECT),
the slope of the estimated STG (or PSP) ratio was different from
zero (p < 0.001, bootstrap test; Fig. 4n). Together, the reduction of
the MSE (Fig. 4h) and the correlation between estimated STG (or
PSP) ratio and burst fraction (Fig. 4n) show that deconvolution
reduces the effect of burst spiking and improves connectivity
estimation.

Second, we compared detection performance for all methods
(Fig. 4o–t). We used an f1 score that combines the effect of false-
positive (FP) and false-negative (FN) rates across multiple
populations (excitatory and inhibitory connections; Fig. 4t). Both
the median and GLMCC, when employed with α= 0.001, yielded
low FP rates for excitatory and inhibitory connections. For
median filtering, the FP rate for excitatory connections with/
without deconvolution was 0.002/0.0012; for inhibitory connec-
tions, the FP rates (with and without deconvolution) were 0.0004
(Fig. 4q). For the GLMCC method, the FP rates for the excitatory
connections with and without deconvolution were zero; for
inhibitory connections, deconvolution improved the FP rate from
0.0004 to zero (Fig. 4r). Overall, deconvolution improved
detection performance for the tails, median, and GLMCC
methods (p < 0.001, bootstrap test; Fig. 4t). Of all methods,
GLMCC with deconvolution yielded the highest f1 score
(mean [SEM]: 0.955 [0.004]). GLMCC without deconvolution
and median filtering with deconvolution yielded the second and
third scores (GLMCC: 0.94 [0.005]; median with deconvolution:
0.92 [0.006]; median: 0.90 [0.007]). Thus, deconvolution
improves connectivity estimation and detection even for
noisy CCHs.

Deconvolution improves connection quantification and
detection in networks of conductance-based CA1 model neu-
rons. The noisy point process simulations (Fig. 4) contained well-
defined ground truth rSTGs, and generated CCHs that exhibited
complex features and multiple types of spike-to-spike interac-
tions. However, the point process simulations were limited to
two-neuron “networks” with feedforward connectivity and may
not exhibit other features, produced in larger-scale networks with
reciprocally-connected neurons. To examine the contribution of
deconvolution in such settings, we conducted simulations of
noisy networks of conductance-based CA1 model neurons. In
these simulations, the excitatory neurons (E-cells) were modeled
using spiking models that allow incorporating graded bursting
behavior (Fig. 5a). Bursting was controlled by a “burst factor”
(BF) parameter, set to be between −42 mV (lower bursting
activity) and −35 mV (higher bursting activity). Inhibitory neu-
rons (I-cells) did not exhibit spontaneous bursting. In each
simulation, a hundred-neuron network was constructed by con-
necting 80 E-cells and 20 I-cells. Connectivity patterns were
implemented as often assumed for CA1, with E-to-I, I-to-E, and
I-to-I connections, but without E-to-E connections46. The E- and
I-cell ACHs produced under these conditions (Fig. 5b, c) are
similar to those observed for pyramidal cells (PYR) and inter-
neurons (INT) in real CA1 data (Fig. 6).

To focus on the contribution of deconvolution, we chose to use
a single timescale separation method from this point onward. Of
the STG-based methods, median filtering yielded the best
performance, with respect to both quantification (Fig. 4h) and
detection (Fig. 4t). Run times were tested on synthetic spike trains
with firing rates of 2 and 8 spk/s, recorded over 5 h. The median
[IQR] runtime of median filtering was 0.65 [0.64 0.67] ms, three
to four orders of magnitude faster than the runtime of PSP-based
methods (GLMCC: 3.72 [2.88 4.55] s; CoNNECT: 1.62 [1.54
1.69] s). These runtimes and performance made median filtering
our method of choice for evaluating the contribution of
deconvolution in biophysical simulations (Fig. 5) and in real
data (Fig. 6).

To investigate how burst spiking activity affects STG estima-
tion of pairs embedded in a neuronal network and whether
deconvolution can improve STG estimation, we first conducted
fixed-strength simulations. Every E-cell was connected randomly
to one I-cell with a fixed excitatory synaptic conductance
(Gie= 0.055 mS/cm2), and every I-cell was connected randomly
to one E-cell and to one other I-cell with a fixed inhibitory
conductance (Gei= 0.25 mS/cm2; Fig. 5d). Burstiness was
randomized. Although E-to-I connection strengths were the
same for all pairs, median filtering without deconvolution yielded
eSTGs which were highly affected by the BF (ρ=−0.68,
p < 0.001, permutation test; Fig. 5e). In contrast, median filtering
with deconvolution produced eSTGs that were not correlated
with burstiness (ρ=−0.18, p= 0.11, permutation test; Fig. 5f).
The ratio between eSTGs without and eSTGs with deconvolution
was close to one when BF was low (−42 mV) and gradually
decreased as BF increased (ρ= 0.891, p < 0.001, permutation test,
Fig. 5g). The eSTG ratio for the I-to-E connections showed a
similar trend, in which the eSTG ratio was negatively correlated
with the BF (ρ=−0.835, p < 0.001, permutation test; Fig. 5h).
Thus, even when connections have fixed strengths, the eSTGs
depend on burst spiking activity. However, dependency is
minimized using deconvolution.

To evaluate the contribution of deconvolution in a more
heterogenous setting, we generated networks of conductance-
based CA1 model neurons with varied connectivity strengths
(drawn randomly from log-normal distributions; Fig. 5i). Other
parameters were the same as in Fig. 5d–h. Over six hundred-
neuron networks, the mean [SEM] f1 score obtained with
deconvolution was 0.89 [0.008], higher than f1 without deconvo-
lution (0.84 [0.009]; p < 0.001, bootstrap test; Fig. 5j–m). In
addition to improved detection, deconvolution yielded eSTG
estimates which were higher than eSTG estimates without
deconvolution, especially when bursting was prevalent (Fig. 5n–s).
eSTG ratios for the E-to-I and I-to-E connections were negatively
correlated with BF (E-to-I: ρ=−0.88, p < 0.001, permutation test,
Fig. 5p; I-to-E: ρ=−0.837, p < 0.001; Fig. 5s). Thus, in synthetic
neuronal networks, deconvolution improves both the detection
and quantification of inter-neuronal connectivity.

In real neuronal data, deconvolution-based estimates of spike
transmission gain are especially higher when burst spiking is
prevalent. To test the contribution of deconvolution to the ana-
lysis of real neuronal data, we obtained data from freely-moving
mice. The dataset consisted of 1041 PYR and 215 INT recorded
using high-density silicon probes implanted in hippocampal
region CA1 of three mice (Fig. 6a). In these data, the median
[IQR] firing rates of PYR and INT were 0.90 [0.14 1.68] spk/s and
9.44 [1.04 17.83] spk/s, respectively (Fig. 6b). For quantifying
burst spiking activity of real spike trains, we used the “burst
index”. Burst indices were 0.28 [0.1 0.47] for PYR and −0.283
[−0.37 −0.19] for INT (Fig. 6c). In contrast to simulations,
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rSTGs are of course unknown for the real neuronal data.
Therefore, we tested the contribution of deconvolution by mea-
suring the eSTG ratio (without and with deconvolution) as a
function of the burst index. Only PYR-to-INT pairs with a con-
sistent monosynaptic CCH peak (p < 0.001, Poisson test), in
which the PYR exhibited a non-negative burst index, were ana-
lyzed (1274/7991 pairs). For the analysis pairs, firing rates of PYR
and INT were 0.96 [0.23 1.7] spk/s and 13.05 [5.27 20.91] spk/s,
respectively (Fig. 6b). Burst indices were 0.33 [0.18 0.49] for PYR
and −0.28 [−0.348 −0.219] for INT (Fig. 6c). For the analysis
pairs only, deconvolution-based eSTGs were consistently higher
than eSTGs without deconvolution (medians: 0.019 and 0.017,
respectively; p < 0.001, Wilcoxon’s paired signed-rank; Fig. 6d).

Thus, in pairs of real neurons with putative monosynaptic con-
nections, deconvolution yields higher eSTGs than eSTGs esti-
mated without deconvolution.

The higher eSTGs yielded by median filtering with deconvolu-
tion may result from a fixed DC shift or be burst-dependent. To
differentiate between these possibilities, we measured eSTG ratios
as a function of PYR burst index. To visualize the effect of
deconvolution, we chose several pairs of units (Fig. 6e, f) in which
the PYR exhibited burst spiking activity (Fig. 6e, insets). The
CCHs between the units exhibited prominent peaks within the
causal ROI (0 < τ ≤ 5 ms), consistent with monosynaptic con-
nectivity. In addition, the CCHs exhibited side lobes on both sides
of the main peak, consistent with PYR bursts (Fig. 6e). In

Fig. 5 Deconvolution improves connection quantification and detection in networks of conductance-based CA1 model neurons. a Traces show example
membrane potentials of six simultaneously-simulated cells. Gray, inhibitory neurons (I-cells); orange, excitatory neurons (E-cells), sorted according to
burstiness, quantified by the burst factor (BF). b, c Example ACHs and CCHs for two E-to-I cell pairs. b A pair with feedforward excitation
(Gie= 0.055mS/cm2, Gei= 0mS/cm2). c A pair with reciprocal excitation and inhibition (Gie= 0.055mS/cm2, Gei= 0.25mS/cm2). Both pairs were
embedded in the same hundred-cell network; in both cases, deconvolution increased the eSTGs. d–h A network of 100 neurons (80/20 E/I cells) with fixed
connectivity strengths was simulated. E-cell BFs were drawn uniformly from the [−42 −35] mV range. d Hinton diagram of network connectivity. Red/blue
squares represent excitatory/inhibitory connections, and square size is proportional to connectivity strength. Dashed lines separate E- and I-cells.
e, f eSTGs of n= 80 fixed E-to-I connections vs. BF using median filtering without (e) and with (f) deconvolution. Only eSTGs estimated without
deconvolution are correlated with the BF. g, h eSTG ratios for n= 80 E-to-I (g) and for n= 20 I-to-E (h) connections. i–s Six different hundred-neuron
networks were simulated with synaptic conductance values drawn randomly from log-normal distributions. Other details were the same as in (d–h).
i–k Hinton diagrams for one of the networks. l FP and FN rates were computed for all datasets using median filtering without (purple bars) and with
deconvolution (green bars). Fractions are out of a population of {Exc. FP: n= 59,520; Exc. FN: n= 480; Inh. FP: n= 59,760; Inh. FN: n= 240} connections.
Error bars depict SEM. m Mean f1 scores for all datasets and connection types. Error bars, SEM. n= 6 networks. p < 0.001, bootstrap test, n= 3500
iterations. n, o eSTGs for E-to-I connections plotted against true connectivity magnitude (the excitatory conductance, Gie). Colored dots depict n= 80
connections from the dataset shown in (i), and gray dots depict n= 400 connections from other datasets. The best linear fit (solid line) and Spearman’s
correlation coefficient are shown for the colored dots. p eSTG ratios for n= 480 E-to-I connections of all datasets. eSTG ratios are negatively correlated
with BF. q, r Same as n, o, for I-to-E connections. Colored dots depict n= 20 connections from the dataset shown in (i), and gray dots depict n= 100
connections from other datasets. s eSTG ratios for n= 120 I-to-E connections of all datasets. Ratios are negatively correlated with BF.
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contrast, the dcCCHs did not exhibit side lobes (Fig. 6f), and
deconvolution-based eSTGs were higher than eSTGs estimated
from the CCHs. Over 1274 pairs, eSTG ratios exhibited a negative
correlation with burst indices (ρ=−0.348; p < 0.001, permutation
test; Fig. 6g). Furthermore, most eSTG ratios were smaller than
one (median: 0.88; p < 0.001, Wilcoxon’s signed-rank test; Fig. 6g).
The negative correlation between eSTG ratio and burst index in
real neuronal data, and the fact that most eSTG ratios are smaller
than one, are consistent with the controlled simulations
(Figs. 3–5). Together, these observations suggest that deconvolu-
tion improves both the quantification and the detection of inter-
neuronal connections.

Discussion
We showed that the CCH between two neurons can be decom-
posed into a sum of three elements. Based on the mathematical
formulation, we developed a deconvolution-based algorithm that
removes second-order spike train statistics from the CCH,
improving connectivity quantification and detection. Using
pairwise point process and conductance-based network simula-
tions, we showed that burst spiking activity modifies the CCH,
impairing connectivity estimates yielded by several distinct
methods. Deconvolution removed the effect of burst spiking from
the CCH and recovered the constructed connectivity. In noisy
point process simulations with known STGs, deconvolution

reduced the errors of all STG-based methods, and improved
detection performance for the tails, median, and GLMCC
methods. In networks of conductance-based CA1 model neurons,
the eSTGs yielded by median filtering depended on burst spiking
activity, and this dependency was removed by deconvolution. In
real neuronal data recorded from CA1 region of freely-moving
mice, deconvolution-based eSTGs were consistently higher than
eSTGs without deconvolution, in particular when bursting was
prevalent. Together, the results imply increased accuracy upon
using deconvolution when analyzing real neuronal data.

Estimates of STG/PSP yielded by all methods employed (tails,
jitter, median, GLMCC, and CoNNECT) were averaged over time
and spike patterns. The underlying assumption was that the
ACHs and connectivity strengths are fixed over time. However,
previous studies have shown that the postsynaptic effect of a
presynaptic spike may depend on the presynaptic inter-spike
interval3,10,11 and on other parameters32,47. In vitro work showed
that synaptic transmission can exhibit short-term plasticity,
where the EPSP magnitude in a postsynaptic neuron is modified
according to the order and timing of presynaptic spikes48. In
some cases, EPSP magnitude decreased over consecutive spikes,
and in other cases consecutive spikes caused facilitation of EPSP
magnitude3,49. Consistent with the in vitro work, spike trans-
mission estimates derived from the CCH in vivo were distinct
when CCHs were computed using the first, second, or third spike
in a presynaptic burst21,32,50,51. Other in vivo studies used trial-
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Fig. 6 In real neuronal data, deconvolution-based estimates of spike transmission gain are especially higher in the presence of burst spiking activity.
a–c Data were recorded from hippocampal region CA1 of three freely-moving mice using high-density silicon probes. a Example wideband data (band-pass
filtered 0.1–7500Hz) recorded by two sites on the same shank, separated vertically by 60 μm. Orange and brown traces and tick marks correspond to PYR
and INT spikes, respectively. b Cumulative distributions of the firing rates of n= 1041 PYR and n= 215 INT (solid lines). Dashed lines show distributions of
n= 611 PYR and n= 152 INT used for further analyses (d, e). c Distributions of burst indices of the same four neuronal groups. d In PYR-to-INT pairs with
putative monosynaptic connections, STG estimates based on deconvolution are higher than estimates that employ only median filtering. Scatter plot shows
eSTGdc-median vs. eSTGmedian for all n= 7991 PYR-to-INT pairs in which both eSTGs were positive. PYR-to-INT pairs with a consistent monosynaptic CCH
peak, in which the PYR also exhibits a non-negative burst index, are denoted as “analysis pairs” (pink dots; n= 1274 pairs). For the analysis pairs, the
eSTGdc-median is higher than the eSTGmedian (p < 0.001, Wilcoxon’s paired signed-rank test). e Four example CCHs with the median predictor. Insets: The
ACHs of the putative presynaptic neurons, which exhibit burst spiking. f dcCCHs for the pairs in (e). Insets: Conditional rate (CR) histograms based on the
CCHs (purple) and the dcCCH (green). In all examples, the deconvolution-based eSTG is higher than the eSTG estimated without deconvolution. g eSTG
ratios for the full dataset (n= 1274 pairs), shown as a function of the presynaptic burst index. Deconvolution-based estimates are consistently higher than
estimates without deconvolution (p < 0.001, Wilcoxon’s signed-rank test). Estimates are particularly higher when spike bursting is more prevalent
(p < 0.001, permutation test).
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averaging and time-resolved cross-correlation measures, showing
that spike-to-spike correlations depend on the time lag relative to
a stimulus or an action32,47,52. As is, the deconvolution approach
presented here (as well as the timescale separation methods
employed) does not take into account time-dependent changes in
the auto-correlation (e.g., of bursting activity) and cannot esti-
mate time-dependent changes of spike transmission. However,
deconvolution together with a timescale separation method can
be applied to segmented data to track time-dependent changes in
spike transmission (as done in refs. 21,32,47,51,52), yielding esti-
mates differentiated from synchronous firing and burst spiking
activity.

We showed that deconvolution improves connectivity esti-
mates for bursting activity, but deconvolution can remove other
effects of second-order spike train statistics on the CCH. While
bursting is a relatively common deviation from Poisson spiking in
real spike trains, other deviations are clearly possible. For
instance, in some brain regions, strong periodicity is encountered,
for instance at the ripple53 or gamma54 range. When individual
neurons exhibit phase locking to field oscillations, the ACH may
exhibit periodicity54,55. Then, the CCH between connected neu-
rons will be affected by ACH periodicity. Deconvolution can be
used to differentiate between the effect of transmitted spikes and
the firing patterns of the presynaptic neuron. Thus, deconvolu-
tion can minimize the distortion of connectivity estimates and
improve the analysis of slower CCH features.

Following multiple technological advances, the capability to
record data from many neuronal pairs has drastically increased.
The temporal resolution of calcium imaging techniques has gra-
dually improved56–60. Furthermore, voltage imaging now allows
recording the activity of multiple neurons at sub-millisecond
temporal resolutions61,62. Large-scale electrophysiological tech-
niques have evolved to enable recording hundreds of spike trains
from the same or different brain areas simultaneously over pro-
longed durations63–65. Analyzing neural circuit dynamics based
on massively parallel spike timing data requires adequate quan-
tification of synaptic connectivity. In recent years, several analysis
methods have been introduced, producing increasingly more
accurate circuit maps based on multiple spike train recordings.
Deconvolution can improve the outcome of those methods, and
has the potential to improve the performance of any CCH-based
method. The accuracy and sensitivity improved by deconvolution
enables the construction of more accurate neuronal connectivity
maps which may include weaker or otherwise hidden connec-
tions. Detailed maps, which take into account overlooked con-
nectivity motifs, may enhance our understanding of the neural
mechanisms underlying brain function.

Methods
Conductance-based model of a leaky integrate and fire (LIF) neuron driven by
a Poisson train. To quantify the interplay between spike transmission gain (STG),
unitary EPSP (uEPSP) amplitude, and background activity we constructed a simple
conductance-based, leaky integrate and fire (LIF) model neuron with membrane
potential V2 driven by a Poisson spike train via a single excitatory synapse (LIF-syn
model). The model was governed by two differential equations and a single con-
dition:

C
dV2 tð Þ
dt
¼ I tð Þ � gL V2 tð Þ � EL

� �� gSSðtÞ V2 tð Þ � ES

� �þ gNη tð Þ ð4:1Þ

if V2 ≥V th;V2  V reset ð4:2Þ

dS tð Þ
dt
¼ H V1

� �
1� SðtÞð Þ=τr � SðtÞ=τd ð4:3Þ

We used C= 1 μF/cm2, gL= 0.5mS/cm2, EL=−60mV, gS∈ [0 0.032] mS/cm2,
ES= 0mV, gN= 1mS/cm2, Vth=−50mV, Vreset=−70mV, τr= 0.1ms, and
τd= 3ms. Membrane potential variability of the postsynaptic neuron, which may
stem from many unknown sources, was quantified in the LIF model by additive
Gaussian noise η(t) ~G(0,σ), with an SD that was varied between runs, σ∈ [0 5] mV.

Whenever a LIF spike occurred, V2 was held at Vpeak= 50mV for Tspike= 1ms
before being reset to Vreset for another ARP2− Tspike= 1ms.

Explicit external inputs to the model were a fixed bias current, I(t)= 1 μA/cm2

∀t, and a presynaptic spike train. The presynaptic spike train was generated as a
homogeneous Poisson process with λ1= 5 spk/s, and then spikes were decimated to
maintain a minimal inter-spike interval of 4 ms. Whenever a presynaptic spike
occurred, V1= Vpeak= 50 mV for Tspike= 1 ms; otherwise V1= EL=−60 mV. For
incorporating the presynaptic spike train in the synaptic differential equation, we
used H(V)= (1+ tanh(V/4))/2. Thus, whenever an isolated presynaptic spike
occurred, the synaptic variable S rose exponentially (with τr) toward one over 1 ms,
and then relaxed back to zero (with τd). Short-term synaptic plasticity (facilitation
and/or depression) was not included. The model was implemented using explicit
second-order Runge-Kutta endpoint numerical integration method with a time
step of Δt= 0.1 ms and total duration of Tsim= 180 min.

For constructing Fig. 1a, the LIF did not receive any explicit synaptic input
(gS= 0 mS/cm2), but σ∈ [0 5] mV was varied at 0.5 mV steps (11 levels). For every
σ level, six repetitions were performed. For constructing Fig. 1b, we also employed
11 levels of gS, matched to yield uEPSP amplitudes uEPSP∈ [0 2] mV at 0.2 mV
steps. For every {σ,uEPSP} combination, six repetitions were performed.

Quantification of spike transmission gain in the LIF-syn model. The firing rate
of the LIF, λ2, was determined by counting all spikes and dividing by Tsim.
Denoting the firing rate of the Poisson input by λ1, the “real” spike transmission
gain (rSTG) in the stationary scenario may be intuitively defined as the number of
spikes added due to the presence of a synapse, divided by the number of pre-
synaptic spikes, namely 4λ2=λ1 ¼ λsyn2 � λno�syn2

� �
=λ1. However, such computa-

tion is flawed since the addition of transmitted spikes occasionally decimates
spontaneous (noise-induced) spikes. In the case of a LIF model with an absolute
refractory period ARP2 and time step Δt, the exact rSTG is obtained by multiplying
the naive ratio by a correction factor that scales the firing rate difference by the
fraction of non-occupied bins:

rSTG ¼ λsyn2 � λno�syn2

λ1
1� λno�syn2 � ARP2 þ Δt

� �� �
: ð5Þ

Spike cross-correlation histograms. Denote two spike trains by s1 and s2. Each
train is a sum of delta functions recorded over a duration T and can be expressed as
s1 tð Þ ¼ ∑N1

i¼1δ t � ti
� �

; 80≤ ti ≤T and s2 tð Þ ¼ ∑N2
i¼1δ t � ti

� �
; 80≤ ti ≤T , respec-

tively. Then, the cross-correlation between the two trains at any time lag τ is
CC τð Þ ¼ R1

0 s1 tð Þs2 t þ τð Þdt. Equivalently, the spike trains can be expressed as
ordered lists: s1 ¼ ti; i ¼ 1; ¼ ;N1

� �
; 80≤ ti ≤T ; and s2 ¼ ri; i ¼ 1; ¼ ;N2

� �
;

80≤ ri ≤T . Then, the cross-correlation can be expressed as CC τð Þ ¼ ∑N1
i¼1 ∑

N2
j¼1#

ti � rj
� �

¼ τ
n o

, where the indicator function is defined as #{true}= 1 and

#{false}= 0. In practice, two spikes rarely occur at the exact same instant, and the
cross-correlation is expressed as a histogram with a finite bin size B and a total of
2M+ 1 bins, spanning the time range from −MB to MB. Then, the CCH count at
the mth bin (m 2 �M;�M þ 1; ¼ 0; ¼ ;M � 1;M½ �) sums the cross-correlation
over the time range m� 1=2

� �
B≤ τ< mþ 1=2

� �
B, and is expressed as CCH m½ � ¼

∑N1
i¼1 ∑

N2
j¼1# m� 1=2

� �
B≤ ti � rj

� �
< mþ 1=2
� �

B
n o

. Unless mentioned other-

wise, we used a bin size of B= 1 ms and histogram range of 2M+ 1= 61 ms. We
used a bin size of 1 ms to minimize the probability that two spikes of the same train
will occur in the same bin, keeping the counting process Poisson. A 1 ms bin size
has used in multiple extracellular22, intracellular2, and across species66 studies.
Furthermore, the CoNNECT method can operate only on CCH with bin size
of 1 ms.

“Other inputs” predictor. In this work we used four methods to estimate the
“other inputs” element of the CCH: the tails predictor, the jitter predictor, the
median filter predictor, and the slow part of a generalized linear model for cross-
correlations (GLMCC). The tails predictor is computed by averaging over all CCH
bins that are far from the zero-lag bin, both causal and anti-causal bins:

predtails m½ � ¼
1
K
∑
k
CCH k½ �; k ¼ �M;�M þ 1; ¼ ;�M0;M0; ¼ ;M � 1;M

� �
ð6:1Þ

The sum is over all K bins for which |k| ≥M0; we used M0= 11 ms. Therefore,
the tails predictor has the same value for all 2M+ 1 CCH bins (a straight line). The
jitter predictor is computed by convolving the CCH with a partially hollowed
Gaussian kernel:

predjitter m½ � ¼ ∑
3δ

k¼�3δ
CCH m� k½ �w k½ � ð6:2Þ

The Gaussian kernel, denoted as w[k], has a unity sum, standard deviation δ,
support of 6δ, and the central bin is partially hollowed (0.6). Unless noted
otherwise, we used δ= 5 ms. Jittering every spike within a rectangular ±δ window
centered around the spike (“spike time jitter”) many times and computing an
average jittered CCH converges exactly to the convolution of the CCH with a
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triangular window that has a width of 4δ+ 120. Convolution with a partially
hollowed Gaussian window with an SD of δ reduces the false-negative rate and
increases detection power20. The hollowed median filter predictor is computed by
applying a median filter of order 2δ over the CCH, while ignoring the value in the
central bin:

predmedian m½ � ¼ median CCH m� δ; ¼ ;m� 1;mþ 1; ¼mþ δ½ �ð Þ ð6:3Þ
The GLMCC predictor is given by the slow part, a(t), of the GLM defined by

refs. 40,41.

Conditional rate CCH and spike transmission curve. To estimate the spike
transmission curve (STC) from the CCH, we first compute the conditional rate
CCH (crCCH). The crCCH is derived by subtracting, for every time lag, the pre-
dictor from the CCH, and scaling by the number of trigger spikes and the bin size:

crCCH m½ � ¼ CCH m½ � � pred m½ �� �
= N1 � B
� � ð7Þ

Thus, the crCCH has units of spikes per second (spk/s). Second, we find the
extremum value of the crCCH within the casual temporal region of interest (ROI:
0 <m ≤ 5 ms). The two zero-crossing points, to the left and to the right of the
extremum value, are defined as bounds, BL and BR. To preserve causality, if BL falls
at the zero or a negative time lag, the first bin after the zero-lag bin is used instead.
However, BR may be outside (to the right of) the ROI. The STC is then defined as
equal to the crCCH for all bins within the [BL,BR] interval, and zero otherwise
(Fig. 1c).

The ROI can be modified according to the expected form of the STC, based on
two parameters: the delay and the jitter of spike transmission. When the
transmission delay is short and the STC is narrow, a short ROI near-zero lag is
suitable. Here, an ROI of (0,5] was chosen to ensure including at least part of the
monosynaptic STC, consistent with previous results in neocortex32 and
hippocampus exhibiting a transmission delay in the 0–3 ms range21,22,67,68.

Computation of spike transmission gain. The estimated spike transmission gain
(eSTG) is the integral over the STC, computed numerically as the sum of all
estimated STC values multiplied by the bin size:

eSTG ¼ ∑
BR

m¼BL

STC m½ � � B ð8Þ

Mathematical framework for deconvolved CCH. The deconvolution approach is
based on the realization that the CCH between two spike trains can be expressed as
an exact sum of four elements and approximated by a sum of three elements. The
decomposition (Eq. 17) is mathematically exact when the system is assumed to be
linear time invariant (LTI). “Linear” implies that the spike transmission process is
linear, but does not imply linearity of spike generation, which is a highly nonlinear
process. Linearity of spike transmission means that the process of transmitting
spikes is additive and does not depend on the history of spike transmission. Lin-
earity is incompatible with neuronal refractoriness, and is assumed for mathe-
matical simplicity. “Time invariant” implies that the impulse responses of spike
transmission—and in this specific case, also the ACHs—are constant over the
duration of the recording. These assumptions are implicit in the computation of
any CCH and in most CCH applications (see “Discussion”).

Within the LTI framework, we proceed as follows. The specific system studied is
a pair of reciprocally-coupled neurons, each of which also receives external input
(Fig. 2a). Formally, the observed spike train of neuron 1, s1, is a sum of delta
functions and thus has the form

s1 tð Þ ¼ ∑
N1

i¼1
δ t � ti
� �

; 80≤ ti ≤T ð9Þ

N1 is the total number of spikes in s1, ti is the instant at which the ith spike
occurred, and T is the total recording duration. The spike train of neuron 2, s2, is
defined in an analogous manner by s2 tð Þ ¼ ∑N2

i¼1δ t � ti
� �

; 80≤ ti ≤T . We denote
the finite impulse response of spike transmission from neuron 1 to neuron 2 by

h1 τð Þ;80 < τ ≤ τmax ð10:1Þ
The impulse response between neuron 2 and neuron 1, h2, is denoted in an

analogous manner by

h2 τð Þ;80 < τ ≤ τmax ð10:2Þ
Specifically, h1 and h2 are non-zero only for positive time lags, which is the

standard definition of causality. Using these definitions, the spike train of neuron 2,
s2, is the superposition of spikes from two sources: (i) transmitted spikes, due to s1
filtered by the synaptic connection between the two neurons, h1; and (ii)
background spikes, denoted by s02, which are due to other sources:

s2 tð Þ ¼ s02 tð Þ þ
Z 1
�1

s1 t � τð Þh1 τð Þdτ ð11Þ

The spike train of neuron 1, s1, can be expressed in an analogous manner. To
facilitate the analysis, we take the Fourier transform of all quantities, and obtain the

frequency domain representation of Eq. (11):

S2 f
� � ¼ S02 f

� �þ S1 f
� �

H1 f
� �

; ð12:1Þ
S2(f) is the Fourier transform of s2(t), S2ðf Þ ¼

R1
�1s2ðtÞexpð�2πiftÞdt. In an

analogous manner, we obtain the Fourier transform of s1:

S1 f
� � ¼ S01 f

� �þ S2 f
� �

H2 f
� � ð12:2Þ

Equation 12 consists of a pair of coupled equations, for which the solution is:

S1 f
� � ¼ S01 f

� �þ S02 f
� �

H2 f
� �

1�H1 f
� �

H2 f
� � ð13:1Þ

S2 f
� � ¼ S02 f

� �þ S01 f
� �

H1 f
� �

1�H1 f
� �

H2 f
� � ð13:2Þ

To link the CCH with the impulse response, the cross-correlation between the
two spike trains

CCH12 τð Þ ¼
Z 1
�1

s1 tð Þs2 t þ τð Þdt ð14:1Þ

is written in the frequency domain as

F CCH12

� � ¼ S1 f
� �

S2 f
� � ð14:2Þ

where S1 f
� �

denotes complex conjugation, due the fact that when computing
convolutions—but not cross-correlations—one of the signals is time reversed.
Plugging Eq. (13) into Eq. (14.2) we obtain

F CCH12

� � ¼
S01 f
� �

S02 f
� �þ S01 f

� �
S01 f
� �

H1 f
� �þ S02 f

� �
S02 f
� �

H2 f
� �þ S02 f

� �
S01 f
� �

H2 f
� �

H1 f
� �

1� H1 f
� �

H2 f
� ��� ��2 ð15Þ

The elements in the numerator of Eq. (15) can be rewritten in terms of
correlation functions of the latent (background) spike trains as follows:

CCH0
12 τð Þ ¼ S01 f

� �
S02 f
� � ¼ Z 1

�1
s01 tð Þs02 t þ τð Þdt ð16:1Þ

CCH0
21 τð Þ ¼ S02 f

� �
S01 f
� � ¼ Z 1

�1
s02 tð Þs01 t þ τð Þdt ð16:2Þ

ACH0
1 τð Þ ¼ S01 f

� �
S01 f
� � ¼ Z 1

�1
s01 tð Þs01 t þ τð Þdt ð16:3Þ

ACH0
2 τð Þ ¼ S02 f

� �
S02 f
� � ¼ Z 1

�1
s02 tð Þs02 t þ τð Þdt ð16:4Þ

Yielding

F CCH12

� � ¼
F CCH0

12

� �þF ACH0
1

� �
H1 f

� �þF ACH0
2

� �
H2 f

� �þF CCH0
21

� �
H2 f

� �
H1 f

� �
1�H1 f

� �
H2 f

� ��� ��2
ð17Þ

This completes the exact decomposition of the CCH into four additive elements
in the frequency domain. When the overall gain of the feedback loop is small, i.e.,
when H1(f)H2(f)→ 0, the last element and the denominator of Eq. (17) vanish, and
the Fourier transform of the CCH simplifies to

F CCH12

� �¼F CCH0
12

� �þF ACH0
1

� �
H1 f

� �þF ACH0
2

� �
H2 f

� � ð18:1Þ
Which is represented in the time domain as

CCH12 ¼ s01 ? s
0
2 þ ACH0

1 � h1 þ ACH0
2 � h2 �τð Þ ð18:2Þ

In Eq. (18.2), ⋆ denotes cross-correlation and * denotes convolution. We have
reached an important conclusion. When the overall gain of the feedback loop is
small, the cross-correlation between two spike trains can be expressed as a sum of
three elements: (1) the cross-correlation between the uncoupled spike trains; (2) the
convolution of the auto-correlation of one uncoupled spike train with the impulse
response of the coupling to the second train; and (3) the convolution of the auto-
correlation of the second uncoupled train with time-reversed coupling to the
first train.

The exact same derivation applies to inhibitory connections, the difference
being that the plus signs in Eq. (11) and Eq. (12) are replaced by minus signs. In the
absence of connectivity, Eq. (17) simplifies to CCH ¼ CCH0

12. Alternatively, in the

presence of purely feedforward connectivity, e.g., when H2 f
� �! 0, Eq. (17)

simplifies to

F CCH12

� �¼F CCH0
12

� �þF ACH0
1

� �
H1 f

� � ð19:1Þ
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Which is represented in the time domain as

CCH12 ¼ s01 ? s
0
2 þ ACH0

1 � h1 ð19:2Þ
In some systems, e.g., when neurons are strongly coupled69,70, the

approximation H1(f)H2(f)→ 0 cannot be made. In general, the approximation
H1(f)H2(f)→ 0 can be made when the loop gain (rSTG12 times rSTG21) is lower
than a minimal unidirectional STG, which can be detected with finite data. The
detection of a connection depends on multiple variables including recording
duration, firing rates, and the method employed. Therefore, an exact number for a
minimal detectable unidirectional STG cannot be obtained. However, in the
specific case of unidirectional connection with an impulse response spanning a
single bin and Poisson firing pattern of both neurons, the minimal detectable
unidirectional STG can be computed exactly using the tails predictor. Under these
conditions, the CCH baseline is20 λ= F1F2TB, where F1 and F2 are the firing rates
of the pre- and postsynaptic neurons in spk/s, T is the effective recording duration,
and B is the CCH bin width (both measured in seconds) For a given λ and alpha
(detection threshold) level, the inverse Poisson distribution can be used to obtain
the minimal number of transmitted spikes required for detection. The minimal
STG is then calculated as the minimal number of transmitted spikes, divided by
F1T . For example, the minimal STG which can be detected for F1= 1 spk/s,
F2= 10 spk/s, at T ¼ 50; 000 s using B ¼ 0:001 s, and an alpha level of 0.001 is
0.00142.

Algorithm for deconvolving ACHs from the CCH. In general, we do not have
access to the latent variables s01 and s02. In other words, we cannot determine which
spikes in a train, e.g., s2, are background spikes (e.g., s02), and which are transmitted
from s1 (Eq. 11). Thus, in general, ACH0

1 and ACH0
2 are unknown and Eq. 18

cannot be evaluated. However, if the number of transmitted spikes is small,
compared to background spikes, then the ACHs of the background trains can be
estimated from the measured spike trains:

ACH0
1 τð Þ � ACH1 τð Þ ¼

Z 1
0

s1 tð Þs1 t þ τð Þdt ð20:1Þ

ACH0
2 τð Þ � ACH2 τð Þ ¼

Z 1
0

s2 tð Þs2 t þ τð Þdt ð20:2Þ

Where the lower integration bound is 0 rather than −∞ due to the non-negativity
of the time axis. The CCH is estimated directly from the spike trains as in
Eq. (14.1), with the time axis modified in the same manner:

CCH12 τð Þ ¼
Z 1
0

s1 tð Þs2 t þ τð Þdt ð20:3Þ
Finally, we define

eH1 f
� � ¼ H1 f

� �
F ACH2

� � ð21:1Þ

e�H2 f
� � ¼ H2 f

� �
F ACH1

� � ð21:2Þ

Using these measurements (Eq. 20) and definitions (Eq. 21) in Eq. (18.1) and
rearranging, we obtain

eH1 f
� �þ e�H2 f

� �þ F CCH0
12

� �
F ACH1

� �
F ACH2

� � ¼ F CCH12

� �
F ACH1

� �
F ACH2

� � ð22Þ

Where the r.h.s. is derived from the observed spike trains. Taking the inverse
Fourier transform and defining the “other inputs” element as

OI ¼F�1
F CCH0

12

� �
F ACH1

� �
F ACH2

� �" #
ð23Þ

We obtain the basis of the deconvolution algorithm:

eh1 þ eh2 �τð Þ þOI ¼F�1
F CCH12

� �
F ACH1

� �
F ACH2

� �" #
ð24:1Þ

Due to causality (Eq. 10), h1 and h2(−τ) reside on opposite sides of the zero lag.
The r.h.s. of Eq. (24.1) is denoted the “deconvolved CCH” (dcCCH):

dcCCH12 ¼F�1
F CCH12

� �
F ACH1

� �
F ACH2

� �" #
ð24:2Þ

When unidirectional deconvolution is applied, Eqs. (24.1–2) can be replaced by:

h1 þOI ¼F�1
F CCH12

� �
F ACH1

� �" #
ð24:3Þ

dcCCH12 ¼F�1
F CCH12

� �
F ACH1

� �" #
ð24:4Þ

Once the dcCCH is determined numerically (see below), the “other inputs”
element can be determined using timescale separation (a predictor; Eq. 6).

Following subtraction and rescaling (Eq. 7), the STCs and the eSTGs (Eq. 8) are
evaluated.

The first step in the actual deconvolution algorithm is to compute the two count
ACHs and the CCH from the spike trains. The second step is to scale the ACHs,
such that each of the ACHs will have a sum of one. To scale the count ACH, the
zero-lag bin is first set to zero. Then, the mean is subtracted, every bin in the zero-
mean ACH is divided by the total number of spikes, and the zero-lag bin is set to
complement the sum to one. Scaling ensures that deconvolution will be affected
only by the shape of the ACHs, and not by the number of spikes in each train. If
the count ACH is exactly flat, the normalization yields a delta-like histogram (one
at zero-lag and zero everywhere else), and deconvolution does not modify the
CCH. Third, the r.h.s. of Eq. (24) is evaluated.

The deconvolution algorithm as derived above (Eq. 20–24) is based on Eq. 18,
but makes two key simplifying assumptions. First, that the shape of the ACH is not
considerably distorted by the transmitted spikes (Eq. 20). Second, the impulse
response is not considerably distorted by the divisive scaling factor inherent in the
derivation (Eq. 21).

With respect to Eq. 20, using point process simulations, we found that even
when the presynaptic neuron spikes at a relatively high rate (10 spk/s) with strong
bursting activity (BR= 0.4), and the postsynaptic neuron spikes at a lower rate
(3 spk/s), the estimates of connectivity are not distorted as long as the rSTG is
below 0.25. Notably, strong connections and high firing rates are not characteristic
of local cortical networks. However, different settings may appear in different
systems, e.g., thalamocortical feedforward connections28. When connectivity is very
strong and presynaptic firing rates are high, prior knowledge about connectivity
can be used to employ unidirectional deconvolution (Eq. 24.3–4) instead of the
“standard” deconvolution (Eqs. 24.1–2).

While ACHs effects are eliminated by the deconvolution algorithm, a divisive
scaling factor (the denominator of Eq. 21) is introduced which can distort the
recovered impulse responses. If connectivity is unidirectional and the postsynaptic
train is Poisson, the scaled ACH2 is a delta function, the divisive factor in Eq. (21.1) is
unity, and eh1 ¼ h1. Furthermore, if connectivity is unidirectional, then even if the
presynaptic train is non-Poisson, the numerator of the r.h.s. of Eq. (21.2) is zero and
thus h2= 0. When connectivity is bidirectional and one of the trains is non-Poisson,
or when connectivity is unidirectional and the postsynaptic train is non-Poisson, the
divisive factor may become consequential. Then, prior knowledge about connectivity
can be used to employ unidirectional deconvolution (Eq. 24.3–4).

Point process spike train simulations. For investigating different STG estimation
methods, we devised a point process simulation that generates two spike trains of a
two-neuron network with precisely defined STGs. Each of the synthetic spike
trains, s1(t) and s2(t), was initially generated by random sampling from a distinct
rate function, λ1(t) and λ2(t), respectively, and then spikes were added or removed
according to predetermined STCs. Thus, simulations consisted of three sequential
steps: (1) generation of a rate function for each neuron; (2) stochastic sampling of
spike trains, independently from each rate function; (3) modification of each spike
train according to the other spike train and the corresponding STC. All simulations
were generated over N= T/Δt samples, where Δt= 0.001 s is the time step and T is
the duration of the simulation.

To generate a rate function for one neuron, we first set a desired mean firing rate
λd which was then modified based on the desired gamma order γ and burst fraction
BR according to λm= λd ∙ γ/(1+ BR). For instance, for generating a spike train with
gamma order γ= 2 the firing rate is doubled, and for a spike train in which half of the
spikes are first spikes in a two-spike burst the firing rate is halved. For generating a
fixed rate function, we set λ(t)= λm ∀t∈ [1 N], separately for each neuron. To create
co-modulated spike trains, we generated correlated rate functions for the two neurons.
For that, the rate function of each neuron was time dependent, defined as:
λ(t)= λm+ λm ∙ λc (t). The co-modulation rate function λc is a clipped pink noise
signal, generated by filtering Gaussian white noise sampled at Δt intervals,
η(t) ~G(0,σc), with a decaying exponential e�1=τc , where τc= 20ms. The pink noise
was then clipped to the [−1 1] range, yielding the zero-mean λc(t). The same co-
modulation function was used for generating the two rate functions, λ1(t) and λ2(t).

In the second step, each spike train was generated by stochastic sampling from
the corresponding rate function. For each sample, we determined whether a spike
did or did not occur, according to random sampling from a Binomial distribution
with parameters B(n,p)= (1,λ(t)Δt). When λ(t) is time-varying or constant, the
resulting spike trains correspond to non-homogenous or homogenous Poisson
processes, respectively. After generating a spike train, three modifications were
made. First, spikes were removed according to the gamma order γ: to realize an
nth-order gamma process, every nth spike was retained, and all other spikes were
decimated. Retaining all spikes corresponds to a first-order gamma (i.e., Poisson)
process. Second, burst spiking activity was added by inserting spikes based on the
burst fraction (BR) parameter. For a non-zero BR, each spike was defined to be a
“first in burst” randomly with probability BR1. The precise timing of the “second in
burst” spike was determined by random (uniform) sampling from a 5-element
symmetric triangular window that lagged the first spike in the burst by two
samples. A “third in burst” spike was added with probability BR2; then, the overall
BR is BR1+ BR1∙BR2, and the timing of the third spike was drawn from a three-
sample lagged window. In actual simulations, BR1 was varied in the [0 0.4] range,
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whereas BR2= 0.4 was held constant. Third, ARP considerations were imposed by
removing all spikes that occurred shortly (ARP= 2 ms) after another spike.

In the third step, connectivity was added between the two spike trains. The
same STC waveform was used in all simulations: a 5-element asymmetric
triangular window that lagged the presynaptic spike by one sample. However, the
STC integral (the STG) was varied in sign and value, mimicking excitatory and
inhibitory connectivity of various gains. For each spike of the presynaptic neuron,
the occurrence and timing of the added (or decimated, for inhibitory connections)
spike was determined by random (uniform) sampling from the STC. For excitatory
transmission, this procedure can generate more than one postsynaptic spike, as
required since the STG is not limited to the [0 1] range. Connectivity was
implemented independently in every direction. After applying connectivity
between the two trains, ARP considerations were imposed once more.

For creating noisy point process simulations (Fig. 4), we simulated 1250 spike
train pairs. In 60% of the pairs, co-modulation dynamics were added. For the
simulations with co-modulation, the co-modulation parameter σc was drawn
randomly from a uniform distribution between 1 and 15 spk/s, with a fixed co-
modulation time constant (τc= 20 ms). The firing rates of the pre- and
postsynaptic neurons were 2 and 8 spk/s, respectively. The burst fraction of the
presynaptic neuron was varied uniformly between 0 and 0.4. Recording duration
was set randomly between 90 min and 5 h. Of the 1250 simulated pairs, 500 pairs
were simulated with monosynaptic excitatory connections; 500 pairs were
simulated with monosynaptic inhibitory connections; and the other 250 pairs were
simulated without connectivity. Connectivity strengths (rSTG) were drawn
randomly from a log-normal distribution43–45 with {mean, SD} of {0.019, 0.01} for
the excitatory connections, and {−0.014, 0.007} for the inhibitory connections.

Conductance-based model of CA1 network. To model synaptic connectivity
within a network of neurons with ACHs and CCHs resembling those observed in
real neuronal data (Fig. 6), we generated a network of conductance-based E- and
I-cells. The E-cell model, derived from the “simple model” of Izhikevich71, included
dynamics on the membrane potential (V), and a slower, phenomenological
recovery variable (u). In addition, the model included synaptic input and noise.
The model equations are:

C dV
dt ¼ Iein tð Þ þ Vk V � Ee

L

� �
V � Vt

� �� u� Isynaptic þ gNη tð Þ
du
dt ¼ Ua Ub V � Ee

L

� �� u
� �

if V > Vpeak thenV V reset ; u ¼ uþ U step

8><>: ð25Þ

Membrane potential variability, which may stem from many unknown sources
(e.g., unrecorded neurons), was modeled by an additive noise term, generated by
random sampling from a zero-mean Gaussian distribution η(t) ~N(0,σ)
independently for every cell. In this model, spike waveforms were modeled explicitly
by the quadratic in Eq. 25. Whenever a spike occurred (i.e., Vpeak was crossed), the
membrane potential V was reset to Vreset, and the recovery variable u was
incremented by Ustep. By modifying these two parameters, a given E-cell model was
tuned to fire predominantly single spikes, spike bursts, or mixes thereof (Fig. 5a). The
specific parameters values used for the E-cell model are detailed in Table 1.

For the I-cells, we used the Wang-Buzsáki model72, describing the dynamics of
the membrane potential (V), sodium inactivation (h), and delayed-rectifier
potassium (n). The full model also included synaptic currents and noise, and reads

C dV
dt ¼ Iiin tð Þ � gL V � Ei

L

� �� gNahm1 Vð Þ3 V � ENa

� �� gKn
4 V � EK

� �� Isynaptic þ η tð Þ þ gNη tð Þ
dh
dt ¼ h1 Vð Þ�h

τh Vð Þ
dn
dt ¼ n1 Vð Þ�n

τn Vð Þ

8>><>>:
ð26:1Þ

The gating variables for the I-cell (x= h,m,n) had voltage-dependent time
constants (τx) and steady-state values (x∞) as follows:

h1 Vð Þ ¼ 0:07e
� Vþ58ð Þ

20

0:07e
� Vþ58ð Þ

20 þ 1

1þe
� Vþ28ð Þ

10

; τh Vð Þ ¼ 0:2

0:07e
� Vþ58ð Þ

20 þ 1

1þe
� Vþ28ð Þ

10

ð26:2Þ

m1 Vð Þ ¼
0:2 Vþ35ð Þ
1�e

� Vþ35ð Þ
10

0:2 Vþ35ð Þ
1�e

� Vþ35ð Þ
10

þ 4e
� Vþ60ð Þ

18

ð26:3Þ

n1 Vð Þ ¼
0:01 Vþ34ð Þ
1�e

� Vþ34ð Þ
10

0:01 Vþ34ð Þ
1�e

� Vþ34ð Þ
10

þ 0:125e
� Vþ44ð Þ

80

; τn Vð Þ ¼ 0:2
0:01 Vþ34ð Þ
1�e

� Vþ34ð Þ
10

þ 0:125e
� Vþ44ð Þ

80

ð26:4Þ

Other parameters values used for the I-cell model are detailed in Table 2.
Synaptic connections were modeled as in ref. 73. For the e’th E-cell, the total
synaptic current was

Isynaptic;e ¼ ∑
Ne

j¼1
gejSej Ve � Ese;j

� �
þ ∑

Ni

k¼1
gekSek Ve � Esi;k

� �
ð27:1Þ

Where Ne (Ni) is the number of E-cells (I-cells). The notation gej indicates the
maximal synaptic conductance from presynaptic E-cell j to postsynaptic E-cell e.
All excitatory-to-excitatory (E-to-E) synapses had the same reversal potential,
regardless of the presynaptic neuron (Ese,j= Ese, ∀j), but the maximal excitatory
conductance value gej could vary between presynaptic neurons. In practice, we
set all gej= gee= 0. All inhibitory-to-excitatory (I-to-E) synapses had the same
reversal potential, regardless of the presynaptic neuron (Esi,k= Esi, ∀k). The
maximal inhibitory conductance gek was either fixed for all I-cells (gek= gei; Fig. 5d)
or varied between neurons (Fig. 5i). All synaptic activation variables corresponding
to the same presynaptic neuron had the same dynamics, regardless of the
postsynaptic neuron (Sej= Sj, Sek= Sk, ∀e). For the i’th I-cell, the total synaptic
current was modeled by

Isynaptic;i ¼ ∑
Ne

j¼1
gijSij Vi � Ese;j

� �
þ ∑

Ni

k¼1
gikSik Vi � Esi;k

� �
ð27:2Þ

All excitatory-to-inhibitory (E-to-I) synapses had the same reversal potential
(Ese,j= Ese, ∀j), but the maximal conductance values, gij, could be varied between
E-cells. All inhibitory-to-inhibitory (I-to-I) synapses had the same reversal
potential (Esi,k= Esi, ∀k), but the maximal conductance values gik could be varied
between I-cells. All synaptic activation variables corresponding to the same
presynaptic neuron had the same dynamics (Sij= Sj, Sik= Sk, ∀i).

For an excitatory/inhibitory presynaptic neuron, the dynamics of the
corresponding synaptic variable (Se/Si) depended on the presynaptic membrane
potential (Ve/Vi) and the synaptic rise and decay time constants, following:

dSe
dt
¼ H Ve

� � 1� Se
� �

τer
� Se

τed
ð28:1Þ

dSi
dt
¼ H Vi

� � 1� Si
� �

τir
� Si

τid
ð28:2Þ

H Vð Þ ¼ 1þ tanh V=4
� �� �

=2 ð28:3Þ
All synaptic parameters values used are detailed in Table 3. Numerical

integration was done using the explicit second-order Runge-Kutta endpoint
(modified Euler) method with integration time step of Δt= 0.025 ms and
simulation duration of Tsim= 240 min.

Table 1 Parameters used for modeling E-cells in the
conductance-based networks.

Parameter Value Units

C 1 μF/cm2

Vk 0.01 mS/(cm2·mV)
ELe −60 mV
Vt −45 mV
gN 1 mS/cm2

Ua 0.02 mS/cm2

Ub 0.01 mS/cm2

Vpeak 40 mV
Vreset [−42 −35] mS/cm2

Ustep [1.12 1.225] mV·mS/cm2

σe 2 mV
Iine 0 μA/cm2

Ne 80

Table 2 Parameters used for modeling I-cells in the
conductance-based networks.

Parameter Value Units

C 1 μF/cm2

gLi 0.1 mS/cm2

ELi −65 mV
gNai 35 mS/cm2

ENai 55 mV
gKi 9 mS/cm2

EKi −90 mV
gN 1 mS/cm2

σi 2 mV
Iini −0.75 μA/cm2

Ni 20
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Animals and ethics. Three freely-moving male C57BL/6J mice were used in this
study (Table 4). At the time of implantation, mice aged 14–16 weeks and weighed
26–30 g. After implantation, mice were single-housed to prevent damage to the
implanted apparatus. All animal handling procedures were in accordance with
Directive 2010/63/EU of the European Parliament, complied with Israeli Animal
Welfare Law (1994), and approved by the Tel Aviv University Institutional Animal
Care and Use Committee (IACUC #01-16-051).

Probes and surgery. Each animal was implanted with a multi-shank silicon probe
(Diagnostic Biochips) attached to a movable micro-drive. The probes used were
Stark64 (two mice) and Dual-sided64 (one mouse). The Stark64 probe consists of six
shanks, spaced horizontally 200 µm apart, with each shank consisting of 10–11
recording sites, spaced vertically 15 µm apart. The Dual-sided64 probe consists of two
dual-sided shanks, spaced horizontally 250 µm apart, with each shank consisting of 16
channels on each side (front and back), spaced vertically 20 µm apart. In all mice,
probes were implanted in the neocortex above the hippocampus (PA/LM, 1.6/
1.1mm) under isoflurane (1%) anesthesia38,74. After every recording session, the
probe was translated vertically downward by up to 70 µm. The recorded data included
only recordings from the CA1 pyramidal cell layer, recognized by the appearance of
multiple high-amplitude spiking units and iso-potential spontaneous ripple events.

Recording procedures. Neuronal activity was recorded in 4.4-h sessions (median
of 27 sessions; range, 3–12 h). Every session started with a baseline neural
recording of at least 15 min, while the animal was in the home cage or in a 0.8 m
diameter open field. After the baseline recordings, the animal ran on a linear track,
received optogenetic stimuli, or both, for a period of at least 60 min. Sessions ended
with another baseline period of at least 30 min. Only data recorded during spon-
taneous activity, in the lack of any optogenetic stimuli, were used in this work.

Spike detection and sorting. Neural activity was filtered, amplified, multiplexed,
digitized on the headstage (0.1–7500Hz, x192; 16 bits, 20 kHz; RHD2132 or
RHD2164, Intan Technologies), and recorded by an RHD2000 evaluation board
(Intan Technologies). Offline, spikes were detected and sorted into single units
automatically using either KlustaKwik375,76 or KiloSort277. Automatic spike sorting
was followed by manual adjustment of the clusters. Only well-isolated units were used
for further analyses (amplitude >40 µV; L-ratio <0.0578; ISI index <0.279). Units were
classified into putative pyramidal cells (PYR) or parvalbumin-immunoreactive [PV]-
like inhibitory interneurons (INT) using a Gaussian mixture model29.

Quantifying burst spiking activity. For quantifying burst spiking activity of real
spike trains, we used a “burst index”80. The precise definition employed was

burst index ¼ head�tail
headþtail, where head is the sum of all ACH counts in the 2 < τ ≤ 10ms

range, and tail is the sum of all ACH counts in the 35 < τ ≤ 50ms range.

Selection of a subset of data. For evaluating the contribution of deconvolution to
the analysis of real neuronal data, we used spike trains of units recorded from CA1
of three freely-moving mice during spontaneous activity. We denote PYR-to-INT
pairs for which both eSTGmedian and eSTGdc-median were positive as the “All pairs”
group (7991/9030 simultaneously-recorded PYR-INT pairs; Fig. 6d, blue dots). For
eSTG comparisons, we focused on a subset of pairs (the “Analysis pairs” group;
1274/7991 pairs; Fig. 6d, pink dots) composed of pairs which met four criteria. (1)
The trigger unit (PYR) exhibited a non-negative burst index (Fig. 6c). (2) An
excitatory connection was detected by the median filter with and without decon-
volution. (3) The ratio between eSTGmedian and eSTGdc-median was between 0.5 and
2 (28 pairs were excluded due to this criterion). (4) The total number of counts in
the count CCH (at the −30 < τ ≤ 30 range) was above 400 (5 pairs were excluded
due to this criterion).

Detection analysis. For quantifying detection performance of each method, we
first computed false-positive (FP) and false-negative (FN) rates for each type of
connection. For excitatory connections, the FP rate was defined as the number of
times in which the method detected an excitatory connection when no connection
was simulated, divided by the total number of tested connections (Nconn). The
excitatory FN rate was defined as the number of times in which an excitatory
connection was simulated but was not detected by the method, divided by Nconn.
For inhibitory connections, the FP rate was defined as the number of times in
which the method detected an inhibitory connection when no connection was
simulated, divided by Nconn. The inhibitory FN rate was defined as the number of
times in which an inhibitory connection was simulated but was not detected by the
method, divided by Nconn. Next, we computed the f1 score, defined as:

f 1 ¼
TP

TPþ 0:5ðFPþ FNÞ ð29Þ

Where TP is the true positive rate, which is defined as the number of times in
which a simulated connection (excitatory or inhibitory) was correctly detected by
the method, divided by Nconn. The FP and FN used in Eq. (29) are the sum of the
excitation and inhibition FP and FN rates: FP= FPexc+ FPinh and FN= FNexc+
FNinh, respectively.

To determine whether the f1 score of one group (group1) is consistently larger than
the f1 score of another group (group2), we devised a resampling with replacement
(bootstrap) test. For each resampled dataset, we first computed the f1 score for each
group, and then compared the two f1 scores. We repeated the process 3500 times. We
then counted the fraction of times for which group1 f1 score was smaller than group2 f1
score. Based on the resampled scores, we computed the mean and SEM.

Slope comparison. To determine whether the linear slope of one group (group1) is
consistently larger than the slope of another group (group2) we devised another, more
conservative bootstrap test. For each resampled dataset, we fitted a slope for each
group. We repeated the process 300 times, resulting in 300 different slopes for each
group and 90,000 slope pairs. We then counted the fraction of pairs for which group1
slope was smaller than group2 slope. Pairing slopes from different resampling iterations
provides a more conservative test than only pairing slopes from the same iteration.

Statistics and reproducibility. In all statistical tests used in this study, a significance
threshold of α= 0.05 was used. Two exceptions were the threshold used for deter-
mining whether two units exhibit monosynaptic connectivity, and the classifier used to
determine whether a unit is a PYR or an INT (α= 0.001). For Fig. 5m, reproducibility
was carried out across networks (Fig. 5m); for Fig. 6g, reproducibility was carried out
across animals (Table 4). All descriptive statistics (n, mean, median, range, IQR, SEM)
can be found in the results and figure legends. To examine whether a group median is
larger or smaller than an expected value, we used Wilcoxon’s signed-rank test (one-
tailed). Differences between two group medians were tested with Mann–Whitney’s U-

Table 4 List of experimental animals.

Animal ID Sex Agea [week] Weighta [g] Probe Sessions All
PYRb

All
INTb

Analysis
PYRc

Analysis
INTc

Analysis pairsc Rank
CCd

P-
valuee

mDS1 Male 14 25.7 Dual-
sided64

9 322 50 170 37 427 −0.19 0.0003

mP30 Male 14 28.6 Stark64 8 277 57 184 39 387 −0.3 0.0003
mP31 Male 16 30 Stark64 10 442 108 257 76 458 −0.09 0.0776
Summary 27 1041 215 611 152 1272 −0.35 0.0003

aAt the time of implantation.
b“All PYR” and “All INT” refer to the total numbers of well-isolated units recorded during the listed sessions.
c“Analysis PYR”, “Analysis INT”, and “Analysis pairs” refer to the subsets used for actual analyses (cf. Fig. 6b–d).
d“Rank CC” refers to Spearman’s rank correction coefficient between eSTG ratios and burst indices.
e“P-value” refers to permutation test comparing the rank CC to a zero null.

Table 3 Synaptic parameters used in simulating
conductance-based networks.

Parameter Value Units Notes

τre 0.1 ms AMPA
τde 3 ms AMPA
Ee 0 mV AMPA
τri 0.3 ms GABAA

τdi 9 ms GABAA

Ei −80 mV GABAA

gie 0.055 mS/cm2 Fig. 5i: mean: 0.055, SD: 0.02
gee 0 mS/cm2

gei 0.25 mS/cm2 Fig. 5i: mean: 0.22, SD: 0.08
gii 0.25 mS/cm2 Fig. 5i: mean: 0.22, SD: 0.04
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test for unpaired samples (two-tailed), or with Wilcoxon’s signed-rank paired test for
paired samples (two-tailed). Association between parameters was estimated with
Spearman’s rank correlation and tested using a permutation test.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The source data behind the graphs in the paper are available in Supplementary Data 1.
The data used in this study are available from the corresponding author upon reasonable
request.

Code availability
Code for implementing deconvolution and median filtering, along with example spike
data, are hosted publicly on GitHub, accessible via https://github.com/EranStarkLab/
CCH-deconvolution.
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