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Ultraviolet (UV) light is an important environmental trigger for systemic lupus

erythematosus (SLE) patients, yet the mechanisms by which UV light impacts disease

are not fully known. This review covers evidence in both human and murine systems

for the impacts of UV light on DNA damage, apoptosis, autoantigen exposure, cytokine

production, inflammatory cell recruitment, and systemic flare induction. In addition, the

role of the circadian clock is discussed. Evidence is compared in healthy individuals and

SLE patients as well as in wild-type and lupus-prone mice. Further research is needed

into the effects of UV light on cutaneous and systemic immune responses to understand

how to prevent UV-light mediated lupus flares.
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INTRODUCTION

Ultraviolet (UV) light is a pervasive environmental exposure with pleotropic effects on the
skin. Sensitivity to UV light is a shared feature of several autoimmune diseases, including
systemic and cutaneous lupus erythematosus (SLE and CLE, respectively), dermatomyositis,
and occasionally Sjögren’s syndrome. The reported frequency of photosensitivity reaches up to
93% in lupus patients, depending on the underlying disease pathology (1–3), is suggested to
be around 50% in dermatomyositis (4), and is poorly documented but reported anecdotally in
Sjögren’s syndrome. Patients with these disorders can manifest with varied skin reactions including
erythema, inflammatory lesions to moderate exposures, and severe skin inflammation and systemic
disease flares (especially in SLE) to larger exposures (5, 6). Despite the clinical acknowledgement
of photosensitivity, the mechanistic reasons for sensitivity to UV exposure remain unclear. In this
review, we discuss the effects of UV light on the skin in both human and murine systems and how
disease-associated changes may promote abnormal reactivity and increased inflammation to UV
exposure.

Human Healthy and Autoimmune Skin Responses to UV
UV light falls in the spectrum between visible light and gamma irradiation. UVA, UVB, and
UVC are divided based on wavelength (UVA = 400–320 nm; UVB = 320–280 nm; UVC = 280–
100 nm), with shorter wavelengths associated with higher energy effects. In general the longer
wavelengths, such as UVA, which has been shown to have therapeutic potential in SLE
patients (7–9), penetrate more deeply in the skin, reaching the dermis, whereas UVB is
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absorbed almost entirely by the keratinocytes of the epidermis
(10). UVC rarely reaches the skin as it is primarily absorbed by
atmospheric ozone. Following UV exposure, the keratinocytes
act as first responders, trigging inflammatory cytokine, and
chemokine production. If the UV exposure is substantial enough,
keratinocytes also undergo apoptosis.

UV-Induced DNA Damage and Apoptosis
UV exposure induces DNA damage, which can result in the
formation of dimeric photoproducts involving neighboring
pyrimidine bases (11–13). UV irradiation can also cause an
accumulation of reactive oxygen species (ROS) in keratinocytes
that results in oxidative damage to DNA, lipids, and proteins
and can ultimately induce apoptosis (11, 13–15). Of importance,
the oxidative damage to DNA bases can lead to formation
of 8-hydroxyguanosine (8-OHG) which has been shown to be
immunogenic in patients with lupus erythematosus (LE) and
abundantly present in UV-induced LE lesions (16–18).

DNA methylation is also altered by UV exposure, as several
groups have shown that UVB irradiation decreases DNA
methylation in CD4+ T cells of patients with SLE by inhibiting
the catalytic activity of DNA methyltransferase 1 (DNMT1)
(19–21). A positive correlation between the levels of DNMT1
expression and global DNA methylation is seen in SLE patients
suggesting that aberrant expression of this enzyme is involved
in these methylation changes (22). This suppression seems
to be mediated by the UVB-induced activation of the aryl
hydrocarbon receptor (AhR) which subsequently inhibits silent
mating type information regulation 2 homolog 1 (SIRT1) and
DNMT1 activity (21). SIRT1 and AhR have both been suggested
to be involved in the pathogenesis of lupus and may provide a
link between disease and photosensitivity (21, 23, 24). UV light
can cause formation of tryptophan photoproducts that are able
to act as AhR agonists (25). Furthermore, activation of AhR
correlates with cutaneous expression of interleukin-22 (IL-22),
a cytokine that, in the presence of IFNα, can activate STAT1
and upregulate CXCL9 and CXCL10 further contributing to
inflammation (24, 26).

High mobility group box 1 protein (HMGB1) is regulated by
UV exposure, and serves as a DNA binding protein that plays
a role in regulation of transcription. During instances of injury
or inflammation, activated macrophages, natural killer cells, and
dendritic cells can secrete HMGB1 to help coordinate immune
responses by recruiting leukocytes, augmenting production
of pro-inflammatory cytokines, and activating NFkB through
RAGE and Toll-like receptors (TLRs) (27). HMGB1 can also
be released by cells undergoing necrosis or apoptosis and
subsequently enhance inflammatory responses (27, 28). SLE
patients have increased levels of HMGB1 that correlate with both
levels of pro-inflammatory cytokines, including TNFα, IL-6, and
IL-1β, and disease activity (29, 30). Following UVB exposure,
HMGB1 is released from SLE keratinocytes at an increased rate
and in an apoptosis-related manner, which may thus contribute

Abbreviations: CLE, cutaneous lupus erythematosus; IFN, interferon; pDCs,
plasmacytoid dendritic cells; ROS, reactive oxygen species; SLE, systemic lupus
erythematosus; TLR, toll-like receptor; UV, ultraviolet.

to the development of UV-induced inflammation and lead to skin
lesion formation (31).

Following DNA damage, apoptosis is induced in
keratinocytes. Research has explored whether SLE patients
are more susceptible to this DNA damage. One study, which
used immunohistochemistry for cleaved caspase-3, found no
difference in epidermal apoptotic cells 24 h after 1x and 2x
minimal erythema UV dose in SLE patients (32). However,
others have identified increases in apoptotic bodies in the skin of
CLE patients after UV treatment when compared with control
skin (33). Another group identified increases in TUNEL staining
in SLE vs. control skin after UVB; this was also true when SLE
vs. normal keratinocytes were treated with UVB in vitro (34).
It is important to consider, however, that TUNEL staining may
represent other forms of cell death in addition to apoptosis
(35–38). CLE lesions themselves also demonstrate increased
TUNEL staining, which supports a cell-death phenotype in
lesions in vivo (39).

UV- Induced Autoantigen Exposure
UVB irradiation can result in the translocation of Ro/SSA and
La/SSB antigens from the nucleus and cytoplasm to the surface
of apoptotic human keratinocytes rendering them susceptible
to binding by their respective circulating autoantibodies (14,
40–42). Photosensitivity of patients correlates with both the
presence of anti-Ro and anti-La autoantibodies and the increased
expression of Ro/SSA and La/SSB in keratinocytes (43–46). Both
photoprovoked and spontaneous CLE lesions as well as UV-
irradiated patient-derived primary keratinocytes show increased
Ro52 expression (47).

Another autoantigen suggested to be involved in lupus is
interferon-inducible protein 16 (IFI16), a DNA binding protein
with diverse roles that is normally localized to the nucleus
(48). SLE patient serum often has high titers of anti-IFI16
antibodies, with one study finding these antibodies could be
detected in 29% of sera collected from 374 SLE patients
(49, 50). Upon UVB irradiation of keratinocytes, IFI16 is
redistributed to the cytoplasm and the extracellular space, leaving
it exposed for possible immune recognition by autoantibodies
and potentially contributing to the inflammatory environment
associated with photosensitivity (50). UVB has also been shown
to increase autoantibody binding to other autoantigens including
Sm, RNP, Ku, and ribosomal-P (51–53). In particular, anti-Sm
and anti-ribosomal-P antibodies are strongly associated with
photosensitivity and disease activity in lupus patients (53–55).

Following induction of apoptosis, reduced clearance of
apoptotic cells in lupus skin has also been suggested to contribute
to induction of inflammatory lesions, likely through increased
exposure to auto-antigens. Most studies support dysfunctional
and reduced phagocytosis in SLE patients, ultimately resulting
in reduced clearance of apoptotic cells (56–58). Part of
this phenotype may be regulated by UVB as HMGB1can
skew macrophage polarization toward an M1-like phenotype
diminishing their ability to phagocytose apoptotic cells (59).

Another mechanism regulating apoptotic clearance is
opsonization by complement. Homozygous deficiency of
complement proteins of the classical pathway is associated
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with SLE pathogenesis (60, 61). The strongest associations are
seen with proteins involved in the earliest steps of the pathway
including C1q and C4, with as many as 75–90% of patients
with a homozygous deficiency of these proteins reported to
have SLE or lupus-like disease (61). A study of Swedish SLE
patients found that 16% had homozygous C4A deficiency
and photosensitivity was more common among these patients
(62). Mechanisms of lupus risk associated with complement
deficiencies may be related to decreased apoptotic clearance. For
example, C1q binds to the nucleolus of cells undergoing UV-
induced apoptosis resulting in activation of C1r/C1s proteases
that under normal circumstances facilitate degradation of these
potential autoantigens (63–66). In addition, C1q provides anti-
inflammatory functions in macrophages (67) and suppresses type
I interferon (IFN) production (68, 69), an important component
of CLE lesions. Importantly, single nucleotide polymorphisms in
C2, particularly in Chinese SLE patients, are strongly associated
with photosensitivity among other clinical manifestations of
disease (70). These data indicate that defective complement
pathways resulting in deficient clearance of apoptotic cells
are likely involved in increased photosensitivity and lesion
development in lupus patients.

UV-Induced Inflammation
Cytokines
UV exposure may have repressive or activating functions on
cytokine production depending on the context. In normal
keratinocytes, UVB upregulates suppressor of cytokine signaling
(SOCS) 1 and 3 and downregulates activation of STAT1, resulting
in resistance to activation effects of IFN-γ (71, 72). Following
UVB exposure, cutaneous production of type I IFNs increases,
and this may have suppressive effects on inflammation via
upregulation of tristetraprolin (73). In addition, narrow-band
UVB treatment can be used as a treatment for some inflammatory
skin diseases, such as psoriasis, and can result in downregulation
of IL-17, IL-12, and IFN-regulated pathways (74, 75).

In patients with autoimmune diseases, however, UV light
may trigger inflammatory responses. This may be due in part
to chronic overexpression of type I IFNs. Increased levels of
type I IFNs found in SLE patients correlate with systemic
disease activity and severity (76). Further, circulating IFN
activity also correlates with cutaneous disease activity in CLE
patients (77). Supporting a role for type I IFN in SLE skin, a
recent trial of anifrolumab, which blocks type I IFN receptor
signaling, shows promise for improvement in CLE lesions
(78). At baseline, SLE patients demonstrate an increased IFN
signature in their “healthy” keratinocytes (79), likely mediated by
chronic overproduction of IFNκ (34, 80, 81). In the skin, type
I IFNs stimulate chemokine production and activate adaptive
immune responses (82). Indeed, supernatants from SLE>control
keratinocytes treated with UVB stimulate the activation of
dendritic cells in an IFN-dependent manner (34). Further IFN
gene expression in the epidermis correlates with upregulation
of the adhesion molecules E-selectin and ICAM-1 that enhance
T cell and macrophage recruitment into the skin (83–86). Type
I IFNs may also come from non-epithelial sources, including
plasmacytoid dendritic cells (pDCs: see below). Further, genomic

DNA from UV-irradiated epithelial cells can induce primary
human monocytes to secrete more IFNα than those exposed
to DNA from non-irradiated epithelial cells (18). This suggests
that a UV-induced modification of DNA is at least partially
responsible for upregulation of type I IFNs. Lending more
support to this idea, colocalization of 8-OHG and MxA, an IFN-
upregulated gene, is seen in the epidermis of UV-induced LE
lesions (18).

Integration of the 8-OHG and IFN response may occur via
stimulator of interferon genes (STING). STING coordinates
signals from cytoplasmic DNA sensors, and is negatively
regulated by the pro-autophagic protein unc-51-like kinase 1
(ULK1) (87). Upon UV-induced DNA damage, ULK1 stability
is disrupted by the loss of the activating molecule in Beclin-1-
regulated autophagy (AMBRA1) (88). The resulting increase in
STING activity causes activation of interferon regulatory factor
3 (IRF3), potentiating type I IFN secretion and exacerbating
autoimmunity in response to UV exposure (88).

Another contributor to skin interferons may be the lupus
band, which consists of nuclear debris, complement, DNA and
IgG and IGM autoantibodies and is induced by ultraviolet light
(89). Positive lupus band testing is found at the dermo-epidermal
junction in many systemic and cutaneous lupus patients (90, 91),
and its presence positively correlates with disease activity (92).
Because immune complexes stimulate IFNα production by pDCs
(93), and this is further positively regulated by inflammatory cells
present in lupus skin (94–96), UV-induced immune complexes
may contribute to photosensitive responses. In addition, immune
complexes stimulate inflammasome activation (97, 98) and
expansion of B cell subsets (99), which may amplify the
inflammatory response in the skin once started.

Elevated levels of pro-inflammatory cytokines, including
IL-6, TNFα, and IL-1β, in SLE patients are associated with
increased disease activity (100). UVB irradiation has been
shown to further increase levels of TNFα in normal human
keratinocytes, likely mediated through upregulation of IL-1α,
(101, 102). UVB exposure induces more IL-6 production from
SLE keratinocytes compared to those from healthy controls (81).
This difference is driven by increased production of type I
IFNs, as control keratinocytes treated with type I IFNs increase
their IL-6 production, while lupus keratinocytes treated with
type I IFN blockade have decreased IL-6 production (81). More
specifically, keratinocyte specific secretion of IFNκ increases
after UVB treatment of lupus keratinocytes and neutralization
of this type I IFN abrogates IL-6 production (81). Additionally,
increased IL-1β and TNFα expression promotes release of
inflammatory chemokines CCL5, CCL22, CXCL8, and CCL27
by epidermal keratinocytes and this may support leukocyte
recruitment, especially memory T cells, into the skin following
UV exposure (82).

Tumor necrosis factor- (TNF-) like weak inducer of apoptosis
(TWEAK) and its receptor fibroblast growth factor-inducible 14
(Fn14) play a role in modulation of inflammatory responses in
the skin by activating NFκB in keratinocytes (103). Activation
of the TWEAK-Fn14 signaling pathway is significantly increased
in lesional skin of SLE patients. Additionally, mRNA expression
of TWEAK, Fn14, and several genes turned on by this pathway
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FIGURE 1 | Summary of mechanisms of photosensitivity. In lupus, increased IFN kappa promotes UV-mediated apoptosis resulting in immune complex formation,

autoantigen exposure and release of numerous inflammatory cytokines and chemokines. Infiltration of inflammatory cells follows and is perpetuated by inhibition of

negative regulatory mechanisms. Pathways with evidence in both human and murine systems are shown in purple. Human only pathways are shown in blue, and

murine-specific pathways are shown in orange.

including CCL5, monocyte chemoattractant protein-1 (MCP-1)
and CXCL10 is higher in these lesions compared to healthy
controls (103). Overlap of Fn14 and Ro52 is observed in the
upper epidermis of lesional skin suggesting a possible role for
TWEAK-Fn14 activation in Ro-52 mediated photosensitivity
of CLE patients, similar to what has been observed in mouse
models (104).

Immune Cell Recruitment
UV exposure induces recruitment of innate and adaptive
immune cells to the skin. Neutrophils are one of the first cell
populations recruited to healthy skin after UV exposure. Once
present, they secrete IL-10 which provides immunosuppressant

effects (105). Intriguingly, in photosensitive disorders, such
as polymorphic light eruption, recruitment of neutrophils is
diminished and it is hypothesized that the immunosuppressive
functions of neutrophils are subsequently lost (106). Localized
O2 depletion by infiltrating neutrophils undergoing respiratory
bursts is important for resolution of mucosal inflammation;
therefore, loss of this hypoxic environment resulting from
decreased neutrophil recruitment may play a role in the
increased inflammation seen in lupus skin (107). In CLE lesions,
neutrophils have been shown to release neutrophil extracellular
traps “NETs” which may participate in tissue damage (108).
These NETs are interferonogenic and may contribute to pro-
inflammatory, IFN rich environment in lupus skin lesions (109).
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Neutrophils from SLE patients have a lowered ability to
produce ROS when compared with healthy controls and this
decrease correlates with disease severity (110). Polymorphisms
in Ncf1, a gene encoding a component of the NADPH
oxidase complex, are found in SLE patients and these are
associated with decreased ROS generation in neutrophils and
an increase in expression of type I IFN regulated genes (111).
It is not yet known if UV irradiation further affects the
capacity of lupus neutrophils to produce ROS. Additionally,
in MRL/lpr lupus-prone mice, treatment with MitoTEMPO, a
mitochondrial ROS scavenger, results in decreased neutrophil
NETosis, immune complex deposition in the kidney, and type I
IFN production; however, the effect in UV-irradiated skin is not
known (109).

PDCs are a subset of dendritic cell shown to accumulate
in cutaneous lupus lesions and locally produce IFNα (112).
UV triggers production of CXCL9, CXCL10, and CXCL11
chemokines that attract pDCs and other inflammatory
cells (82). Following UV exposure, pDCs accumulate at the
dermoepidermal junction to a greater extent in SLE patients vs.
healthy controls (80). Increased translocation of autoantigens
such as RNA and DNA fragments by UV can result in formation
of immune complexes that can subsequently be internalized via
FcγRII on pDCs, activate endosomal TLR7/9, and induce IFNα

production by the pDC (113–115). This initiates an amplification
loop in which IFNα further promotes chemokine and IFNκ

expression in the skin, recruiting additional leukocytes, and
furthering inflammation that contributes to cutaneous lesion
development (34, 82).

Mast cells may also be involved in UV responses in
the skin. The number of mast cells in CLE skin lesions is
significantly higher than in normal skin and even higher in sun-
exposed diseased skin compared to sun-protected diseased skin.
Recruitment of mast cells, which have been shown to produce
matrix metalloproteinases (MMPs), can be induced by IL-15
and CCL5 (116–119). MMPs are a family of enzymes secreted
by a variety of cell types that are known to play a crucial
role in processes ranging from tissue degradation and repair to
apoptosis and inflammation (120). Sera of lupus patients often
have elevated levels of several MMPs and lower levels of tissue
inhibitor of metalloproteinases (TIMP)-1 compared to healthy
controls (121–124). TIMP-1 is also shown to be downregulated in
LE skin lesions while TIMP-3, which may promote keratinocyte
apoptosis, is upregulated (125, 126). Together, this suggests
that UV light may promote mast cell recruitment and
MMP production that may be further exacerbated in lupus
skin (127).

T cells are also recruited after UVB exposure. Skin resident
T cells have a protective role in limiting DNA damage after
UVB exposure (128). UVB-mediated activation of regulatory T
cells may participate in immunosuppressive effects of UV light
(129). Intriguingly, a recent report suggests that T cells may have
innate photosensing abilities that discriminate the wavelength of
light and in turn modulate chemotactic responses (130). In lupus
patients, UV exposure results in accumulation of T cells at the
dermoepidermal junction during lesion onset and this infiltration
persists in later lesions (131, 132).

Circadian Clock and UV-Induced Skin
Inflammation
The circadian clock is a recently understood mechanism that
regulates many physiological processes including those of the
immune system. A recent study showed that circadian clock-
controlled cryptochromes (CRY) 1 and 2 are differentially
expressed in narrow band-UVB irradiated human skin with
lower levels of CRY2 associating with increased erythema (133).
It may be that CRY2 plays a role in protection against skin
damage caused by UV exposure (133). CRY2 is involved with
regulation of c-MYC degradation and, therefore, may abrogate
UV-induced keratinocyte apoptosis (134). It is intriguing to
surmise that pathogenesis and photosensitivity of SLE patients
may be partially explained by decreased CRY2 expression that
inhibits protection against UV, however, further studies will need
to be carried out to determine whether disease is associated with
differential cryptochrome expression. Studies in mice have also
suggested the circadian clock may be a contributing factor in
autoimmunity (135).

Wild Type and Autoimmune Murine Models
of UV Exposure
Although lupus patients experience sensitivity to UV exposure
and display both local and systemic flares, understanding the
mechanism is challenging due to variability between patients
(136). Thus, murine models are ideal for understanding the
mechanisms regulating both the local and systemic UV response
with the caveat that no one animal model will mimic every aspect
of human disease perfectly. Like in humans, UVA has shown
therapeutic effects for autoimmune conditions in mice (137).
However, most studies that examine the mechanism behind UV
damage utilize UVB; thus, mechanisms involved in local and
systemic response following UVB treatment will be reviewed
below.

UV-Induced DNA Damage and Apoptosis
Similar to humans, mice also exhibit increased apoptosis and
DNA damage in the skin after UVB exposure. In murine
skin, keratinocytes and fibroblasts are susceptible to UVB-
induced apoptosis (138–141). Both TLR and TWEAK-Fn14
signaling pathways have been shown to regulate this process.
TLR 4-MyD88 signaling pushes cells to undergo apoptotic vs.
necrotic cell death pathways after UVB exposure via caspase 3
activation, as mice deficient for either TLR4 or MyD88 display
increased necroptosis markers and TNFα production (142). The
TWEAK-Fn14 signaling pathway has also been investigated
in mice for its role in apoptosis, since Fn14 is upregulated
on keratinocytes following UVB exposure. Knockout (KO) of
Fn14 led to protection from UVB induced skin inflammation
(143), while the addition of TWEAK led to increased apoptosis
of keratinocytes from UV treated MRL/lpr mice (144). UV
exposure also led to increased DNA damage/release in both wild-
type mice and lupus-prone mice, though lupus-prone MRL/lpr
mice demonstrate increased susceptibility to UV-mediated DNA
release (145). This UV induced DNA damage may play a role
in lesion development, as TREX1 KO mice, which lack cytosolic
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DNase, develop lupus-like lesions (146). Further, UV-modified
DNA can induce CLE-like lesions when injected into the skin
of MRL/lpr mice (18). These data suggest a role for TLR and
TWEAK-Fn14 signaling in mediating increased apoptosis within
the skin of lupus-prone mice following UVB exposure. Also the
increased DNA damage following UVB exposure plays a part in
lesion development. Though DNA damage and apoptosis result
from UV irradiation, the differences between wild-type mice and
lupus-prone mice regarding mechanisms of immune activation
remains understudied.

UV-Induced Autoantigen Exposure
Exposure of autoantigens at the dermoepidermal junction also
occurs in lupus-prone mice following UVB treatment. One study
identified immune complexes and antibodies to desmoglein 3
at the dermoepidermal junction in NZB/NZW F1 mice exposed
to 500 mJ/cm2 UVB every other day (147). While production
of anti-Ro antibodies is rare in murine lupus models, UVB
induces similar externalization of the Ro autoantigen in mice.
Indeed, injection of Ro+ serum from patients with subacute
cutaneous lupus into Balb/c mice exposed to UVB results in
deposition of anti-Ro antibodies at the dermoepidermal junction
(148). Further studies should address the role of autoantibodies
in murine lupus models of UV-mediated skin inflammation.

UV-Induced Inflammation
Cytokines
Murine cytokine production after UVB is similar to that seen
in human skin: TNFα, IL-6, IL-1, IL-23, and type I IFNs are
all increased (139, 142, 149). Most of the cytokine induction is
fairly rapid: TNFα and IL-6 production occurs 8–24 h after UVB
exposure (150). However, data examining their role in UVB-
mediated changes remain limited. In lupus-prone mice, IFN-
regulated gene Ifi202 has a pro-inflammatory effect on apoptosis
following UVB stimulation (151), but in wild-type mice, IFNs
demonstrate a protective effect in the skin as mice lacking the
type I IFN receptor have greater inflammatory responses (152).
UVB induces colony-stimulating factor-1 (CSF1) which likely
enhances macrophage recruitment to the skin (153). Following
UVB, TNFα has a pro-inflammatory effect by increasing
apoptosis of keratinocytes (149, 154, 155). Though studies on the
role of IL-1 family members following UV exposure are limited,
mice transgenic for IL-1α demonstrate skin inflammation (156).
IL-6 −/− mice demonstrate decreased epidermal proliferation
after UVB and also decreased systemic IL-10, suggesting IL-6may
have both epidermal and immune regulatory functions (157). IL-
23 in wild-type mice has a protective effect on UVB-mediated
damage by reducing DNA damage and increasing T regulatory
cells (158); however the function of this cytokine has not
been examined in lupus-prone mice following UVB stimulation.
Intriguingly, neutralizing antibodies to IL-23 have a protective
effect in lupus-prone mice, which suggests a pro-inflammatory
function for this cytokine after UVB stimulation (159). Further
exploration into the role of these cytokines following UVB
exposure in wild-type and lupus-prone mice may yield novel data
for therapeutic development for photosensitivity.

Immune Cell Recruitment
Epidermal damage from UVB exposure results in upregulation
of chemokines and recruitment of neutrophils, monocytes,
macrophages, dendritic cells and T cells (140, 143, 160). The
dose of exposure regulates the inflammatory response. Hairless
mice exposed to low dose (20 mJ/cm2) UVB demonstrate
increased epidermal thickness but not inflammation. The
same mice exposed to a single high dose (400 mJ/cm2)
demonstrate neutrophil and macrophage recruitment (161).
C57BL/6 mice exposed to two doses of 500 mJ/cm2 of UVB also
demonstrate infiltration of pDCs within 24 h and macrophages
and neutrophils after 24–78 h (162). In wild-type mice, CD4+

T cells and CD8+ T cells exhibit pro-inflammatory functions
through production of IFNγ following UVB stimulation (160);
this inflammation is downregulated via induction of T regulatory
cells in the skin (163). IFNα-producing monocytes are recruited
to the skin in wild-type mice following UVB exposure, and
they also exhibit a negative regulatory effect on UVB-driven
inflammation via type I IFN-mediated pathways (152). Resident
Langerhans cells are essential to resolution of UVB induced
skin inflammation through their phagocytosis of apoptotic
keratinocytes (160) and through promotion of epidermal growth
factor receptor signaling (164); thus, they also exhibit an anti-
inflammatory role.

The effect of UVB in mice with a propensity for autoimmune
conditions is less well-studied. In lupus-prone MRL/lpr mice,
markers of neutrophil and macrophage infiltration are present
after UVB, but how this compares with wild-type mice was not
evaluated (143). Other studies have compared effects in lupus-
prone vs. wild type mice. Increased CD8+ and CD4+ cells were
noted inMRL/lpr vs. Balb/cmice after 2 and 6 days of 500mJ/cm2

UVB treatment (153). Production of chimerin and recruitment
of pDCs to the skin after UVB exposure is increased in MRL/lpr
vs. wild-type mice (162). Ex vivo irradiation of lymph nodes
from lupus-prone (both NZB/NZW F1 and MRL/lpr) vs. wild-
type mice exhibited greater upregulation of ICAM-1 and LFA-1,
which promotes migration of immune cells into the tissues (139).
These studies have generated a preliminary understanding of the
differential effects of UVB in lupus-prone vs. wild-type mice, but
additional research is needed.

UV-Induced Systemic Disease Flares
Anecdotal and case report data support a link between cutaneous
UVB exposure and induction of systemic disease flares in patients
(5, 6). This connection between the cutaneous and systemic
immune system has not been well characterized in human or
murine models [reviewed in (165)]. To date the main lupus-
prone mouse model that has demonstrated systemic responses to
UV is BXSB male mice, which carry an additional copy of TLR7
as part of the Yaa locus (166). In this strain, daily exposure to
400 mJ/cm2 full spectrum UV for 1 week resulted in 66% of mice
succumbing to death after 2 weeks. This level of irradiation did
not impair survival in Balb/c, MRL/lpr or (NZBxNZW)F1 mice.
Chronic exposure to 120 mJ/cm2 thrice weekly also resulted in
>85% lethality after 4 weeks of treatment in male BXSB mice.
Death in the male BXSB mice was accompanied by changes
consistent with lupus nephritis (166). Whether it is TLR7 driving
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this phenotype has not been elucidated, but stimulation of TLR7
in Balb/c mice with topical TLR7 agonist for 2 weeks followed
by UVB resulted in rising autoantibody titers compared to UVB
only-treatedmice (167), and TLR7 stimulation itself can promote
systemic disease flares(168). This suggests that TLR7 signaling
may have a role in UVB-mediated systemic immune activation.
However, epidermal damage itself may be sufficient to drive
lupus flares in lupus-prone mice (169), so the effects of UVB on
systemic immune activation may be multivariate.

Sensing of UVB-modified nucleic acids may contribute
to systemic flare development following UVB exposure. For
example, injection of UVB-induced apoptotic DNA in wild-type
and lupus-prone MRL/lpr mice led to development of lupus-
like characteristics such as increased dsDNA antibodies and
proteinuria (170, 171). Hypomethylation of DNA seems to be
important for this process (171). It is tempting to speculate that
these systemic effects may be secondary to STING activation
as UVB-modified DNA is resistant to degradation by TREX1
and is able to induce IFN responses and cutaneous lupus-
like lesions when injected into the ear of MRL/lpr mice (18).
Further exploration is needed to understand the role of UVB-
mediated DNA changes in driving systemic immune responses in
SLE.

SUMMARY

UV irradiation leads to a complex sequence of events in the
skin that generates varied inflammatory changes depending on
the target (summarized in Figure 1). UV exposure triggers ROS
production, DNA damage, and apoptosis that can result in
autoantigen translocation to the surface of keratinocytes where

they are exposed for immune recognition by autoantibodies.
Impaired or inflammatory clearance of these apoptotic cells in
SLE patients may occur due to decreased levels of complement
proteins and altered complement function. UV exposure
modifies DNA and also activates STING to increase production
of type I IFNs and other pro-inflammatory cytokines and
chemokines that promote leukocyte recruitment into the skin,
further enhancing disease progression and lesion formation.
While there is a growing body of knowledge regarding type I IFNs
and lupus, the specific sources of these IFNs in the skin as well
as the roles they play in processes such as UV-induced apoptosis
and immune system activation are yet to be fully understood.
Additionally, due to limited knowledge of the changes induced
in immune cell populations following UV exposure of lupus
patients and lupus-prone mice, further studies will need to
elucidate the specific mechanisms that may be at play.
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