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Reprogramming of regulatory network using
expression uncovers sex-specific gene regulation
in Drosophila

Yijie Wang', Dong-Yeon Cho', Hangnoh Lee?, Justin Fear?, Brian Oliver? & Teresa M. Przytycka® '

Gene regulatory networks (GRNs) describe regulatory relationships between transcription
factors (TFs) and their target genes. Computational methods to infer GRNs typically combine
evidence across different conditions to infer context-agnostic networks. We develop a
method, Network Reprogramming using EXpression (NetREX), that constructs a context-
specific GRN given context-specific expression data and a context-agnostic prior network.
NetREX remodels the prior network to obtain the topology that provides the best explanation
for expression data. Because NetREX utilizes prior network topology, we also develop
PriorBoost, a method that evaluates a prior network in terms of its consistency with the
expression data. We validate NetREX and PriorBoost using the “gold standard” E. coli GRN
from the DREAMS5 network inference challenge and apply them to construct sex-specific
Drosophila GRNs. NetREX constructed sex-specific Drosophila GRNs that, on all applied
measures, outperform networks obtained from other methods indicating that NetREX is an
important milestone toward building more accurate GRNSs.
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aintenance of cell type-specific states, response to stress,

sexual dimorphism, and other cell functions are con-

trolled by gene regulatory programs. In particular, gene
regulatory networks (GRNSs) capture the regulatory relationships
between transcription factors (TFs) and their target genes. Since
GRNs provide information that is essential for a global under-
standing of the logic of gene-gene interactions, inference of these
networks is one of the key challenges in system biology. Methods
to infer GRNs typically combine computational approaches and
experimental data collected from different sample types, different
conditions, different techniques, and different labs. Such data
integration leverages dependencies that can be confidently
uncovered thanks to the multitude of surveyed conditions, but
leads to context-agnostic wiring diagrams!=3. These context-
agnostic networks do not accommodate regulatory program
reality, which is specific to tissue types, developmental stages, sex,
and other factors.

To study tissue, developmental stage, or sex-specific gene
regulation, context-specific regulatory networks are needed.
Drosophila sex differentiation is an ideal test for such context-
dependent models, as sexual dimorphism results in subtle dif-
ferences in every germ layer and tissue?. Thus, models of sex-
biased expression will show many differences between the sexes,
but also a core of gene regulatory relationships that should be
similar between the sexes. The most readily accessible context-
specific data type is context-specific gene expression. Therefore a
spectrum of methods to construct GRNs from only gene
expression data have been developed, counting on the relation
between expression of TFs and expression of their target genes. In
recent years, many methods that infer GRNs based on gene
expression alone have been proposed. Early methods inferred
regulatory relationships using mutual information between the
expression levels of gene pairs®®. These approaches have been
followed by more sophisticated ones that account for more
complex regulatory scenarios’ 2. The recent DREAMS5 network
inference challenge!? evaluated over 30 expression-based network
inference methods and identified a random forest-based method,
GENIE3, as the best performer. However the results of this
challenge demonstrated that expression only methods are far
from solving the GRN network inference problem suggesting that
relying on expression only is not enough. One of the factors that
led to the limited success of these methods is the complicated
relationship between expression of TFs and their regulatory
activity'4, indicating that it might be beneficial to rely on the TF
regulatory activities inferred from the data rather than TF
expression per se. For example, network component analysis
(NCA) has been shown to be a successful approach to infer such
regulatory activities!®>. Unfortunately, NCA requires prior
knowledge of the GRN in order to infer TF activities but, in our
setting, the GRN is largely unknown. As a result of this difficulty,
effort has been extended to integrate prior knowledge from dif-
ferent types of experiments, or even from different conditions, to
provide additional ways to boost inference of such networks!®-21.
For example, the Inferelator?! method uses a prior network in
place of a true network as the input to the NCA procedure to
infer TF activities, and then predicts a GRN based on relation-
ships between the inferred TF activities and gene expression?!.

Here we introduce, NetREX, a method to construct GRNs by
iterative reprogramming of a prior network, given a prior net-
work and expression data. In applications to predict context-
specific GRNs, the prior network is assumed to reflect a prior
information that might not be context specific, while the
expression data provide the context. NetREX can be applied to
any situation where a prior network is to be improved by
expression data. The main idea of NetREX is to reprogram the
prior network by adding and removing edges to obtain a network

that provides the best explanation of the observed gene expres-
sion. Simultaneously, NetREX optimizes several other objectives
to ensure that the resulting network is biologically relevant.
NetREX is an approach that systematically explores the landscape
of possible GRN topologies to generate context-specific GRNS.

NetREX, and all other models that use a prior, assume that
there is some similarity/overlap between the prior network and
the target GRN, and thus these tools bias the optimization pro-
cedure toward networks that overlap with the prior. Therefore, in
the case of significant discrepancies between the prior and the
target network, the prior might be misleading rather than helpful.
To address this challenge we developed PriorBoost—a compu-
tational approach to gauge the usefulness of the prior network for
obtaining a good estimation of the target GRN.

We validated NetREX and PriorBoost—first on simulated data
and then on the “gold standard” E. coli GRN used in the
DREAMS5!3 challenge. As an additional evaluation, we compare
how well the methods predicted novel regulatory edges that have
been added to the E. coli RegulonDB?? after the DREAMS5 chal-
lenge. NetREX outperforms other methods on different metrics.
Additionally, PriorBoost successfully identifies priors that are
likely to lead to misleading results.

We then apply NetREX and PriorBoost to construct sex-
specific GRNs for adult Drosophila melanogaster using a pre-
viously constructed context-agnostic network as the prior?. We
supply a large expression dataset for adult female and male flies
where perturbations in expression were achieved by hetero-
zygosity for multi-locus deletions?324 to NetREX to generate the
sex-specific GRNs. We evaluate the performance by evaluating
the subnetwork centered on the sex-specific transcription factor
Doublesex (DSX), which is the key gene controlling, directly or
indirectly, the majority of sex differentiation in Drosophila®®. DSX
occupancy in D. melanogaster, and the comparative genomics of
DSX binding motifs in the Drosophila genus have been exten-
sively mapped to provide a good test of connectivity predicted by
NetREX. Furthermore, we illustrate that, among all competing
methods, only DSX targets predicted by NetREX are enriched in
genes with sex-biased expression. Finally, we demonstrate that
while GRNs inferred by NetREX show differences between the
sexes, their regulatory programs overlapped, consistent with the
similarities between the sexes.

Results
NetREX and PriorBoost overview. The main idea of NetREX is
to construct a context-specific GRN by leveraging an existing
GRN—for example a GRN constructed in a related tissue or
organism, or a noisy/incomplete network for the same context.
The context of interest is provided by a set of expression data.
NetREX edits the prior network by removing and adding edges to
obtain a network topology that provides the best explanation for
the entirety of the expression data. To accomplish this, NetREX
requires four components: (i) a measure of how well a network
topology explains the expression data, (ii) a strategy for exploring
biologically relevant network topologies, (iii) an algorithmic
technique guaranteeing convergence of the network search pro-
cedure, and (iv) a method to test whether the given prior is
consistent with the data and likely to provide an advance over
prior-free methods. Below we provide basic intuition underlying
these four components. The details of the method and its
mathematical underpinning are described in Methods section.
To measure how well a given network’s topology explains the
expression data, we needed to have a mathematical model linking
network topology to gene expression. NetREX uses the network
component analysis (NCA) model?® (Supplementary Figure 1),
which assumes that each TF is characterized by its activity (TF
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Fig. 1 Schematic outline of NetREX using a simulated example with 3 TFs, 6 target genes and their expression measurements

activity), a variable that is not directly measured but introduced
to account for unknown factors, such as protein levels, nuclear
localization, and phosphorylation status. In addition, in the NCA
model, each edge of the GRN has a weight representing
regulatory potential (or strength) with which the TF regulates
the gene. Finally, the expression of a gene is assumed to be a
linear combination of the activities of TFs that regulate the gene,
weighted by regulatory potentials of the regulatory edges
(Supplementary Figure 1). To measure how well network’s
topology explains the expression data, NetREX measures the
fitness of the consistency of the given topology with the
expression data using the optimal NCA model. Despite the fact
that this model is relatively simple (Discussion), we verified the
efficacy showing that computed explanatory power correlates
with the number of “gold standard” edges in the E. coli GRN
(Supplementary Figure 2), motivating our use of this metrics as a
measure of the relationship of network topology to expression
data.

Starting from the prior NetREX iteratively reprograms it by
adding and removing edges giving preferences to topologies
where co-expressed genes are coregulated and TFs with correlated
activities coregulate the same genes (Fig. 1 and Methods) and
penalizing the number of changes (see Methods and Supplemen-
tary Methods: The Formulation of NetREX)

Computationally, NetREX is formulated as an optimization
problem with J, norm involved, making the problem non-convex
and NP hard. We addressed this challenge by using a new cutting
edge technique known as proximal alternative linearized max-
imization (PALM)?’ as described in Supplementary Methods:
Optimization Behind the NetREX Algorithm.

NetREX is a prior-based method, and therefore performance
critically depends on the prior. To avoid erroneous solutions due
to a poor prior, we developed PriorBoost, to evaluate the
usefulness of a prior network for the task of reconstructing a GRN
consistent with a given expression dataset (Methods).

Benchmarking NetREX. While benchmarking against a true
network is ideal, no current GRNs are perfect. Therefore, we first
tested the performance of NetREX on simulated data. Overall
NetREX solution provided a consistent improvement over the
initial prior and the improvement increased with less noise in the
expression and/or a higher fraction of true positive edges in the
prior (Supplementary Figure 3).

Next, to see how the method can handle a situation of non-
random error in the prior network we simulated the scenario
where the prior is consistent with the true network in most cases
except one truly differential module of genes. NetREX performed
very well even in the case when all true edges leading to the

module have been removed from the prior (Supplementary
Figure 4).

Complementing benchmarking the method on simulated data,
we evaluated NetREX on currently the most complete GRN?2, the
E. coli network. Following the strategy used in the DREAMS5
challenge*, we used the same experimentally validated high-
confidence interactions from the curated dataset RegulonDB?? as
a reasonable “gold standard” set and the same expression data
that was provided to the DREAMS5 competitors. We evaluated the
ability of NetREX to recover this “gold standard” network as a
function of the quality of the prior. As in the case of simulated
data, we constructed prior networks of various quality by
randomly selecting a subset of edges from the “gold standard”
network as true positives and randomly adding false positive
edges. We compared NetREX with Inferelator?!, MERLIN+P20,
and CoRegNet’, all of which use a prior network (see parameters
selection in Supplementary Note 6). In addition, we included
Genie3!!—the best performer in the DREAMS5 challenge that
uses expression data only (no prior). We varied the difficulty of
the network inference problem by using prior networks generated
in two ways. The first set of noisy prior networks had the same
number of total edges, but different percentages of true edges. The
second set of noisy priors had the same number of true edges, but
different numbers of total edges which are controlled by the ratio
of true to false edges. We assessed the quality of the predicted
networks by AUPR (the Area Under the Precision vs. Recall
curve) scores. The results using AUROC (Area Under the
Receiver Operator Characteristics curve) are similar and provided
in (Supplementary Tables 1 and 3). Except for the case when the
prior network contained only 10% of true edges (Fig. 2a-c) and
no true edges (ratio of true to false edges is 0:1 in Fig. 2d-f),
NetREX outperformed all other methods under most test
conditions. Genie3 outperformed all other methods when the
prior network contained very low percentage of true edges
(Fig. 2a, b, d, e), which is consistent with the expectation that if
the prior is a poor match, the algorithms not using that prior gain
an advantage. Performance of MERLIN+P was overall not
significantly influenced by the quality of a prior and close to the
performance of GENIE3. Interestingly NetREX was the only
method that provided a consistent improvement over the
provided prior (curves of NetREX in Fig. 2a, d are always above
the curves of the prior). When the prior contained >60% correct
edges, the network constructed by Inferelator’s was actually worse
than the prior network provided as the input. In this aspect, we
attribute the superior performance of NetREX in part to the fact
that it gives preference to the solutions that are close to the prior.
We also tested the impact of sample size on method’s
performance. NetREX provides improvement over the prior with
as little as 10 samples and the performance continues to steeply
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Fig. 2 Comparison of network inference methods based on E. coli data. a The performance measured in terms of AUPR as a function of the percentage of
true edges in the prior. The total number of edges in the prior networks is fixed and equal to the number of edges in the “gold standard” set. b Recovery of
the novel TF-gene interactions (x-axis same as a). ¢ PriorBoost scores (x-axis same as a). For each box in the boxplot, the central mark (white line)
indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. d-f Same as a-c but when the total
number of true edges is fixed and equal to half of the number of “gold standard” edges

increase with sample size and plateaus around 100 samples
(Supplementary Figure 7).

Even if the E. coli GRN is currently the most complete network,
it is not perfect. Therefore we performed additional validations,
using new data. Specifically, we acquired 230 novel high-
confidence interactions from RegulonDB??> (Methods) that we
added to the dataset RegulonDB?? after the DREAMS5 challenge
was completed, and thus not included in the “gold standard” set.
We then tested whether those novel edges were uncovered by
competing algorithms (using the -log(p-value) from hypergeo-
metric test that is used to compute the enrichment of novel edges
in the set of total novel edges found by the algorithms). Again,
except for the case of the lowest quality prior (CoRegNet has the
best performance in predicting novel edges for the lowest quality
prior), NetREX outperformed other methods (see Supplementary
Tables 5 and 6).

Finally, we used E. coli network to validate our PriorBoost
scoring system. Due to the dependence on the prior, NetREX, or
any other model that uses a prior, could be mislead by a prior that
is mostly wrong. This is observed in Fig. 2, where when the prior
network had 90% false negatives (the very left points in Fig. 2a),
both NetREX and Inferelator perform badly. To evaluate the prior
network in the absence of “gold standard” truth, PriorBoost
applies the above described theoretical model on E. coli data

(given expression and priors). Figure 2c and f shows the
robustness of PriorBoost scores for the perturbed prior networks
(used by NetREX, Inferelator, MERLIN+P, and CoRegNet for
Fig. 2a, b, d, e) with different noise levels. As demonstrated in
Fig. 2¢, f, PriorBoost scores correlate with the quality of the prior.
In addition, a negative PriorBoost score correctly identified a
situation when NetREX cannot improve over Genie3.

Reconstruction of Drosophila sex-specific GRNs. We applied
NetREX and PriorBoost to construct sex-specific female and male
GRNs for Drosophila. The adult female and male gene expression
data were obtained from a large collection of expression profiles
(99 lines of flies, with females and males profiled separately in
replicates) that were perturbed by altering gene dose?3?“. This
dataset provides a relatively large number of related samples that
also have broad variability in gene expression patterns due to
gene dosage alteration. Specifically, the dataset is derived from
engineered chromosomal deletions each of which leads to dele-
tion of one of the two copies of a block of genes from different
regions. Because all these deletions are heterozygous (viable and
fertile in this state), there are not secondary (and worse) effects
due to defects in development. All the flies are morphologically
wild type. As demonstrated in refs. 232% the expression changes
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Fig. 3 Estimating the usefulness of the prior network for the task of inferring sex-specific GRNs for Drosophila. The relevance of a prior network is estimated
by PriorBoost scores where negative score indicate that the prior might be misleading. As an additional test we used PPl score which evaluates the
topology of a network independently of its relation to expression data. When the PriorBoost scores are positive, PPl scores of NetREX are higher than
GENIE3. For each box in the boxplot, the central mark (black line) indicates the median, and the bottom and top edges of the box indicate the 25th and 75th

percentiles, respectively

caused by these genetic perturbations propagate and dissipate in
gene network space, making this an ideal set for expression-based
network reconstruction. Specifically, while transcriptional effects
are perturbed, the underlying GRN is unbroken. These sig-
nificantly perturbed expression profiles explore the expression
space for the whole genome, as collectively essentially all genes
show differential expression in at least one deletion. In addition,
our estimates suggests that this set of ~100 experiments per sex
(each in two biological replicates) is a sufficiently large dataset for
NetREX to perform exceptionally well (Supplementary Note 4).
For the prior network, we used a previously constructed conext-
agnostic network?. This network was constructed through inte-
grating diverse functional genomics datasets in a supervised
learning framework. Since much of the evidence used for the
construction of this network was based on experiments per-
formed on tissue culture cells, which shows significantly different
expression patterns relative to sexed adult flies, it was clear that
extensive rewiring would be required to constructing adult sex-
specific networks. The prior networks for female and male are
basically the same and correspond to the network predicted in
refs. 3031, However, genes that were not expressed were removed
from the prior. Since the set of non-expressed genes in females
and males is not exactly the same, this introduces a subtle dif-
ference between the two priors (Supplementary Table 7). To test
the validity of using this prior for adult sex-specific networks, we
first used PriorBoost to test the consistency of the prior GRN with
female and male gene expression data. PriorBoost score was
positive for female expression data indicating an informative
prior, but was low for the male data (Fig. 3).

As an indirect way to evaluate the topology of a network, we
used protein-protein interaction (PPI) scores and gene ontology
(GO) scores (Methods)?. Starting with the assumption that
coregulated genes are more likely to belong to the same pathway,
these scores measure enrichment in PPIs and consistency of GO
annotations of coregulated genes. While these scores do not
measure correctness of the network, they provide a coherency
estimate to determine whether the network topology has expected
network properties. We revised these scoring functions relative to
their original definition (Methods) and show, using the E. coli
network, which revised scores have improved correlation with
network quality (Supplementary Figure 5). We used these scores
to gauge the quality of NetREX and Genie3 networks under the
same cutoffs (e.g., top 50,000, 100,000, 150,000... weighted

edges). Consistent with PriorBoost scores, the networks produced
by NetREX had very high scores for the female networks but
relatively low scores for male networks (Fig. 3 for PPI scores and
Supplementary Tables 8-10 for GO scores).

The good performance for females was gratifying, but the poor
performance of the prior for males was unsurprising, as several
lines of evidence indicate that the organizational principles of the
regulatory program of the testis is unique3>33-43. The Drosophila
testis has a radically different gene expression machinery
compared to any other tissue32333>. There are probably several
causes of this special gene expression profile. Given that little of
this unique “TF free” expression program (see Supplementary
Note 3 for further discussion of this issue) was represented in the
prior, this was a reassuring test for PriorBoost. If the poor
performance of the prior for the male-specific GRN was indeed
due to the peculiar nature of testis gene expression, then
removing testis-biased expression should improve the prior
performance. Indeed, the PriorBoost score for the prior network
of the remaining genes was positive, and thus we used this
network as a prior for reconstructing a male-specific GRN
without genes highly expressed in testis. The resulting network
showed also a good performance, as measured by PPI scores
(Fig. 3). In the remaining analysis, to avoid any bias, we did not
include genes highly expressed in testis (for males) or ovary (for
female). The female-specific and male-specific GRNs constructed
by NetREX are provided in Supplementary Data 1 and
Supplementary Data 2.

To validate the resulting GRNs, we measured the overlap of the
predicted targets of the key transcription factor for controlling the
majority of sex-biased expression in flies, doublesex (DSX), with
the identified targets from a combination of occupancy, binding
motif, and comparative genomics?®. Neither DSX occupancy, nor
DSX binding sites were included in the prior. The expression data
resulting from direct perturbation of DSX activity was not used
either. Since the prior network is based largely on embryos and
tissue culture cells, not surprisingly, it contained only three of the
thousands of predicted DSX targets. Therefore the performance of
the method on predicting the DSX targets is particularly
informative. NetREX was able to identify, with high precision,
hundreds of these independently verified target genes (Fig. 4a, b).
In particular, the top 100 NetREX predictions had 72 verified
targets (the highest of all sets listed in Fig. 4c) as compared to
MERLIN+P and Genie3 that predicted 52 and 66 verified targets
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Fig. 4 Validation of predicted DXS targets (predicted without genes highly expressed in ovary). a Enrichment of experimentally supported DSX targets
recovered by different methods for female GRN. Enrichment for male GRN without testis is shown in Supplementary Table 11. b Precision-recall curves for
predicting DSX targets for compared methods. The DSX targets predicted by each method are ranked by assigned weights. A high area under the curve
corresponds to high precision (low false positive rate) and high recall (low false negative rate). As the ground truth we use DSX targets reported in ref. 30
based on ChiP-Seq occupancy and conserved motif scores. € Top 100 targets predicted by NetREX in the female GRN. d Enrichment of predicted DSX
targets in genes with sex-biased expression for the female GRN. Different methods might predict different number of regulators for each gene. To fairly
compare those GRNs we take for each method the k-best (k = 20) predictions for each gene. Comparison of other ks is shown in Supplementary Figure 8b.
e Enrichment of DSX targets in sex differentially expressed genes by GSEA (Gene Set Enrichment Analysis)

in their top 100 predictions, respectively. Inferotaltor inferred Supplementary Note 4). When we asked what genes were
only three interactions. Overall, NetREX clearly outperformed predicted to be DSX targets in the predicted GRNs, we found
other approaches on this test. that there were significantly more genes with sex-biased

For an additional validation, we utilized the fact that, since expression** among those predictions in the NetREX models
DSX controls sexual development, the targets of DSX are expected  (hypergeometric test in Fig. 4d; gene set enrichment analysis in
to be enriched in genes that are differentially expressed between Fig. 4e). The other tested GRNs failed to show a significant
females and males, even though not all DSX targets are sex- enrichment for sex-biased gene expression among the predicted
specifically expressed at any given time in development?®. To test ~DSX targets. These data indicated that NetREX can successfully
for the enrichment, and to avoid any confounding due to using predict gene expression patterns in a novel experimental dataset.
the same expression dataset used to generate the network models As yet another test, we evaluated similarities between the
for the validation, we obtained a second dataset of sex-biased female and male GRNs. There are 505,548 and 293,458 edges
expression from GEO Series accession number GSE99574 predicted by NetREX for female and male GRNs. We found that
(96 samples from GSM2647254 to GSM2647349) and used it to 149,462 edges are common to the female and male GRNs. Of
identify genes with sex-biased expression (details in these, 136,404 are included in the prior and 13,058 edges were
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a
In male GRN In female GRN ANB = {@ }
- OEEEE)
Jaccard index between A and B
__ANB _ 2 _ 0.4
AUB
b Comparison on Jaccard index for DiffSexExp and not DiffSexExp genes
avg)Jaccard Index) avg(Jaccard Index)
(not DiffSexExp genes) (DiffSexExp genes)
5 NetREX 0.3087 £ 0.1876 0.2286 + 0.1884
&
g Inferelator 0.0321 £ 0.1489 0.0864 + 0.2510
©
@ MERLIN+P 0.0186 + 0.0536 0.0297 + 0.0538
No prior Genie3 0.1866 + 0.0462 0.1913 + 0.0421

Fig. 5 Evaluation of similarities of female and male GRNSs. a lllustration of the method to compute the similarity of regulatory program in female and male
GRNs for a fixed gene (Jaccard index). b Testing the similarity of the inferred regulatory programs in female and male GRN using all predicted edges.
DiffSexExp genes are defined using independent data (details in Supplementary Note 4). The spread of the Jaccard indexes is their standard deviation

newly predicted. While many differences between the GRNs exist,
these networks are expected to be related, as there is also much in
common between female and male adult Drosophila, and there
are many genes that do not show, or show only modest, sex-
biased expression. We measured the similarity of regulatory
programs by comparing for each gene the agreement between TFs
predicted to regulate that gene in the female and male GRNs
(Fig. 5a). Thus, we separately evaluated consistency of regulatory
programs on sex-biased gene expression and on non-sex-biased
expression (Fig. 5b). Female and male GRNSs inferred by NetREX
show overall good consistency between their regulatory programs
(Jaccard index above 0.2 in all sets) (Fig. 5b). This is in contrast to
the other methods where the average intersection/union (Jaccard
indexes) in all the tests are much smaller. Thus, NetREX shows an
outstanding improvement in identifying common aspects of gene
expression among the sexes. Furthermore, accounting for
imperfections in the GRN network prediction, we still expect
that genes that are not sex differentially expressed between male
and female have higher similarity of regulatory interactions than
genes that show sex-specific expression. This is indeed what we
found in Fig. 5b. The average Jaccard index for non-sex
differentially expressed genes are much larger than the average
Jaccard index for sex differentially expressed genes.

Discussion

Gene regulation is context dependent. Gene regulatory networks
depend on tissue, sex, developmental stages, and disease status
among many other conditions. Ultimately, every cell type at any
given time has a slightly different network than spatially or
temporally neighboring cells. Clearly, universal network models
will fail to capture this complexity. But, capturing this regulatory
complexity is essential for elucidating the differences between
regulatory networks in healthy and disease states, during devel-
opment, and essentially any other biological condition. Thus,
context-specific models are fundamental for understanding global
regulatory mechanisms. However, direct measurement and
modeling of context-dependent GRNs is a tremendous challenge,
as a human, for example, is composed of roughly 37 trillion
cells®. Despite advances in single cell genomics, inferring GRNs
for each organism/tissue/cell/condition separately through

accumulation of huge numbers of condition-specific measure-
ments is, and is likely to remain, impractical. We need methods
that can leverage a smaller number of prior networks. For
example a reference GRN for Drosophila melanogaster might
provide information about GRNs for related species, and wild-
type models of specific Drosophila tissues and stages might
inform the changes that occur when those networks are perturbed
by mutations and/or environmental conditions. In this way, a
context-agnostic network provides a good first approximation
prior for the wiring diagram of a context-specific network that
explains developmental progression or disease. Gene expression
information is currently one of the most easily accessible context-
specific data types. Therefore, it is important to be able to utilize
this data, along with the prior knowledge, for construction of
context-specific GRNs. To address this need, we introduced here
a GRN inference method—NetREX. The unique property of
NetREX is that starting from a prior network, it utilizes expres-
sion data to interactively remodel a new network that converges
on the observed expression patterns by adding and removing
edges. The fact that NetREX explores the network space around a
prior network gives us a unique advantage when the target net-
work is at least marginally similar to the prior network. The
evaluation of the method on E.coli network suggested that
NetREX outperforms other methods when the overlap between
prior and target network is ~20%. In addition it is the only
method that continues to improve over the prior network even
when this network is already quite good. In addition, NetREX
performs very well on novel experimental datasets both in terms
of predicting independently validated interactions and in terms of
network consistency. For all these reasons, NetREX is a significant
milestone in development of context-dependent network models
from a limited set of adaptable reference networks.

While poor network models might someday be rare, currently
many prior networks will have such poor quality that rewriting is
futile, or can even degrade the performance of the model. In those
cases, one would want to start from a model that does not use a
prior. In the last decade, a significant effort has been devoted to
prior-less construction of GRNs from gene expression alone.
Thus, it is important to have a method to evaluate the trade-off
between prior-based and prior-free approaches. To address this
challenge, we introduced PriorBoost; a method allowing a
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researcher to quantitatively gauge whether a given prior is helpful
in the context of constructing a context-specific network model
from a given expression dataset. We demonstrated that Prior-
Boost was valuable for evaluating the context-agnostic networks
as a possible prior for constructing both E. coli, and sex-specific
Drosophila GRNs, and used this method to show that a prior for
males was inappropriate when unusual testis-specific expression
was used. By using PriorBoost we could eliminate ad hoc
decision-making on the utility of prior models.

Several new methodological advancements introduced in this
work contributed to the success of NetREX. These contributions
include the design of the objective function which, in addition to
evaluating the fit of the network, favors a network search toward
biologically relevant topologies. However, since adding and
removing of edges proceeds in discrete steps, the function opti-
mized by NetREX is not continuous. Typical way of dealing with
this issue is to convert the function to a continuous one (in this
case by replacing [, norm which is discrete by /; norm which is
continuous) and use standard optimization techniques on so
modified problem even if it is not equivalent to the original one.
An additional contribution of this work is the development of
mathematical underpinnings allowing us to guarantee con-
vergence of NetREX search by utilizing the cutting edge PALM
optimization framework?’. The applicability of these algorithmic
advances, especially convergence of calculations that include I,
norm, has broader applications to diverse feature selection
approaches*6:47,

A key feature of NetREX is the ability to score the quality of
network topology given expression data, in absence of the ground
truth. For this purpose, NetREX utilizes the NCA model. This
model is based on the assumption that gene expression can be
modeled as a linear combination of activities of regulating TF,
which is an oversimplification, but might approach the truth.
Engineered gene expression modules in Drosophila show that TFs
and enhancers act in a largely additive fashion as simple input/
output devices*®,

While it was remarkable that, in the case of E. coli, NetREX was
able to improve over a network that was that already 80% or more
correct, the ultimate test for a GRN is to use it to make biological
predictions. We not only used NetREX to construct the first sex-
specific regulatory networks for Drosophila, but we demonstrated
that NetREX outperformed networks obtained with alternative
methods. For example, NetREX identified Darkener of abricot
(Doa) locus as female target of DSX. The Doa locus encodes a
kinase that is a positive feedback regulator of the DSX pre-mRNA
splicing event that generates female-specific DSX TF4%*0, We also
provide methods to avoid inappropriate application of NetREX.
PriorBost allowed us to directly determine whether a prior was
suitable for rewriting a context-agnostic network, as demon-
strated for accommodating unusual testis gene expression reg-
ulation due to specialized basal transcriptional machinery.

Overall our results show that NetREX is a very powerful
method for integrating prior knowledge and expression data for
reconstructing context-specific GRNs. While NetREX strongly
relies on the initial prior, however by utilizing introduced here
PriorBoost technique, it avoids using an inappropriate prior and
being mislead by it.

Methods

NetREX. In contrast to most of the previous methods that rely on the predictive
power of the mRNA level of the TF (which might not reflect the cellular activity of
the TF°!), NetREX reconstructs a GRN based on unknown TF activities A. NetREX
simultaneously estimates unknown TF activities A and rewires the prior network
Gy until the structure of the rewired network S and the predicted TF activities A
optimally explain the context-specific expression data E based on the linear rela-
tionship described as E(i,:) = 3, S(i, /) x A(j,:) + I'(i, ), where E(i, :) represents
expression of gene i, S(i, j) represents the interaction between TF j and gene i and

its regulatory potential, A(j, :) is the TF activity of TF j, and I'(i, :) represents the
noise. Therefore, NetREX is formulated as an optimization problem (1) that aims
to find the optimal linear model with several additional terms controlled by A, «, 7,
&, p designed to enforce important properties of the target regulatory network as
described below.

min} |[E — SA|F+A(ISollo= 1S © Sllg+[1Sy © Slly) + tr(S"LS)

1S, [l +ENSIE+ull A2 )
st]ISlo < a, Al < b.

where § is the adjacency matrix of network G that is the output of NetREX. |- ||o,
|| . " mand || . || - are Iy, Frobenius, and infinity norms, respectively. The ||- | o norm
computes the number of non-zero elements in the matrix of interest. More
mathematical details about the formulation can be found in Supplementary
Methods.

The term controlled by A restricts the number of edge changes from the prior
network (Supplementary Methods: The Formulation of NetREX). Larger A
indicates that only small number of edges can be added and removed controlling
how far our predicted network G is from the prior network G,. The term controlled
by « (the graph embedding term>2) encourages related genes encoded in gene-gene
network GF to be coregulated by the same TFs (Supplementary Methods: The
Formulation of NetREX). Here GE is the gene correlation network constructed
based on gene expression data E and L is the corresponding Laplacian matrix. The
terms controlled by parameters # and &, which we call the [, elastic net, encourage
sparsity of the final network with group effect (Supplementary Methods: The
Formulation of NetREX). For the reader familiar with the elastic net model, we
point out that the I, elastic net is analogous to /; elastic net>>. Notably, the graph
embedding and I, elastic net only encourages edges with certain property but does
not remove edges. NetREX only removes edges if it finds TFs whose activities can
better explain the expression of gene(s) other than the TFs in the prior network.
Finally, the last term controlled by the variable y enforces smoothness of activities
in A by limiting the number of elements in A reaching the limit {—b,b}. The
strategy of selecting parameters for NetREX is discussed in (Supplementary
Note 6).

The optimization problem (1) with given parameters can be solved by using the
Proximal Alternative Linearized Maximization (PALM) algorithm?” which
guarantees convergence (Supplementary Methods: Optimization Behind the
NetREX Algorithm). The output of the PALM algorithm, A and S, are the
estimated TF activities and the predicted context-specific GRN, respectively. We
can rank the edges in S by their confidence score B that measures their impacts on
the overall performance of the linear model'® (Supplementary Methods: Ranking
Interactions and Bootstrapping).

G, )~ Sy S A, ;)Hi
IEG,:) — S(i, :)Allf

B(ij) =1 - @

To further improve the inference and make it more robust against overfitting
and sampling errors, we use a bootstrapping strategy, where we resample the gene
expression data with replacement and solve the problem (1) on the new dataset.
This procedure is repeated several times, and the resulting lists of edges are
combined to a final ranked list as in ref. >*. For reconstruction of GRNs in a new
context, where we do not have any ground truth information, different parameters
are applied and the final ranking of the edges are obtained by consensus over the
results under different parameters® (Supplementary Methods: Model Selection of
NetREX). Parameter settings of NetREX for all experiments are elaborated in
(Supplementary Note 6).

Efficiency and scalability are important for utility. NetREX needs to store the
expression data and the prior network, therefore, the space complexity of NetREX
is O(NL+NM), where N is the number of genes, L is the number of samples, and M
is the number of TFs. Based on Algorithm 1 (Supplementary Methods:
Optimization Behind the NetREX Algorithm), the heaviest computation in each
iteration of NetREX is to compute the partial derivatives of the objective function,
indicating that the time complexity of NetREX in each iteration is O(NML).
Therefore, the overall time complexity of NetREX is O(CNML), where C is the
number of iterations that NetREX takes in a run. Both the space and time
complexities scale linearly with respect to the number of samples L.

PriorBoost. The assessment of the prior network suitability is based on two ideas.
First, the quality of any network G can be estimated by the consistency between the
structure of the network and the expression data. Such consistency is validated in E.
coli data (Supplementary Methods: The PriorBoost Score and Supplementary
Figure 2) and can be computed by the following equation.

q(G) := min [[E — SAz. (3)

S € G means that the non-zero pattern of S is conserved to the structure induced
by G. Actually, equation (3) is the original formulation of NCA2¢ and q(G) is the
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optimal objective function value after solving NCA. Second, if a prior network is
consistent with the given expression data, the network predicted by a prior-based
method should be better than the network inferred by an expression-based method.
The expression-based method we used here is Genie3, which was the winner of the
DREAM4°* and DREAMS5!3 challenges.

Specifically, suppose we have a prior network G, and expression data E. G is the
network predicted using both expression E and the prior Gy, and G is the network
predicted by Genie3 using only expression E. Let G and G, be networks obtained by
keeping the top ¢ edges in G” and G based on their edge weights, respectively. Then,
the PriorBoost score for the prior network G, can be estimated by

Q(Gs) = 5 Y (G~ a(G). @

where C is a set of different cutoffs. Positive Q(G,) indicates that the network
predicted using E and G, is more consistent with the expression data E than the
network predicted by Genie3. A positive Q(Gy) also implies that the prior network
is informative, while a negative Q(G,) indicates the opposite.

Novel TF-gene interactions for E. coli. In addition to the 2066 TF-gene inter-
actions used in DREAMS5 challenge, we identified 230 additional interactions that
were discovered after DREAM5 from RegulonDB 9.2 (version 09-08-2016)%2. We
utilized these 230 interactions to test the ability of each method to predict novel
interactions.

The PPl score. One way to validate a GRN is to test whether physically interacting
genes are preferentially coregulated. Here we introduce and validate a modification
of the previously proposed score based on this idea. We consider two genes are
coregulated if the Jaccard similarity coefficient between the TF set regulating the
first gene and the TF set regulating the second gene is >0.5. The Jaccard similarity
coefficient between two sets is the ratio of the size of the intersection of the given
two sets to the size of the union of these two sets. Our measure is based on the
following hypergeometric test. Suppose that there are N PPIs among M gene pairs,
and there are m coregulated gene pairs in the predicted network with » having
PPIs. The p-value is the probability of selecting more than n PPIs when we choose
m gene pairs at random. The PPI score is defined as —log;o(p-value). We tested the
PPI scores on simulated E. coli GRN with different noise levels that are controlled
by the percentage of true edges and the ratio of true to false edges. We found that
the PPI score defined in this way are more consistent with the quality of the
network compared to the previously proposed measure? (Supplementary Figure 5).

While PPI score can be very useful, it should be used with caution. In particular
it should not be used to compare networks that are sparse (a network has to have a
significant number of coregulated genes for the score to be meaningful) and, as any
p-value-based score, it should not be used for comparing networks of very different
sizes.

Finally, note that the PPI score is independent of expression data and thus it can be
used to evaluate topology of the network but not its relation to the experimental data.

The GO score. The GO score of coregulated genes was computed analogously to
the PPI score? with the following modification. For each coregulated gene pair, we
again use the Jaccard similarity coefficient to measure the similarity between the
GO annotation set corresponding to the first gene and the set corresponding to the
second gene and consider the coregulated genes are functional similar if the
similarity is >0.5. Instead of using all GO terms>, we only considered high-level
GO terms with information content (IC) larger than two so that we can better
understand the functional specificity of the coregulated gene pairs®>>°. The IC of a
GO term g is defined as —In(|g|/|[root|)|, where ‘root’ is the corresponding root GO
term (either F, P, or C) of g°>°%. We also used the hypergeometric test to get a p-
value indicating the enrichment level of the functional similar gene pairs within the
coregulated gene pairs inferred by the networks. The GO score is also defined as
—log,o(p-value). We illustrated the effectiveness of GO scores on simulated E. coli
GRNs (Supplementary Figure 5).

As in the case of PPI scores, computing GO scores might not be meaningful in
some situations.

The DSX targets. The experimentally supported DSX target genes are the union of
two sets. The first set of genes were obtained based on ChIP-Seq gene level
occupancy scores?®. And the second set was collected based on conserved motif
scores?>. The experimentally supported DSX target gene set was served as the
ground truth for investigating the predictive power of different methods (details are
in Supplementary Note 4).

Highly expressed genes in ovary or testis. We used the quantification of tissue-
specific expression from modENCODE as summarized in FlyBase®’. Flybase
assigns genes to bins depending on their expression in a given tissue. “Bin_value” is
an integer that ranges from 0 to 6, where 0 means that a gene has very low
expression and 6 means it has extremely high expression. We identified all genes
expressed in ovary or testis with “Bin_value” >5 and treat them as genes highly
expressed in ovary or testis.

Code availability. The integrative networks, input and validation datasets, as well
as the source code used for network inference and validation are provided in online
supplementary information and on the companion website of the paper (https://
www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/index.cgi#netrex (Matlab) and
https://github.com/ncbi/NetREX (Python)).

Data availability

All the data used in this study (data for E. coli, female, and male flies) are included in
https://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/index.cgi#netrex. And the female-
specific and male-specific GRNs constructed by NetREX are provided in Supplementary
Data 1 and Supplementary Data 2.
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