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a  b  s  t  r  a  c  t

SARS-CoV-2  mainly  infects  the  respiratory  tract,  and  presents  significantly  higher  active  replication  in
the upper  airways.  To  remain  viable  and  infectious,  the  SARS-CoV-2  virion  must  be  complete  and  inte-
gral, which  is  not  easily  demonstrated  in the environment  by positive  reverse  transcriptase  PCR  results.
Real-life  conditions  in  healthcare  settings  may  be conducive  to SARS-CoV-2  RNA  dissemination  in the
environment  but without  evidence  of  its viability  and  infectiveness  in air.  Theoretically,  SARS-CoV-2
shedding  and  dissemination  nonetheless  appears  to  be  air-mediated,  and  a  distinction  between  “air”
and  “droplet”  transmission  is too  schematic  to reflect  the  reality  of  the  respiratory  particles  emitted  by
patients,  between  which  a continuum  exists.  Airborne  transmission  is  influenced  by numerous  environ-

mental  conditions  that  are  not  transposable  between  different  viral  agents  and situations  in healthcare
settings  or  in  the  community.  Even  though  international  guidelines  on  “droplet”  versus  “air”  precautions
and  personal  protective  equipment  (surgical  versus  respirator  masks)  are under  discussion,  the exist-
ing literature  underscores  the  effectiveness  of  “droplet”  precautions  as a means  of  protecting  healthcare
workers.  Differentiation  in guidelines  between  healthcare  venues,  community  settings  and,  more  gener-
ally, confined  environments  is  of  paramount  importance,  especially  insofar  as  it underlines  the  abiding
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1. Introduction

SARS-CoV-2, which brought about the coronavirus infectious
disease 2019 (COVID-19) pandemic, is an enveloped non-
segmented virus presenting a positive-sense single-stranded RNA
genome consisting of about 30,000 nucleotides. The virion (around
0.125 �m)  presents a nucleocapsid containing genomic RNA and
phosphoriled nucleocapsid (N) protein, which is buried inside

phospholipid bilayers and covered by spike glycoprotein trimmer
(S). The membrane (M)  and envelope (E) proteins are inserted in
the virus envelope among S proteins [1]. To be infective, the viral
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tematic  mask  wearing  by the  general  population.

article must contain all of these constitutive elements, which con-
ition its integrity. Since the first report of SARS-CoV-2, its genome
as evolved and displayed mutations leading to the emergence
f numerous variants, some of them “of concern” (VOC) due to
ignificant mutations conferring selective advantage to their trans-
ission, virulence and/or immune escape [2].
The currently recommended method to diagnose COVID-19 is

ased on real-time reverse transcriptase polymerase chain reac-
ion (rRT-PCR) aimed at detecting SARS-CoV-2 in biologic samples
y amplifying at least 2 or 3 different targets for a sensitive diag-
osis (https://www.who.int/publications/i/item/10665-331501).
ositive rRT-PCR denotes a positive rRT-PCR signal for 2 or 3
ortions of the SARS-CoV-2 genome [3] but does not guarantee its
iability and infectivity, even when the viral genome is complete

4]. Because human samples contain biologic fluids and organic
ubstances, positive rRT-PCR may  signal the presence of viable
iral particles, especially in respiratory samples where the active
eplication of SARS-CoV-2 is demonstrated [5]. However, a positive

https://doi.org/10.1016/j.idnow.2021.05.005
http://www.sciencedirect.com/science/journal/26669919
http://crossmark.crossref.org/dialog/?doi=10.1016/j.idnow.2021.05.005&domain=pdf
mailto:sara.romano-bertrand@umontpellier.fr
mailto:didier.lepelletier@chu-nantes.fr
https://www.who.int/publications/i/item/10665-331501
https://doi.org/10.1016/j.idnow.2021.05.005
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rRT-PCR result and related infectiousness must always take into
consideration the following: disease evolution, nature of the
samples [5], laboratory protocol and sensitivity of the methods
[6,7]. Regarding environmental specimens, a positive rRT-PCR
result is difficult to interpret insofar as no active replication occurs
in an inanimate environment.

Based on theoretical data and recent studies on SARS-
CoV-2 environmental contamination in healthcare settings, the
open letter by Morowoska & Milton [8], which was signed
by an international collective of healthcare professionals, urged
the WHO  to reclassify SARS-CoV-2 as an airborne pathogen.
To date, the WHO  has recommended the implementation of
“contact” and “droplet” precautions for healthcare workers
(HCWs) (https://apps.who.int/iris/handle/10665/331695), accord-
ing to which a medical mask is worn most of the time, while N95 or
Filtering Facepiece (FFP2) respirator are reserved for invasive care
procedures and aerosol-generating procedures (AGPs) [9].

More generally, the COVID-19 pandemic has occasioned a
remarkable amount of scientific literature in record time. As Sos-
nowski et al. pointed out, “a vast amount of data on this subject
were gathered and published in 2020, resulting in a kind of ‘infor-
mation chaos’ created by a mix  of essential with unimportant or
even false conclusions” [10].

The present literature review briefly outlines current knowl-
edge on the microbiological and pathophysiological characteristics,
as well as the transmission routes, of SARS-CoV-2. Environmen-
tal dissemination and persistence of SARS-CoV-2 are interpreted
on the basis of theoretical data, and also in real-life conditions in
healthcare settings. Lastly, the effectiveness of surgical and respi-
rator masks and the risks incurred by HCWs of being contaminated
by SARS-CoV-2 are discussed with regard to current reports in sci-
entific literature.

2. SARS-CoV-2: From the contamination to the shedding

Even though SARS-CoV-2 cannot replicate outside of a host
cell, it may  be internalized after liaison of the S protein to the
angiotensin-conversion enzyme II (ACE2) receptor. Briefly, the
binding allows the attachment and entry of the virus prior to the
release of RNA genome, its replication, and the synthesis of proteins
constitutive of the virion in human cells. Given that the genome is
“minimalist” and does not contain all the enzymes necessary to the
replication cycle, the virus requires the involvement of cell machin-
ery. Once the viral RNA genome has been replicated and the viral
proteins synthesized and conformed, the virions are assembled,
and exocytosis and release in the extracellular compartment can
occur [1].

After which, SARS-CoV-2 may  be disseminated in the human
body; ACE2 receptors are expressed in a decreasing gradient from
the upper to the lower airwaves, which induces a gradient of infec-
tivity of SARS-CoV-2 from the proximal to the distal respiratory
tract [11].

Analyses of clinical samples from COVID-19 patients have
shown that SARS-CoV-2 is primarily present in respiratory samples,
rarely isolated in blood and urine, and that it can also be excreted
at high concentrations over a long period of time in feces [5,12,13].
However, detection of SARS-CoV-2 RNA by rRT-PCR does not nec-
essarily mean that the viral particles are viable and infective; while
Wölfel et al. [5] have postulated the existence of active viral repli-
cation in digestive tract, they failed to cultivate the virus from feces.
If fecal-oral transmission seems possible, SARS-CoV-2 viability and

infectivity in feces is not demonstrated, and inhalation of infectious
particles remains the principal route of contamination [5,12–14].

SARS-CoV-2 respiratory shedding seems higher during the pre-
symptomatic and early stages of COVID-19, and it progressively
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ecreases along with the disease evolution. Furthermore, it is sig-
ificantly higher in patients presenting severe compared to mild

orms of COVID-19 [5,15]. While the median incubation period is
stimated at 5.1 days (95% CI, 4.5 to 5.8 days), it varies widely
ccording to several parameters (patient age. . .)  [16], and 97.5%
f symptomatic patients present symptoms within 11.5 days (95%
I, 8.2 to 15.6 days) of infection [17]. Considering these elements,
he rate of silent transmission approximates 50%, with a peak of
ontagiousness 2 or 3 days before first symptoms and up to 8 days
fter their occurrence [18,19].

Key-points: ACE-2 receptors are expressed in a decreasing
gradient from the upper to the lower respiratory tract. Active
replication of SARS-CoV-2 occurs more significantly in the
upper than in the lower airwaves. SARS-CoV-2 load in respira-
tory samples is maximal during the pre-symptomatic and early
stages of COVID-19 and progressively decreases according to
disease evolution.

. Theoretical definitions of air-mediated transmission: the
ifferences between “air” and “droplets”

Several terms define air-mediated transmission and can lead
o confusion, especially insofar as definitions vary between clini-
ians, scientists and the general population, as illustrated in Table 1
20]. Respiratory activities (exhaling, speaking, singing, coughing,
neezing. . .)  can emit both liquid (“droplets”, according to scien-
ists) and solid (“droplet nuclei”) particles in aerosols, and their
ize covers a spectrum ranging from 1 �m to 100 �m.  According
o clinicians, droplets rapidly fall by gravity, or may desiccate in
roplet nuclei, whereas “aerosols” remain suspended in the air.
he duration of air suspension and distance of dissemination are
onditioned by environmental conditions and particle size, with an
rtificial cut-off at 5 �m distinguishing large-size particles (> 5 �m)
raveling over short distances (< 1 m),  from fine particles (< 5 �m),
hich remain in suspension in the air and may  travel over long dis-

ances (> 3 m)  for a number of hours [21,22]. Space-time models of
article dissemination show that the respiratory tract emits parti-
les in highly variable sizes and loads according to the peculiarities
f activities and individuals [23]:

Breathing emits 10 to 104 particles per liter of exhaled air, includ-
ing 95% of particles of less than 1 �m;
Speaking produces 5000 particles of around 60 �m a minute;
Coughing emits 103 to 104 particles in sizes ranging from 0.5 to
30 �m;
Sneezing induces the shedding of 106 particles of 0.5 to 16 �m in
size.

The smallest respiratory particles arise primarily from the lower
espiratory tract (exhaled breath) while the larger particles are
mitted from the upper respiratory tract [24]. Furthermore, particle
eposition within the respiratory tract depends on their size, with

 decreasing gradient from the nasopharyngeal fosses to the lungs
24]. All in all, drawing a distinction between “air” and “droplet”
ransmission appears too schematic to reflect the realty of air-

ediated transmission.

. SARS-CoV-2 air-mediated dissemination
Considering that SARS-CoV-2 active replication occurs primar-
ly in the upper respiratory tract, one can hypothesize that while
ARS-CoV-2 disseminates predominantly on large-size particles, it

https://apps.who.int/iris/handle/10665/331695
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Table  1
Differences between clinicians, aerosol scientists and the general public in the understanding of airborne terminology, adapted from Tang et al. [17].

Terminology Clinicians Aerosol scientists General population

Airborne Long-distance transmission that requires a N95/FFP
respirator for infection control (for example Measles)

Anything in the air Anything in the air

Aerosol Particle < 5 �m that mediates airborne transmission;
produced during aerosol-generating procedures:
requiring a N95/FFP respirator for infection control

Collection of solid and/or liquid
particles of any size suspended in a
gas

Hair spray or other
personal/cleaning products

Droplet Particle > 5 �m that falls rapidly to the ground within a
distance of 1-2 m from source; requires a surgical mask
for infection control

Liquid particle What comes out of an eyedropper

Droplet  nuclei Residue of a droplet that has evaporated to < 5 �m;
synonymous with aerosol

A related term, ‘cloud
condensation nuclei’, refers to
small particles on to which water
condenses to form cloud droplets

Never heard of!

Particle Virion Tiny solid or liquid ‘blop’ in the air Like soot or ash

Key-points: Various definitions of airborne-related terminol-
ogy generate confusion. An aerosol can contain both liquid
(droplets) and solid (droplet nuclei) particles of different sizes.
Respiratory activities can produce a wide spectrum of droplets
and aerosols in highly variable sizes and loads. A distinction
between “droplets” and “air” transmission is too schematic to

Key-points: Environmental factors condition the risk of
transmission of the pathogens present in aerosols but are
not transposable between pathogens. PM2.5 can serve as a
vector for SARS-CoV-2 virions and facilitate its spread and/or
introduction in the lower airways. However, SARS-CoV-2 via-
bility and infectiousness have not been documented outside
an experimental context. Air pollution and host susceptibility
are major factors conditioning SARS-CoV-2 contamination and
COVID-19 severity.
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reflect the complexity of respiratory pathogen transmission.

may  also be borne on all particles larger than its own  size (around
0.125 �m),  including exhaled breath. Once emitted, the size of
particles evolves according to environmental conditions (temper-
ature, hygrometry. . .)  and the presence of respiratory mucus [25].
Indeed, virus dissemination is likewise influenced by environmen-
tal factors including temperature, UV radiation, relative humidity,
and air flows [26]. A speculative study assumes that even if some
particle matter (PM)-related viruses were to remain intact and
infectious, their viral load would be very low [27]. However, risk
of viral infection would increase in cases of irritation and ulcera-
tion of the nasal epithelium, especially in individuals suffering from
reduced mucociliary clearance occasioned by tobacco, asthma, or
ARDS. Furthermore, lengthy exposure to air pollution can increase
SARS-CoV-2 transmission and severe forms of COVID-19 by favor-
ing systemic inflammation and affecting the innate immune system
[28–30]. In data drawn from studies on non-specific forms of SARS-
CoV-2, the role of particles themselves (not simply the viral load
of which they are carriers) has been interrogated. For example,
PM (especially PM2.5) can serve as a vector for SARS-CoV-2 viri-
ons and facilitate their spread over a wider perimeter and/or their
introduction in lower airways. However, SARS-CoV-2 viability and
infectiousness have not been documented outside an experimen-
tal context. In theory, with an enveloped virus SARS-CoV-2 may
remain viable and infectious in the environment for a few hours
to a few days, depending on the presence of biologic fluid and ini-
tial viral load. While in experimental aerosols, SARS-CoV remains
viable for 3 hours [31], as a means of assessing the risk of airborne
transmission, experimental demonstration is not transposable to
real-life conditions. Lastly, most environmental studies do not con-
sider other factors that may  influence COVID-19 incidence: host
susceptibility, demography, health system and access to care, epi-
demic containment measures [29,30].

5. SARS-CoV-2 environmental contamination in healthcare
settings
There is a direct link between surface and air contamination,
as the passive vectors (fomites) carrying particles and microor-
ganisms are resuspended through the airflows generated by
movements. Viral contamination of surfaces may  arise from viruses

t
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ig. 1. Factors influencing virus survival on fomites (adapted from Boone et al.,
007).

nitially suspended in the air before settling on surfaces for an
ndeterminate time. Virus survival in fomites and its transmission
o a susceptible host is conditioned by a number of factors spe-
ific to virus, host, and environmental conditions (temperature,
umidity. . .)  (Fig. 1)[32].

Several studies have assessed SARS-CoV-2 environmental con-
amination in healthcare settings, using rRT-PCR to detect viral RNA
n air or surface samples [33–42]. The regions amplified by rRT-PCR
iffer according to studies, which have targeted either 1 [36] or 2
enes [33–35,37–40], and two studies did not specify the genes
aving been amplified [41,42](Table 2). When known, the portion
f SARS-CoV-2 genome analyzed by PCR has ranged from 0.4% to
.7%, and 7.7% to 57.7% of hospital surfaces were found to be pos-

tive for SARS-CoV-2, with average viral load ranging from 10 to
.5 × 105 copies per sample. On the other hand, 16.3% to 66.7% of
ir samples have been found to be positive, with the exception of

wo studies, in which all of them were negative [37,42](Table 2).

hen positive, the average SARS-CoV-2 viral load ranged from 10
o 104 copies per m3 of air. Two studies were performed in vitro cell
ulture but failed to demonstrate the viability and infectiousness
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Table 2
Summary of studies assessing SARS-CoV-2 environmental contamination in healthcare settings.

Study Environmental samples rRT-PCR targets Culture Results

Zhou et al. 2020 218 surface samples
31 air samples (3 to 4
m3)

E genea Yes, Vero E6 (African
Green monkey kidney)
and Caco2 (human
colon carcinoma) cells

Surface samples: 114/218 (52.3%) positive
in rRT-PCR (10 to 104 copies per swab)
Air samples: 14/31 (38.7%) positive in
rRT-PCR (10 to 103 copies per m3).
All culture-negative

Chia et al. 2020 245 surface samples
3 air samples (around 5
m3)

E genea and ORF1ab
gene

Not performed Surface samples: 56/245 (22.9%) positive in
rRT-PCR (viral load not specified)
Air samples: 2/3 positive in rRT-PCR
(1.84 × 103 to 3.38 × 103 copies per m3) for
particles > 1 �m in size

Liu  et al. 2020 35 air samples ORF1ab and N genes in
ddPCRb

Not performed Air samples: 21/35 (60%) positive in ddPCR
up to 40 copies per m3 for particles
of < 1 �m in size and up to 10 copies per
m3 for particles of > 1 �m in size

Guo  et al. 2020 161 surface samples
80 air samples (9 m3)

ORF1ab and N genes Not performed Surface samples: 41/161 (25.5%) positive in
rRT-PCR (2.9 × 103 to 1.5 × 105 copies)
Air samples: 13/80 (16.3%) positive in
rRT-PCR (0.52 × 103 to 3.8 × 103 copies per
m3)

Ong  et al. 2020 78 surface samples
6 air samples (1.5 m3)

RdRp and E genesa Not performed Surface samples: 45/78 (57.7%) positive in
rRT-PCR (average of 103 to 104 copies)
Air samples: all negative

Colinari et al. 2020 26 surface samples RdRp and E genesa Yes, Vero E6 cells Surface samples: 2/26 (7.7%) positive in
rRT-PCR (viral load not specified)
All culture-negative

Faridi et al. 2020 10 air samples (9 m3) RdRp and E genesa Not performed Air samples: all negative
Razzini et al. 2020 37 surface samples

5 air samples (2 m3)
Not specified Not performed Surface samples: 9/37 (24.3%) positive in

rRT-PCR (21.5 and 23.9 Ct value)
Air samples: 2/5 (40%) positive in rRT-PCR
(22.6 and 31.1 Ct value)

Li  et al. 2020 135 surface samples
90 air samples (2,4 m3)

Not specified Not performed Surface samples: 2/135 (1.5%) positive in
rRT-PCR (viral load not specified)
Air samples: all negative

Wei  et al. 2020 112 surface samples
6 air samples (1.5 m3)

ORF1ab and N genes Not performed Surface samples: 44/112 (39.3%) positive in
rRT-PCR (viral load not specified)
Air samples: all negative
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E: envelope (112 nucleotides); N: nucleocapsid; ORF: open reading frame; RdRp: RN
a According to Corman et al., 2020.
b Droplet Digital PCR (ddPCR) method described as more sensitive than rRT-PCR t

of SARS-CoV-2 insofar as no cytopathogenic effect was  detected
[36,38](Table 2). The authors assumed that this non-viability was
linked to low viral loads in samples, whereas Zhou et al. [36] pro-
posed a cycle threshold cut-off of 30 (around 5 log10 copies/mL) as
the limit of detection (LOD) that would enable SARS-CoV-2 cultur-
ing from surface samples.

In clinical specimens, Huang et al. [4] highlighted a linear
correlation between the SARS-CoV-2 viral load detected by rRT-
PCR targeting both structural (E and N genes) and non-structural
(nsp12 gene), regions, and infectivity was assessed by culture. In
their study, the lowest copy number in rRT-PCR required for virus
isolation in culture ranged from 5.4 to 6.0 log10 copies/mL sam-
ple, demonstrating that specimen cultivability of requires high
copy numbers, regardless of whether structural or non-structural
regions are being targeted. The results indicate that when evalu-
ating the infectivity of clinical SARS-CoV-2 specimens, in addition
to the copy number the integrity of the viral genome should be
taken into consideration, targeting both the structural and the non-
structural portions of the genome [4]. Genome integrity assessment
is even more necessary with regard to environmental samples, for
which, as long as no active replication occurs in the environment,
a positive rRT-PCR cannot be interpreted in the same manner as
biologic samples.

A negative viral culture could consequently mean that viral load
is too low to be cultured, or absent from the sample, or that in vitro

cell culture in laboratory is not sufficiently sensitive and effective
[7]. While SARS-CoV-2 may  remain on surfaces for several hours
to several days, the viral load decreases rapidly and its infectious-
ness has rarely been demonstrated [31,36]. The risk of SARS-CoV-2
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pendent RNA polymerase (99 nucleotides).

ct SARS-CoV-2, according to Suo et al., 2020.

ransmission by contact is therefore evaluated as low [43], and it
s easily controlled by regularly scheduled surface disinfection and
crupulous respect of hand hygiene [44].

Key points: rRT-PCR detection of SARS-CoV-2 in envi-
ronmental samples should amplify 2 or 3 targets, in the
same manner as biologic samples. Results should be inter-
preted carefully as long as no active replication occurs in the
environment. SARS-CoV-2 infectiousness from environmental
samples in healthcare settings (excluding experimental con-
text) has not been demonstrated to date.

. Are surgical or N95/FFP masks the most adapted for
CWs?

In addition to the issue of SARS-CoV-2 airborne transmission,
uestions remain on the effectiveness of PPE, especially masks, as
eans of protection for HCWs.
A recent literature review provided an update on the type of

ask required to ensure HCW protection [45] and concluded that
 medical facemask is as effective as a N95 respirator as a means
f protecting HCWs from Influenza virus or MERS-CoV. However,

nother systematic literature review and meta-analysis concluded
hat N95 respirator seemed non-statistically significantly superior
o medical mask [46] (P = 0.09, Odds ratio 0.14 (95% CI, 0.02 to 1.05)).
he SARS-CoV-2-specific studies included in this review scored
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between 3 and 4 on the Newcastle-Ottawa Scale, reflecting a risk
of bias. Up until now, no randomized, unbiased studies have com-
pared the effectiveness of N95 respirator versus medical facemask
for HCW protection against SARS-CoV-2 infection.

A recent literature review comparing the relative effectiveness
of surgical and N95/FFP masks in the prevention of respiratory
infections excluded experimental articles not transposable in real-
life conditions and underlined the following [47]:

• The majority of previously reported systematic reviews do not
provide clear evidence that N95/FFP2 respirators are more effec-
tive than surgical masks in preventing respiratory infections,
particularly viral respiratory infections, in HCWs;

• One source of uncertainty concerns the time lapse during which
a study participant carries the assigned device (a point not veri-
fied in the methodology of the review studies). The authors point
out that wearing a N95/FFP2 mask is cumbersome and possibly
troublesome. The surgical mask is more likely to be worn con-
tinuously throughout the period during which a risky contact
may  occur. The supposed superiority of N95/FFP2 over surgi-
cal masks for protection against airborne infections is based on
the fact that these respirators are tested for their ability to filter
aerosols smaller than the aerosols used to test surgical masks (0.1
vs. 3 �m).  However, this does not take into account the fact that
the microorganisms emitted by infected persons are absorbed
in particles of diameter larger than the microorganisms them-
selves, which would explain why N95/FFP masks do not better
prevent airborne viral infections than surgical masks in clinical
conditions;

• A meta-analysis on the interest of mask wearing to prevent
SARS-CoV-2 airborne transmission included studies in which RR
(95% CI) for the association between masks wearing and COVID-
19 occurrence was obtained [48]. The risk of study bias was
assessed by the Newcastle-Ottawa scale and out of the 7688 ref-
erences obtained with initial search equations, only 4 articles
were included, among which 3 assessed the effectiveness of mask
wearing versus no mask. The findings showed that use of a face-
mask was linked to a decreased risk of SARS-CoV-2 infection, with
a statistically significant association (combined RR 0.12; CI 95%
[0.06, 0.27] (P < 0.000)). Study heterogeneity was  minimal (I2 -
43.3% and P - 0.152)[48].

Key-points: Current scientific evidence suggests that surgi-
cal and N95/FFP2 masks confer equivalent protection against
airborne viral infections for HCWs during routine care. This can
be explained by the better comfort of surgical masks, allowing
continuous wear. Although the SARS-CoV-2 virion is a nanopar-
ticle, it is usually carried by larger particles, and easily stopped
and contained by a mask.

7. HCW contamination rate as a means of assessing the risk
of airborne transmission

In the absence of direct scientific evidence, indirect evidence
can help to determine whether HCWs are adequately protected
from the risk of respiratory transmission. Contamination rates
should be analyzed by considering several possible confounding
factors, including their over-representation, especially during lock-

down periods. Given the proportion of the overall population in
lockdown, HCWs are among the most exposed individuals, which
explains their being over-represented. Another confounding factor
is screening strategy, which tends to systematically include HCWs,
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ven if they are asymptomatic. Nevertheless, and as shown in a
apid response by Alberta Public Health Services [49], the inter-
ational literature does not reveal high incidence of SARS-CoV-2
ontamination in the HCW population. More specifically, risk of
nfection by occupational transmission has been estimated at 0.01%,

hile community transmission risk seems higher than in the gen-
ral population (0.14% versus 0.10%). Risk was  also found to be 9 to
1 times higher for HCWs versus the general population in areas
ith very high incidence and prevalence of SARS-CoV-2 infection.

 study conducted in Madrid on HCWs in a public hospital con-
luded that there was no significant difference in PCR-detected
nfection among HCWs in direct contact with COVID-19 patients
ersus staff of the same facility without contact with patients, a
nding suggesting that many HCW infections result from com-
unity transmission [50]. A Chinese publication also highlighted

 lower rate of contamination of front-line HCWs compared to
ess exposed HCWs [51], a finding providing reassurance about
he effectiveness of barrier measures aimed at ensuring HCW pro-
ection during contact with infected patients. That said, a risk of
CW contamination during social interactions (out of care) was

uggested in a German preprinted study [52]. On the other hand,
 South Korean retrospective cohort study indicated that cases of
ccupational HCW contamination were correlated with defective
pplication of barrier measures (especially facemask wearing) and
nsufficient COVID-19 case quarantine [53]. On another score, a
apid review concluded that the main risk factors for HCW contam-
nation were: lack of and/or inadequate PPE, exposure to infected
atients, work overload, poor infection control, and preexisting risk
actors [54]. Furthermore, in their letter to the editor, Wang et al.
ighlighted that proper HCW preparedness and appropriate use of
PE help to lower infection risk [55].

Epidemiological investigation following the unexpected iden-
ification of cases in a 12-bed common room concluded that
ARS-CoV-2 was  not transmitted by air [56]. An index patient
as symptomatic and received 8L/min oxygen therapy delivered

hrough facemask before being diagnosed with COVID-19. Preven-
ive measures in the facility included systematic facemask wearing
y HCWs and the monitoring of visitors and patients in the common
oom. The authors concluded that the absence of secondary cases
as likely related to systematic facemask wearing, high adherence

o hand hygiene guidelines and regular environmental cleaning
56]. Lastly, a case report published by a Chinese team underlined
he absence of HCW contamination following unexpected identi-
cation of SARS-CoV-2 infection in a patient whose condition had
ecessitated aerosol-generating procedures [54,57].

Recently, Cheng et al. published a case report on a cluster involv-
ng 9 HCWs and 12 patients from the palliative medicine unit
t a Hong Kong hospital [58]. The index case was a 91-year-old
atient in a 4-bed room. Cases were defined as any patient or care-
iver tested positive for SARS-CoV-2 and who had been present
n the same unit as the index patient during the 14 days prior to
nd after identification. Environmental epidemiological investiga-
ion showed higher rates of SARS-CoV-2 RNA on ventilation grids
ocated more than 2 m from the patient and on surfaces close to
atients (36.4%, 8/22 vs. 3.4%, 1/29, P = 0.003, respectively). The
uthors concluded that airborne contamination is possible and sug-
ested a need for reflection on the design of ventilation systems.
n this particular case, however, investigation was only environ-

ental. Care practices, compliance with PPE wearing strictures
nd interactions between patients were not assessed, nor was the
ifficulty of applying appropriate measures in a 4-bed room. Imple-
entation of barrier measures for older populations is complicated,
specially in dementia settings. It would have been interesting to
xplore this point in view of the elderliness of patients in the ward
median age of 84 years [20–92]). At the end of the survey, the attack
ate was  15% for patients (12/78) and 8.1% for caregivers (7/86). By
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Key-points: When barrier measures are correctly applied,
the risk of HCW contamination, including in COVID-19 units,
do not appear significantly higher compared to the general
population. Risk of airborne transmission seems to arise only
under specific circumstances with high viral density, which
is more common in community than in healthcare facili-
ties, where HCWs are fully aware of the need to implement
guidelines aimed at preventing SARS-CoV-2 transmission
(droplet precautions, contact limitations, routine mask wear-
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comparison, in the literature the attack rate of the influenza virus
(which is transmitted by droplets) ranges from 1% to 38% [59].

A recent report raised the question of airborne transmission
in a description of community contaminations among persons
respecting physical distancing of more than one meter (buses,
concerts)[60]. It remains difficult to determine transmission routes
in these settings, and findings are not transposable to environ-
ments where guidelines impose continuous use of facemasks to
protect HCWs. It also bears mentioning that up until now, the sci-
entific literature has highlighted the importance of applying the
measures currently recommended to protect HCWs from SARS-
CoV-2 contamination: systematic use of facemask, compliance with
hand hygiene indications, and regular environmental cleaning.
Indeed, HCW contamination appeared greater at the beginning of
the epidemic, before the systematic implementation of preventive
measures; according to currently available studies, a majority of
cases resulted from community transmission. Once barrier mea-
sures were recommended, the risk of HCWs contamination, even
among HCWs on duty in the units most exposed to COVID-19, did
not appear significantly higher compared to the general population,
provided, once again, that good practice guidelines were respected
[61,62].

A recent publication proposed risk management strategy cali-
brated on pandemic evolution [63]. Many countries are currently
facing active virus circulation in the community. HCWs are at risk
of exposure to both positive patients and co-workers, due espe-
cially to the large number of asymptomatic carriers. The risk of
transmission from asymptomatic carriers can vary according to
several parameters: distance, room aeration and case activity; Jones
et al. (2020) drafted a risk assessment table taking these parame-
ters into account [64]. Poorly ventilated environments with high
occupancy are conducive to a high risk of transmission [65]; they
can include break rooms, meeting rooms or locker rooms. These at-
risk areas bring together several factors favorable to contamination,
and may  be responsible of superspreading events [66]; awareness
campaigns are called for.

The CDC and the WHO  [67,68] have stated in their respective
guidelines that during close contacts, the main mode of transmis-
sion is droplet-mediated, while a risk of airborne transmission may
occur under specific circumstances:

• Closed spaces in which susceptible individuals are exposed to an
infectious person;

• Prolonged exposure to respiratory particles, often generated
by exhalation (e.g., screaming, singing, physical exercise) that
increase the concentration of suspended respiratory droplets;

• Inadequate ventilation or air treatment favoring the accumula-
tion of small droplets and suspended respiratory particles.

Many healthcare facilities are equipped with a ventilation sys-
tem or air treatment that limits the risk of accumulation of small
droplets. However, a higher risk of airborne transmission may occur
in the community, where high-density viral situations are more
frequent (transports, offices, home.  . .)[65].

8. Conclusion

Current knowledge on SARS-CoV-2, and more broadly on respi-
ratory pathogens, both theoretical or under real-life conditions in
healthcare settings, shows that based on approximate particle size
limits, a dichotomy between “air” and “droplets” is too schematic

to reflect the reality, which corresponds to a continuum [69]. Based
on conventional definitions of airborne and droplet transmission,
in 2015 Jones et al. proposed the concept of aerosol transmis-
sion as a means of unraveling the relevant frontiers [70]. In this

F

415
ing, aeration. . .).

erspective, infective aerosol would represent a combination of
articles of different sizes that carry pathogens in the air; they can
ettle onto a person or be inhaled. Aerosol transmission is biologi-
ally plausible when:

infectious aerosols are generated by or from an infective person;
the pathogen remains viable in the environment during a suffi-
cient amount of time;
the target tissues in which the pathogen develops the infection
are accessible to the aerosol.

Jones et al. went on to propose a scale of evidence for each of
hese three circumstances as a means of assessing the biological
lausibility of aerosol transmission [70]. As regards the specific
ase of SARS-CoV-2, while the level of evidence for points #1 and
3 is moderate, for point #2 it is high, with a final score of 7/9.
ome experts have contended that in this context, the data from
heoretical studies should be interpreted with caution; their trans-
osition into real-life conditions remains problematic, and proof
f the airborne transmission of SARS-CoV-2 is incomplete [21,71].
o more accurately assess and measure the risk of the latter, Car-
ucci et al. have proposed the determination of “minimal dose
nd dose-response relations”; “ways and amount of exposure for
usceptible people in different settings” (community, healthcare
orking environments) and “estimated reduction in exposure of
ifferent preventive measures” (use of different masks, ventilation
ystems, etc.) [71].

Current scientific evidence suggests that surgical and N95/FFP2
asks provide equivalent protection against airborne viral infec-

ions, excluding aerosol-generating procedures. Although the
earing of N95/FFP respirator presents a higher theoretical filtra-

ion capacity than a surgical mask, it is more restrictive in practice.
any healthcare facilities possess a limited number of respirator
odels [72], and it is not possible to provide all HCWs with a res-

irator tested and adapted to their facial morphology. Moreover,
hile viruses are nanoparticles, they are carried in larger droplets

nd particles, which may explain the non-superiority of N95/FFP
n surgical masks. In the final analysis, SARS-CoV-2 transmission
s not limited to the respiratory route; it may also include contact
ransmission, which should be taken into close account [73,74].

Even if SARS-CoV-2 airborne transmission is possible, particu-
arly in confined environments and in the absence of systematic

ask wearing, SARS-CoV-2 is predominantly transmitted through
espiratory droplets during close contact. In healthcare settings,
droplets” and “contact” precautions remain efficient as means of
rotecting the HCWs caring for COVID-19 patients, while mask
earing and barrier measures are to be systematically recom-
ended in indoor environments or when it is impossible to
aintain physical distancing in external environments [75].
unding
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