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Abstract: The deterioration of gait can be used as a biomarker for ageing and neurological diseases.
Continuous gait monitoring and analysis are essential for early deficit detection and personalized
rehabilitation. The use of mobile and wearable inertial sensor systems for gait monitoring and
analysis have been well explored with promising results in the literature. However, most of these
studies focus on technologies for the assessment of gait characteristics, few of them have considered
the data acquisition bandwidth of the sensing system. Inadequate sampling frequency will sacrifice
signal fidelity, thus leading to an inaccurate estimation especially for spatial gait parameters. In
this work, we developed an inertial sensor based in-shoe gait analysis system for real-time gait
monitoring and investigated the optimal sampling frequency to capture all the information on
walking patterns. An exploratory validation study was performed using an optical motion capture
system on four healthy adult subjects, where each person underwent five walking sessions, giving a
total of 20 sessions. Percentage mean absolute errors (MAE%) obtained in stride time, stride length,
stride velocity, and cadence while walking were 1.19%, 1.68%, 2.08%, and 1.23%, respectively. In
addition, an eigenanalysis based graphical descriptor from raw gait cycle signals was proposed as a
new gait metric that can be quantified by principal component analysis to differentiate gait patterns,
which has great potential to be used as a powerful analytical tool for gait disorder diagnostics.

Keywords: gait diagnosis; wearable device; graphical descriptor; real-time monitoring; telerehabili-
tation; digital biomarkers

1. Introduction

Human locomotion is one of the most important abilities that must be acquired and
maintained to perform activities of daily life and, despite requiring little thought, implies a
complex series of coordinated events within the body. This involves the communication
of intricate sensory information, which is integrated in the nervous system and results in
motor commands that control muscle activation and, finally, joint movement. Gait analysis
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provides important insight into the health and state of these systems. In particular, faulty
sensory feedback, damaged nervous systems, or impaired muscle control can result in
an alteration of normal locomotion [1,2]. Consequently, clinical gait analysis is widely
used to assess the overall health status of both pediatric and adult patients [2,3]. Clinical
gait analysis has also shown effectiveness in pretreatment evaluation, surgical decision
making, and post-operative rehabilitation, and can also be used to recognize deterioration
of walking patterns that are associated with a variety of orthopedic and neurological
disorders, such as ankle sprains, rheumatoid arthritis, Parkinson’s disease, cerebral palsy,
dementia, and multiple sclerosis [2,4–9].

Clinical gait analysis primarily relies on two methods, stationary, instrumented analy-
sis and subjective qualitative observations by the physiotherapist. Each method is valuable
but with limiting factors that restrict their efficacy and reliability. The first method allows
for a detailed evaluation of motion, usually through either highly accurate force platforms
or optical motion tracking systems. These approaches require long set-up time including
marking of patients, high operational complexity due to the necessary specialized technical
knowledge, and high cost for lab-based settings [10]. It is limited by spatial constraints,
and the experimental equipment can be intimidating for test-subjects and thus lead to
compromised observations [10]. The second method is based on physiotherapist observa-
tion, and is, therefore, limited in recognizing subtle walking pattern features and prone to
subjective interpretation [3,11–14]. Under both conditions, patients walk in an idealized
environment being conscious of the presence of an observer. This leads to behavior where
patients either involuntarily or voluntarily focus on correcting their action [15,16]. Thus,
a typical assessment session does not necessarily represent patients’ normal walking in
daily life. For an ideal analysis, walking performance should not be affected by the indi-
viduals who are monitoring. Furthermore, certain gait problems (e.g., freezing [17] and
spasticity [5]) happen during automatic control of gait and are typically reduced when the
patient switches to goal-oriented control of gait. These instances can be difficult to detect
in a clinical setting.

To address issues with current methods, researchers have analyzed many cost-effective
and portable, wearable gait analysis systems [11,18,19]. These wearable sensor technologies
are essential to the realization of personalized continuous gait monitoring in an uncon-
strained environment with minimal intervention. Typically, these sensors need to be
specially mounted on the body as an additional component (e.g., attached to body [20],
textile [21], or on the shoes [1,18,22,23]), which reduces wearer’s comfort and can be ob-
trusive and unstable. Recently, in-shoe sensing systems have been developed for gait
pattern detection and pathological gait diagnosis. Zhang et al. developed a SportSole
consisting of a multicell piezoresistive sensor, an inertial measurement unit (IMU), and a
logic unit [24]. Pressure and acceleration data were measured to estimate the spatiotempo-
ral gait parameters and center of pressure trajectories using a support vector regression
model [24]. Carbonaro et al. used force sensor and accelerometer embedded smart shoes
FootMoov to detect gait phases [25]. Nilsson et al. mounted an inertial navigation system
into the shoes to estimate the walking trajectory [26]. Most of these studies focus on the
assessment method of walking in healthy subjects or patients, while few existing research
has considered the data acquisition bandwidth of the system for gait analysis [27]. Systems
with inadequate data acquisition frequency cannot capture the walking signal in full details,
such as short but fast varying movements, and lose the information at high frequency. The
accuracy of the spatial gait parameter estimation will be severely affected. This is because
when integrating the walking data with compromised signal fidelity, errors will also be
integrated continuously, thus leading to gait parameter uncertainties and a lack of precision
for gait analysis.

Characterizing human gait in a quantitative and intuitive manner has significant
benefits in clinical diagnostics and rehabilitation along with improving our basic under-
standing of complex gait mechanisms. In spite of the rapid development of sophisticated
walking data collection systems, the evaluation and communication of gait conditions



Sensors 2021, 21, 2869 3 of 21

remains challenging in-clinic, even for relatively common situation, such as for describing
the progress of a patient’s knee recovery during rehabilitation after surgery [28]. Verbal
descriptions of rehabilitation progress throughout the gait cycle tend to be imprecise. A
comprehensive understanding and an objective data analysis for quantitative gait analysis
is urgently needed.

In this paper, a miniaturized, low-power, cost-effective, highly mobile, and user-
friendly in-shoe system embedded with inertial sensors, i.e., accelerometer, gyroscope,
and magnetometer, is developed to address hardware limitations particularly related to
signal bandwidth and to devise new gait metrics. The integrated in-shoe system is able to
collect long-term gait data without intervention and inconvenience for the subjects in a
real-world setting. The aim of this study is three-fold: (1) develop a shoe-integrated inertial
sensor-based gait monitoring and analysis platform to perform reliable measurements and
capture all relevant gait behaviors, investigating and optimizing system data acquisition
bandwidth for gait analysis, (2) extend the well-established zero-velocity update technique
with a gradient descent-based complementary Madgwick filter and heuristic techniques to
identify and quantify spatiotemporal gait parameters, and (3) introduce an eigen-analysis
based graphical metric quantified by principal component analysis, which can intuitively
identify temporal characteristics of the gait cycles.

2. Materials and Methods
2.1. System Setup

To perform gait analysis, a pair of motion sensing shoes called Nushu is developed in
this study for data acquisition. This method serves the aim of the development of a shoe-
integrated gait monitoring and analysis platform referring to introduction aim (1). The
system comprises a customized sensor unit inserted in the posterior portion of the outsoles
of the shoes (usually thicker and less prone to bending), as shown in Figure 1A. The sensor
unit is fixed in place with silicon glue, and the upper component of the shoe is glued
on top with a heat-activated contact cement normally used in the shoe-manufacturing
industry. This allows for a tight seal and consequently the possibility of prolonged indoor
and outdoor testing.

Figure 1. Graphical illustration of the Nushu system. (A) The sensor units are inserted in the outsole of the shoe; the upper
part is glued so as to seal the shoe. (B) Gait phases during a full gait cycle. (C) Signal examples from the sensors. (D) Gait
parameters generated by Nushu system.

Each sensor unit is equipped with an inductive wireless charging unit containing
a rechargeable Li-Po battery of 550 mAh capacity and the receiver coil with its wireless
charging circuit, a 32-bit microcontroller (ARM Cortex-M4), a Bluetooth low energy net-
work processor (BlueNRG-MS, STMicroelectronics, Geneva, Switzerland), a micro-SD card
socket, and on-board sensors (LSM6DSM and LSM303AGR, STMicroelectronics, Geneva,
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Switzerland), including a tri-axis accelerometer with 16-bit resolution (LSM6DSM, with
selectable dynamic ranges of: ±2 g, ±4 g, ±8 g, or ±16 g), a tri-axis gyroscope with 16-bit
resolution (LSM6DSM, ±125 dps, ±250 dps, ±500 dps, ±1000 dps, and ±2000 dps), and
3-axis magnetometer with 16-bit resolution (LSM303AGR, ±50 gauss). The Nushu system
can record data continuously during walking as schematically illustrated in Figure 1B,C.
In the meantime, the sensor data can be either logged onto a local flash memory (up
to 1000 Hz) or streamed in real time via Bluetooth wirelessly to a mobile device (up to
400 Hz). To make the device user friendly, the in-shoe system can be charged wirelessly on
a customized charging station. The battery can last for around eight hours when the device
is logging. The developed Nushu system can be controlled by a custom designed graphical
user interface (GUI) to start or stop recording, real-time monitor and visualize walking data,
analyze gait data immediately after walking, and generate a feedback performance report
autonomously. During walking, gait data are monitored and visualized on the mobile de-
vice in real time. After walking, the clinician can select the interested time-frame data that
should be analyzed through designed GUI. Data processing on the selected walking data is
performed off-line immediately. With instantly estimated spatiotemporal gait parameters, a
performance feedback report containing 13 gait parameters including stride velocity, stride
time, stride length, minimum foot clearance, strike angle, stance time, swing time, stance
phase, swing phase, cadence, maximum angular velocity, symmetry, and variability can be
generated autonomously, and displayed to the clinician immediately within 30 s (processed
with Ubuntu). An example of generated performance report is shown in Supplementary
Materials, and schematically presented in Figure 1D. It displays all feedback information
through a graphical representation of overall walking performance.

2.2. Sensor Parameters Optimization

Aliasing effects have a large impact on the signal fidelity of current commercial
inertial sensors. Inadequate sampling frequency can lead to critical aliasing problems,
causing the digital representation of the analogue signal to be erroneous. Erroneous digital
representation may not alter the estimation accuracy of the temporal parameters, but it
can have a significant impact on the estimated spatial parameters, e.g., stride length and
stride velocity due to the accumulation of the error caused by aliasing effect during the
integration process. Therefore, optimizing the sampling frequency of the sensor is critical
for improving their performance and also increasing the accuracy of the gait analysis results.
This method serves the aim of investigating and optimizing the system data acquisition
bandwidth for gait analysis, referring to the aim (1) mentioned in the introduction.

An antialiasing filter reduces undesired-frequency components above the Nyquist
frequency prior to digital sampling. The antialiasing filter characteristics of the IMU
sensor (BNO055, Bosch, which was embedded in shoes in the preliminary stage) was
experimentally obtained in a setup where the sensor configured to a sample rate of 100 Hz
was fixed on the surface of a speaker. Sinusoidal audio waves spanning a duration of one
minute with different frequencies of 120 Hz, 125 Hz, and 130 Hz, which were slightly above
the IMU sampling frequency, were generated using a computer (using Matlab R2017a,
Mathworks). Those audio waves were played through the speaker and recorded by the
accelerometer of the IMU sensor. The digitally sampled accelerometer data recorded in
the time-domain are mathematically transformed into the frequency domain by the fast
Fourier transform (FFT) for spectral analysis shown in Figure 2. The actual IMU digitized
the data at around 99 Hz, low frequency components at 21 Hz, 26 Hz, and 31 Hz were
observed on the spectrum, illustrating the absence of the appropriate anti-aliasing filter
before analogue to digital conversion in this commercialized IMU sensor.
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Figure 2. Aliasing frequency signals resulting from sampling 120, 125, and 130 Hz audio waves
at 100 Hz.

Moreover, even if the antialiasing filtering is present in IMU sensors, valuable high-
frequency information above the cut-off frequency of antialiasing filter, such as fast varia-
tions in the acceleration, could still be lost [27]. Therefore, knowing the highest frequency
component within a walking time series in advance can help deciding the optimal sampling
rate, which is sufficient to precisely estimate gait parameters, but not too high so that the
system remains power and memory efficient [29].

Nushu system was evaluated against two different sensors to determine the optimal
sampling frequency and to investigate the validity of the choice of 100 Hz as the sampling
frequency, which is a common choice for gait analysis [21,30–32]. The first sensor is a wired,
high-sensitivity piezoelectric accelerometer sensor (AT/14, DJB Instruments, Suffolk, UK).
It can sample up to 5000 Hz with an antialiasing filter applied priori. The second sensor
is a wireless commercial sensor (AX3, Axivity Ltd, Newcastle upon Tyne, UK) with only
an accelerometer and a maximum sampling rate of 100 Hz, with no antialiasing filter
priori. Nushu system, which has both accelerometers and gyroscopes was set to sample
at 100 Hz, with no antialiasing filter priori during these measurements. All three sensors
were attached to a healthy subject’s instep position of the shoes using straps. This healthy
subject has no pathologies that affect gait. The subject was asked to walk in a straight
line about 6 m and walk back. Three collected sets of time series acceleration data were
normalized individually after removing DC bias (by means of selecting a short segment (5
s) of the stationary signals, and subtracting the mean of the stationary signals). Each set of
the obtained normalized acceleration data is denoted as

{
âix(k∆ti), âiy(k∆ti), âiz(k∆ti)

}
,

where ∆ti =
1
fi

, fi is the sampling frequency, k ∈ N+, and i ∈ {1, 2, 3} represents for three
different sensors. Since no clock was shared between those three acquisition systems, a
synchronization process was implemented as follows. The magnitude of acceleration was
first calculated for each set as

âiM(k∆ti) =
√

∑j∈{x, y, z} â2
ij(k∆ti). (1)

Then an antialiasing filter was applied to âiM(k∆ti) and down-sampled âiM(k∆ti) to min
i

fi

such that all signals have the same time interval ∆t. Time series â1M(k∆t) and â2M(k∆t)
were shifted along the time axis such that their cross-correlation with â3M(k∆t) was maxi-
mized. According to the obtained time lag based on the maximum correlation time point,
the raw time series data

{
aix(k∆ti), aiy(k∆ti), aiz(k∆ti)

}
were shifted along their time axes

for synchronization. Using the synchronized data, each walking stride was detected and
separated for spectral analysis with the help of the gyroscope from Nushu inertial sensor.

Furthermore, to find the optimal sampling rate for gait analysis, the signals with the
highest sampling frequency (5000 Hz) from the piezoelectric sensor were cut off by low
pass filters at different cut-off frequencies. The percent root mean squared errors (RMSE
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(%)) between the filtered data and the original data were compared after applying different
cut-off frequencies. Then the optimal sampling rate was determined by balancing the
RMSE (%) and the cut-off frequency.

2.3. Gait Analysis Method

In this section, the method of quantifying spatiotemporal gait parameters, which
serves the aim (2) referred in the introduction, was introduced. To assess the gait perfor-
mance, each gait cycle was divided into multiple gait phases such that quantitative gait
features, including temporal and spatial gait parameters, can be evaluated. The gait cycle
was typically divided into two main phases by gait events, stance and swing, as shown in
Figure 1B. Those two phases can further be subdivided into eight functional phases, five
during stance and three during swing. The first two phases, initial contact and loading
response, occur during the weight acceptance with double feet support. Mid-stance and
terminal stance go on during the single foot support, followed by the preswing phase
where the forward limb motion starts. Afterwards, the swing phase commences with the
initial swing, in which the hip and knee start to bend in tandem with ankle dorsiflexion.
The mid-swing immediately follows when the swinging leg is aligned with the standing
leg. Finally, the terminal swing occurs when the leg decelerates by contraction of the
hamstrings and prepares for ground contact [3,33]. The three key gait events to anchor
these phases are heel strike (HS), when the heel strikes the ground at initial contact, flat foot
(FF), when the foot is flat on the ground, and toe off (TO), when the toes leave the ground.

With the defined gait phases, 13 gait metrics are configured to be estimated by the
Nushu system, as listed in Table 1. Additional gait parameters can be customized based on
user requirements.

Table 1. List of gait parameters measured and estimated by the Nushu system.

Gait Parameter Units Definition Reference

Stride Velocity m/s Mean in-plane velocity of each gait cycle [3]
Stride Time s Time taken for a full gait cycle [3]

Stride Length m In-plane distance travelled during a gait cycle [3]
Minimum Foot Clearance m Minimum ground clearance of the foot during swing [1,3]

Strike Angle deg Angle of impact w.r.t foot’s mediolateral axis [1]
Stance Time s Time duration from heel strike to toe off [2,3]
Swing Time s Time duration from toe off to heel strike [2,3]
Stance Phase % Ratio of stance time w.r.t gait cycle duration [2,3]
Swing Phase % Ratio of swing time w.r.t gait cycle duration [2,3,6]

Cadence strides/min Number of strides per minute [2,3]
Maximum Angular Velocity rad/s Maximum angular velocity w.r.t the mediolateral axis [7]

Symmetry % Relative difference between left and right feet performance [7,8,18]
Variability % Measure of the walking consistency [9]

Given the nature of the gait metrics, raw kinematic data from the inertial sensors are
first transferred into the global reference frame to detect characteristic events during the
walking cycle and estimate the orientation of the sensors. This allows for the extraction of
spatial features through integration of the measured accelerations and angular velocities.

2.3.1. Attitude Estimation and Heuristic Techniques

The orientation of the foot is estimated through sensor fusion, which is a technique
often used for attitude and heading reference systems (AHRS) that makes use of gyroscope,
accelerometer, and magnetometer measurements through specific filters. Among many
that have been implemented in previous work, our system uses the algorithm derived by
Madgwick [34]. This gradient descent based complementary filter employs a quaternion
representation and uses the gravitational acceleration and the Earth’s magnetic field picked
up by the accelerometer and magnetometer to estimate the orientation error that arises
from naively integrating the raw angular data from the gyroscope. Compared to other
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filters, e.g., Kalman or extended Kalman filters, Madgwick’s algorithm compensates the
magnetic distortion to eliminate the need for predefining the reference magnetic field
direction [34]. It is also computationally less expensive and offers the potential of real-time
data processing on Nushu’s microcontroller.

If the sensor moves arbitrarily in space, the gravitational acceleration will become
mixed with other linear accelerations. Heuristic techniques are required for the correct
implementation of the Madgwick filter and the post-processing algorithm. These tech-
niques exploit the fact that gait is a periodic series of alternate stances and swings. It
is widely accepted that during the stance phase there is a short period of time, referred
to as mid-stance, where the foot is stationary, while the shank pivots around the ankle,
leading to linear accelerations of zero on the foot. Assuming that during mid-stance, the
accelerometer measures only the gravitational acceleration, these stationary periods are
used as flags for the AHRS algorithm.

Here, we introduced an approach to detecting dynamic phases and stationary phases
by the following method. We defined a new motion signal to be

MS(k) =
∣∣∣∏j∈{x, y, z} âj(k)ω̂j(k)

∣∣∣, (2)

where âj(k) and ω̂j(k) represent the normalized acceleration (âj(k) =
aj(k)−aj

σaj
) and angular

velocity (ω̂j(k) =
ωj(k)−ω j

σωj
) with the mean aj, ω j, and the standard deviation σaj , σωj . The

motion signal is further filtered by a moving-average filter fma(MS, N), where N = 5 is
the moving window size. Then by comparing the filtered motion signal (MSf(k)) and an
empirically determined threshold (TMS = 10−6), dynamic phases and stationary phases
are differentiated by

F(k) =

{
1, if MSf(k) < TMS

0, else
(3)

where F(k) is the binarized flag. The dynamic and stationary phase differentiation result
is shown in Figure 3. The blue regions depict stationary phases, and the white regions
represent the dynamic phases.

Figure 3. Example signals of motion signals, normalized acceleration, and angular velocity. The
threshold for the recognition of the stationary events is calculated by considering the magnitude of
the motion signals. The stationary regions are highlighted in blue.
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With these stationary flags, the orientation of the global frame relative to the sensor
frame is estimated through sensor fusion by Madgwick’s filter, as shown in Figure 4.
The filter gain β, which represents gyroscope measurement error, in gradient descent is
calibrated as 0.1. The acceleration data can thus be transformed from sensor frame into the
global reference frame, as shown in Figure 5. Afterwards, each gait cycle is collected by
segmenting the midpoint of the stationary regions for further processing.

Figure 4. Block diagram of the orientation estimation through sensor fusion [34].

Figure 5. (A) Raw acceleration data measured in the sensor’s coordinate frame. By observing
the initial stationary region, it can be deduced that the sensor’s resting position is not perfectly
aligned with the ground (gravity has a slight projection onto the x and y axes). Gravity is affecting
the readings of the linear accelerations and since the sensors are changing orientation it cannot
be subtracted. (B) Transformed accelerations in the global coordinate frame. Since gravity is only
projected in the global z axis, it can be directly subtracted.

2.3.2. Event Detection Algorithm

During a gait cycle, the rotation of the foot around the mediolateral axis (flexion/exten
sion axis of the ankle) is the most prominent movement comparing to supination/pronation
and inversion/eversion. Therefore, the key gait events HS, FF, and TO can be detected by
inspecting the angular velocity aligned with the mediolateral axis of the foot (ωy) [30]. For
a normal gait cycle, the foot rotation around the mediolateral axis changes as follows: a
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gait cycle begins with the foot flat on the ground; the foot starts to rotate forward with
the toe as the contact point, the heel leaves the ground first with the rotation speeding up;
then the toe leaves the ground, the rotation slows down; as the foot leans forward, the
rotation reverses; near the end of the foot forward movement, the toe elevation exceeds the
heel elevation, the rotation reverses again after the heel strike the ground; in the end of
the gait cycle, the toe lower down with the heel as the contact point until the foot is flat
again [30]. In Figure 6, the low pass filtered normal walking signal ω̌y = fL

(
ωy, 10

)
from

the gyroscope y axis is presented. The signals of walking cycles display a characteristic
pattern with well-defined features (peaks and plateaus) that are associated with the gait
events. The rules for event detection from the angular velocity ω̌y are predefined according
to the ground truth provided by the motion capture system. The detection algorithm
uses a set of dynamic thresholds and local peak-identification techniques to recognize the
sequence of the events. In particular, for each dynamic motion region segmented with
Equation (3), the TO is associated with the strongest local maximum within the filtered
cycle signal ω̌n

y (k), where n is the nth segment of dynamic region. The time instance of TO
can be found as the time index kn

TO, which satisfies the following conditions:

ω̌n
y (k

n
TO) > std

(
ω̌n

y

)
, ω̌n

y (k
n
TO) > ω̌n

y (k
n
TO − 1) and ω̌n

y (k
n
TO) > ω̌n

y (k
n
TO + 1). (4)

The HS corresponds to the following rising zero-crossing within the updated dynamic
region. The time instance of HS can be found as the time index kn

HS , which satisfies the
conditions as follows:

ω̌n
y (k

n
HS − 1)·ω̌n

y (k
n
HS) < 0 and ω̌n

y (k
n
HS) > ω̌n

y (k
n
HS − 1). (5)

The FF event is observed as the first local minimum between heel strike and toe off. The
time instant of FF can be found as the time index kn

FF satisfying the following conditions:

ω̌n
y (k

n
FF) < thsFF, ω̌n

y (k
n
FF) < ω̌n

y (k
n
FF − 1) and ω̌n

y (k
n
FF) < ω̌n

y (k
n
FF + 1), (6)

where thsFF is the empirical dynamic threshold defined as avg(ω̌n
y ) + 0.1·std(ω̌n

y ). This
instant resides within a plateau region of the gyroscope signal and generally represents the
angular velocity, which is closest to 0 dps.

Figure 6. The signal from the gyroscope aligned with the medio-lateral axis of the foot is used for
gait event detection. Each stride is characterized by a sequence of FF, TO, HS, and FF as indicated.
The green and blue areas refer to the swing and stance phases. The blue and green vertical dashed
lines define the starting time frame of the swing and stance phases, respectively.
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In order to further process the data, only valid strides (which contain the correct se-
quence <FF-TO-HS-FF>) have been considered. Furthermore, the event detection algorithm
was used to extract temporal parameters such as swing time, stance time, swing phase,
and stance phase (as described in Table 1). Stance time was calculated as the time interval
between HS and the next TO, swing time was calculated as the time interval between TO
and the next HS. Stance and swing phases were calculated as the ratio with respect to a full
stride time.

2.3.3. Spatio-Temporal Parameters Estimation

Drift accumulates due to the numerical integration of the acceleration errors. This
is addressed by using the zero-velocity update technique (ZUPT), whose main assump-
tions are that velocities and displacement are equal to zero during mid-stances, and that
integration drift within a gait cycle is accumulated linearly [35,36]. Therefore, numerical
integration can be carried out piecewise at every gait-cycle (using stationary intervals as
reset points) to avoid the propagation of drift throughout the signal, and linear dedrifting is
applied to each cycle to remove drift and discontinuities as shown in Equations (8) and (10).
Through the implementation of the AHRS and ZUPT algorithms, the accelerations are
integrated in the global reference frame to extract spatial features such as stride velocity
and stride length as follows:

vn
j (k) = vn

j (k− 1) + Ean
j (k)·∆t, (7)

dvn
j (k) = vn

j (k) +
k

Tn

(
vn

j (0)− vn
j (end)

)
, (8)

sn
j (k) = sn

j (k− 1) + dvn
j (k)·∆t, (9)

dsn
j (k) = sn

j (k) +
k

Tn (s
n
j (0)− sn

j (end)), (10)

where j ∈ {x, y, z}, vn
j and sn

j are the velocity and displacement of the nth valid stride

motion region, dvn
j and dsn

j are the dedrifted velocity and displacement of nth valid stride,
vn

j (0) and sn
j (0) is the initial velocity (equal to zero) of nth valid stride, vn

j (end) and sn
j (end)

are the velocity and the displacement at the end of the nth valid stride and Tn is the number
of the samples in the nth valid stride. Gait speed is calculated as the mean in-plane velocity
across a full gait stride:

vn =
1

Tn ∑k=end
k=0

√(
dvn

x(k)
)2

+ (dvn
y(k))2, (11)

where vn is the stride speed of the nth valid stride. Stride length is expressed as:

sn = ∑k=end
k=0

√(
dsn

x(k)
)2

+ (dsn
y(k))2, (12)

Cadence is expressed as a function of stride length and stride speed:

cadence = 60·v
n

sn ·2, (13)

The symmetry ratio (SR) of a particular parameter is calculated as

SR =
L− R

L+R
2

, (14)

where L and R are the value of the considered parameter for the left and right foot. The
sign of the SR indicates the bias direction, where a positive SR indicated a left bias whilst a
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negative SR corresponds to a right bias. The gait variability of a particular parameter can
be calculated as:

var =
µ

σ
, (15)

where µ and σ is the mean and standard deviation value of the considered parameter, re-
spectively.

The gait analysis procedure discussed in this section is summarized in Figure 7.

Figure 7. The flowchart of the data processing procedure.

2.4. Validation Method

To evaluate whether gait parameters could be accurately estimated by Nushu, four
healthy adults (with subjects’ information shown in Table 2), each perform five walking
sessions, twenty trials in total were measured and their data compared between optical
motion capture system and Nushu in a validation experiment. Sixteen reflective markers
were attached to each subject’s shoes and lower limbs, i.e., anterior superior iliac spine
(ASIS), posterior iliac spine (PSIS), distal lateral thigh, lateral femur epicondyle, distal
lateral shank, lateral malleoli, above the toe (second metatarsal phalangeal joint) and
behind the calcaneus (the same height as the toe marker). This is a standard lower limb
gait marker set. A highly accurate optical 3D gait analysis (3DGA) system (Vicon Oxford
Metrics, Ltd., Oxford, UK) with fourteen infrared cameras, which served as the reference
system, was used to track the instantaneous position of markers located on subject’s body
segments during the walking experiment. The lower limb skeleton model constructed from
3DGA markers is presented in Figure 8. Both the optical motion capture system and the
optimized Nushu system recorded walking data simultaneously at the optimal frequency
fopt, which is determined by the sampling optimization described in Section 2.1.

Table 2. A summary of subjects’ information.

Subjects Age Height (cm) Weight (kg)

Subject 1 26 165 50
Subject 2 35 165 75
Subject 3 65 162 58
Subject 4 66 168 78
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Figure 8. Subject lower limb skeleton model from 3DGA markers.

After the system set up, each healthy adult subject was instructed to complete five
walking sessions along the same 10-m long, straight line route, which was marked on the
floor with yellow tape. During 20 walking sessions, each subject stood stationary for five
seconds and then walked to the end of the marked area at his/her comfortable speed under
the guidance of a computer-generated voice. The Nushu system was reset between each
subject’s walking test. Each walking session was also video recorded for later analysis in
the case of unexpected events. After experiments, the position of calcaneus marker, which
is closest to the sensor placement, was used to detect the heel strike and estimate the foot
velocity and the displacement. The marker above the second metatarsal bone was used
to detect the toe off. The velocity was estimated by differentiating the calcaneus marker
locations as

vVicon =
.
pVicon, (16)

where pVicon is the position of 3DGA markers. The stride length was calculated as

LVicon(k) = pHS(k)− pHS(k− 1), k ∈ N+. (17)

To access if significant statistical differences in spatiotemporal gait parameters exist
between the Nushu and 3DGA systems, independent t-tests were investigated to compare
the two acquisition systems. The critical p value was set to α = 0.05.

2.5. A New Gait Metric

To characterize human gait in a simple and intuitive way, a new gait hodograph
descriptor obtained from the geometric gait features, was proposed in this section, which
serves the aim (3) as stated in the introduction. This gait descriptor reflects the charac-
teristics of gait patterns without complex calculations and detects abnormal gait patterns
intuitively [37]. This is in contrast to advanced gait analysis algorithms, which can achieve
relatively high performance, but are computationally expensive and cannot avoid errors in
estimating the quantitative gait metrics.

For each gait cycle, a gait hodograph is formed by neglecting the time dimension and
directly plotting the low pass filtered motion data from the accelerometer and gyroscope
sensors. The low pass filter with a cut off frequency 20 Hz is applied to get the main
characteristics, such that the shape characteristic is not noisy, but still contains the dominant
information in the low frequencies. Among all motion signals obtained from the triaxial
accelerometer, the triaxial gyroscope and the triaxial magnetometer, the trajectories of three
most prominent signals

{
ax(t), az(t), ωy(t)

}
from each person’s left and right foot are
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simultaneously reconstructed into 2-D planar projections,
{

ax(t), ωy(t)
}

, {ax(t), az(t)},{
az(t), ωy(t)

}
.

To quantitatively differentiate different people’s gait type by those secondary sig-
nals

{
ax(t), ay(t)

}
, {ωx(t), ωz(t)}, principal component analysis (PCA) is employed to

represent and distinguish characteristics of the gait features. PCA is a powerful analysis
tool for identifying data patterns and representing data sets to highlight their differences
and similarities with minimum information loss. In order to implement PCA analysis,{

ax(t), ay(t)
}

, {ωx(t), ωz(t)} signals of each step cycle were resampled to 251× 4 data
points. Then, the median step cycle was selected among the time series to represent each
person’s gait and then normalized for a detailed analysis. This normalization refers to mean
centering, subtracting the average values from each cycle data of median step to make its
empirical mean zero. The resultant mean centering data were denoted by

{
ãx(k), ãy(k)

}
,

{ω̃x(k), ω̃z(k)}, where k ∈ {1, 2, . . . 251}, and then were formulated into a matrix form as

Ã =

 ãx(1) ãy(1)
...

...
ãx(251) ãy(251)

, W̃ =

 ω̃x(1) ω̃z(1)
...

...
ω̃x(251) ω̃z(251)

 (18)

Afterwards, PCA was performed on these matrices.

3. Results
3.1. Sampling Frequency Optimization

In Figure 9, a spectrum of acceleration signals from one normalized average stride
captured by three different sensors sampled at 5000 Hz (blue: DJB), 100 Hz (red: Nushu),
and 100 Hz (yellow: Axivity) is presented. The amplitude indicates the strength of the
frequency components relative to noise. We can see that the amplitude flatness was
maintained up to 25 Hz for all X, Y, and Z components. Subsequently, amplitudes started
to decline until approximately 120 Hz, while they were still significantly larger than the
amplitude of the high-frequency noise, which indicates that there were useful frequency
components between 25 and 120 Hz. Two sensors sampled at 100 Hz could not capture
useful information between 50 and 120 Hz as shown in Figure 9. This shows that a sampling
rate of 100 Hz was not adequate to capture all the relevant information for gait analysis. To
find the optimal sampling frequency for gait analysis, the normalized detected stride data
from the highest resolution piezoelectric sensor data was first processed with a series of
low pass filters (LPFs). Those LPFs have stopband frequencies ranging from 50 to 2500 Hz.
The RMSE (%) between raw data and filtered data of the X, Y, and Z axis as a function of
LPF cut-off frequency is shown in Figure 10. As the LPF cut-off frequency increased from
25 to 125 Hz, the RMSE (%) decreased significantly. However, the further increase of LPF
cut-off frequency above 125 Hz had no significant effect on the RMSE (%). Based on the
trade-off between RMSE (%) and LPF cut-off frequency, the sampling frequency 250 Hz
(twice of the stride frequency 125 Hz) was chosen as the optimal frequency fopt, which
could not only capture the most stride information but also save energy and memory. This
result also shows a good agreement with the study in [27], which has found that the lowest
sampling frequency for gait analysis lies between 200 and 300 Hz. Those results are in line
with the aim (1) mentioned in the introduction.
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Figure 9. Spectrum of acceleration signals from one normalized stride sampled at 5000 Hz (blue: DJB),
100 Hz (red: Nushu), and 100 Hz (yellow: Axivity).

Figure 10. RMSE (%) between low-pass filtered signals and raw signals for a normalized stride as a
function of LPF cut-off frequency.

3.2. Performance Evaluation

Eight parameters, stride time, stride length, swing time, stance time, velocity, cadence,
swing phase, and stance phase, were calculated using Nushu and compared to the ones
calculated based on reference data from 3DGA. For each stride, the differences between
Nushu and 3DGA of these eight parameters across all subjects’ strides were shown in the
normalized histogram (Figure 11). The error metrics, mean absolute error (MAE), MAE
(%), RMSE, and MAE standard deviation (SD), averaged by each session for all subjects,
and p values are reported in Table 3. Percentage MAEs for stride time, stride length, stride
velocity, cadence, swing time, stance time, swing phase, and stance phase were 1.19%,
1.68%, 2.08%, 1.23%, 3.02%, 2.59%, 3.2%, and 2.12%, respectively. Bold p values, where
p < 0.05, indicate significant differences between Nushu and 3DGA systems.
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Figure 11. Histogram of error distribution of eight parameters for validation: stride time, stride length, swing time, stance
time, velocity, cadence, swing phase, and stance phase.

Table 3. Accuracy and precision of Nushu estimated spatiotemporal gait parameters.

Gait Parameter Units MAE MAE (%) RMSE SD p Value

Stride Time s 0.012 1.19 0.017 0.011 0.732
Stride Length m 0.024 1.68 0.030 0.018 0.765
Stride Velocity m/s 0.029 2.08 0.037 0.025 0.878

Cadence strides/min 1.390 1.23 1.942 1.389 0.714
Swing Time s 0.012 3.02 0.015 0.008 0.807
Stance Time s 0.017 2.59 0.021 0.013 0.684
Swing Phase % 1.239 3.2 1.502 0.875 0.713
Stance Phase % 1.303 2.12 1.513 0.792 0.569

SR of Stride Time - 0.022 - 0.028 0.018 0.607
SR of Stride Length - 0.021 - 0.028 0.019 0.464
SR of Stride Velocity - 0.029 - 0.042 0.032 0.509

SR of Swing Time - 0.047 - 0.058 0.037 <0.05
SR of Stance Time - 0.043 - 0.047 0.021 <0.05

Variability of Stride Time s 0.011 - 0.014 0.009 0.684
Variability of Stride Length m 0.002 - 0.023 0.012 0.066
Variability if Stride Velocity m/s 0.002 - 0.029 0.017 0.180
Variability of Swing Time s 0.012 - 0.018 0.014 <0.05
Variability of Stance Time s 0.014 - 0.016 0.008 0.382

3.3. A New Gait Metric

In this section, gait hodographs were analyzed based on the methods explained in
Section 2.4. The results serve the aim (3) stated in the introduction. Figure 12 shows 2-D planar
projections of walking cycle trajectories from three healthy persons’ left (Figure 12A,C,E) and
right foot (Figure 12B,D,F), and one stroke patient’s (recording performed in a different
experiment) left (Figure 12G) and right (Figure 12H) foot. The stroke patient’s walking
data on a treadmill are collected by Nushu in this section only for metric comparison. The
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corresponding walking movements are shown in Supplementary Materials Video S1–S3
for healthy persons and Video 4 for stroke patient. To eliminate the noisy vibration from
the treadmill, the collected data were filtered with 20 Hz low pass filter to get a main
graphical characteristic. In these hodographs, the closed planar shape is encircled once in
the counterclockwise direction for each gait cycle. Green stars mark the HS, blue circles
mark the TO. The green lines represent stance phases, blue lines describe swing phases.
Subtle differences of shapes and positions are observed among three different healthy
persons, for example, the variability in gait cycles of the first person (Figure 12A,B) was
smaller than the other two healthy persons (Figure 12C–F). However, all hodographs of
healthy individuals had the same well-recognizable shape characteristics. From the stroke
patient’s hodograph (Figure 12G,H), the gait patterns of both feet significantly differed
from healthy individuals. Recognizable shape characteristic for the right foot were not
apparent. In addition, the range of ax(t), az(t), and ωy(t) for the stroke patient’s right foot
was significantly smaller than the ones for healthy individuals, which reflected reduced
flexibility of the ankle dorsiflexion and knee flexion caused by stroke. This also agreed
well with the fact that the stroke affected this patient’s right body more severely than the
left side.

Figure 12. Hodographs of prominent walking signals
{

ax(t), ωy(t)
}

, {ax(t), az(t)},
{

az(t), ωy(t)
}

, gait cycle trajectories
for three healthy persons (left/right: A/B, C/D, E/F), and a stroke patient (less impaired/more impaired: G/H). Green
star markers: HSs, blue circle markers: TOs, green solid lines: stance phases, blue solid lines: swing phases.

In Figure 13, a planar 2-D projection of
{

ax(t), ay(t)
}

and {ωx(t), ωz(t)} are pre-
sented to provide information about foot movement forward-and-backward, left-and-right
in the horizontal plane, and the rotation of the ankle joints around the raw and yaw axis but
does not indicate up-and-down foot movement and rotation around the pitch axis during
walking. When healthy people walk along a straight path, the feet did not significantly
sway from side to side. Therefore, ay(t) was limited to a small range. The 2-D projection
hodograph of

{
ax(t), ay(t)

}
should be in an elongated ellipsoid. For the projection of

{ωx(t), ωz(t)}, the ankle joint’s rotation around raw and yaw axes was limited, and the
signal should be dispersed around the original point of the coordinate.



Sensors 2021, 21, 2869 17 of 21

The PCA results of from three healthy people (yellow, blue, and green) and one stroke
patient (red) for the left and right side are shown in Figure 14: A, B denote the PCA results
of Ã metrix, C, D denote the PCA result of W̃ matrix, and A, C and B, D plots are for
their left and right side, respectively. In each plot and for each person, the longer arrow
denotes the first principal component vector, which indicates the direction of the largest
variation in the data. The length of the vector is the corresponding singular value of Ã or
W̃ matrix, which indicates the degree of variation along the direction of the vector. The 95%
confidence ellipses based on PCA summarize the clouds of the data points and describe
the signal variability containing the underlying mean.

Figure 13. Planar 2-D projection of secondary signals (A)
{

ax(t), ay(t)
}

and (B) {ωx(t), ωz(t)}
from a healthy subject. Green star markers: HS. Blue circle markers: TO. Green line: stance phase.
Blue line: swing phase.

Figure 14. PCA results of Ã, W̃ matrices for three healthy subjects and one stroke patient. The dotted lines represent
the normalized median cycle of each person. The ellipses show 95% confidence region. The arrows are plotted by the
eigenvectors, and its length equal corresponding eigenvalues. (A,C) For left foot and (B,D) for right foot.

In those plots, the data of the three healthy subjects show different principal compo-
nents, indicating their personal walking patterns. The data of the stroke patient shows
a significant different principal component compared to the healthy subjects. As shown
in Figure 14A,B, the singular values of the stroke patient were much smaller than that
of healthy subjects. Moreover, the principal component vectors of the stroke patient in
Figure 14B even lie in different quadrants from the vectors of the healthy subjects. This
agrees with the fact that the right body side of the stroke patient is more severely com-
promised than the left side. Similar differences can also be observed in Figure 14C,D. The
left side (less affected) shows a smaller confidence ellipse, which revealed that the ankle
rotation variation of the stroke patient is much smaller than healthy subjects. This also
demonstrates that during walking, the patient’s ankle joint is less flexible and the variability
of spatiotemporal kinematic joint parameters is much smaller than healthy subjects [38,39].
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The right foot (more affected) of the stroke patient demonstrates the largest deviation from
normal, with the principal component vector manifesting in a different orientation than in
healthy subjects.

These results suggest that the principal components can be a useful metric for quan-
tifying personal gait characteristics and allows deficit detection of abnormal gait when
compared to healthy subjects. It proves a valuable metric for tracking gait progress re-
motely throughout rehabilitation, and will help provide an appropriate treatment during
early stages rehabilitation.

4. Discussion

In the presented study, we developed a wearable in-shoe gait analysis system em-
bedded with on-board inertial sensors, i.e., accelerometer, gyroscope, and magnetometer,
that can transfer data to mobile devices wirelessly via Bluetooth in real-time or store data
locally on an SD card without causing inconvenience for the users. The batteries of the
shoes are charged wirelessly on a customized docking station, based on electromagnetic
induction. This cost-effective, portable, and user-friendly in-shoe system enables real-time
gait monitoring even during outdoor settings.

We examined the aliasing effect of an inertial sensor and identified the optimal sam-
pling frequency for walking data acquisition. It is important to identify the frequency
distribution of the useful signal information, especially for fast varying signals such as
an accelerometer. Inadequate sampling frequency will prohibit capturing high frequency
gait signals, and leading to significant drift for spatial gait parameter estimation due to the
continuous integration of the sensory data. Despite the advances in the field, this aspect is
usually overlooked in the literature. We believe the research in the field will benefit from a
standardization effort in determining optimal data acquisition parameters.

To estimate spatiotemporal gait parameters, a well-established ZUPT gait analysis
technique was extended with a gradient descent-based Madgwick’s filter and heuristic
techniques. The estimation results of spatiotemporal gait parameters compared between the
proposed system and the computer-based optical 3DGA system showed a good agreement,
with percentage absolute errors of 1.19%, 1.68%, 2.08%, 1.23%, 3.02%, and 2.59% for stride
time, stride length, stride velocity, cadence, swing time, and stance time respectively. All
p values for those spatiotemporal gait parameters were larger than 0.05, which indicate
that there was no significant statistical difference between the two data acquisition system,
Nushu and 3DGA. For stride time, stride length, stride velocity, and cadence, the validation
results showed small errors. While for swing and stance time estimation, the estimation
was relatively worse. Additionally, p values for the asymmetry of swing and stance time
was less than 0.05, which indicate that there were significant differences in those parameters
between Nushu and 3DGA. This may be due to the reason that swing and stance phases
were separated by the transition from foot flexion to dorsal extension. While as the foot
is not a rigid body segment, this definition may not hold for all strides and subjects,
thus leading to a reduced accuracy of TO detection. Compared to other wearable inertial
sensors for healthy subjects’ gait assessment in recent studies, the developed Nushu system
demonstrated high accuracy in estimated spatiotemporal gait metrics as shown in Table 4.
The estimation error of the stride length and stride velocity showed a relatively small value
compared with other wearable sensor-based systems, which indicated that the proposed
algorithm is promising for spatial parameter extraction.
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Table 4. Accuracy comparison of RMSE (%) and MAE (%) between recent wearable devices and proposed Nushu system.

Reference Subjects Sampling
Frequency Setup Device

Location
Stride
Time

Stride
Length

Stride
Velocity Cadence

RMSE (%)

Teufl
et al. [20]. 24 healthy 60 Hz 7 IMUs Foot, shank,

thigh, pelvis, 0.90 2.98 2.72 3.07

Tunca el
al. [30]. 22 healthy 100 Hz 2 IMUs Foot - 5.2 - -

Zhang el
al. [40]. 9 healthy 500 Hz

2 IMUs,
8 piezoresistive

sensors
Foot - 2.5 2.5 -

Nushu 4 healthy 250 Hz 2 IMUs Foot 1.60 2.06 2.71 1.71

MAE (%)

Kluge
et al. [22]. 11 healthy 102.4 Hz 2 IMUs Foot 1.1 3.6 3.7 -

Gonzalez
et al. [41]. 6 healthy 100 Hz 1 IMUs L3 vertebra 2 - - -

McCamley
et al. [42]. 18 healthy 100 Hz 1 IMUs Spine 2 - - -

Nushu 4 healthy 250 Hz 2 IMUs Foot 1.19 1.68 2.08 1.23

The limitation of this study is that we demonstrated our system in a limited small-scale
study with healthy subjects. Having validated our hardware and software, we are planning
to validate in a larger set of young adults then move to older adults. We are also scheduling
clinical studies for the validation of our approach for the diagnostics and monitoring of
patient groups (such as Parkinson’s, stroke, and multiple sclerosis) and for the monitoring
of specific population groups such as the elderly. Another limitation is that due to the
spatial constraints of the reference system, no free-living movements were evaluated in the
current study. For different walking conditions and walking speed, the system performance
might be affected. The further validation for different walking conditions and walking
speed should be conducted, and the validation of the kinematic and kinetic gait parameters
should also be considered in the future studies. Besides, incorporating the system with a
pressure sensor in future to measure the load distribution across the foot and the center of
pressure during standing and walking is valuable for postural stability evaluation [10,43].
Another improvement can be the synchronization of the sensors in left and right shoes with
respect to time. In this study, we estimated the spatiotemporal parameters from the left
and the right sensors individually without any need for synchronization. However, this
can be achieved using a mobile application or a user interface via which multiple sensors
can be controlled to start or stop recording simultaneously.

We introduced a new intuitive visualization method of describing spatiotemporal re-
lations between collected gait data using hodographs, which captured clearly the variance
in the walking data. It reflected the gait kinematics throughout every single gait cycle,
which was different from traditional discrete metrics commonly used in the literature,
such as walking speed and stride variability. Moreover, the hodographs clearly displayed
important differences in walking characteristics between healthy subjects and stroke pa-
tients at the first glance without further processing the gait cycle data, which requires
significant effort and introduces inevitable error when applying traditional gait metrics
for abnormal gait recognition. Differences in gait patterns can be easily recognizable from
graphical hodographs, even with a limited number of gait cycles, e.g., only 12 gait cycles
in Figure 12. While different walking subjects and walking speed may have an effect
on the graphical walking characteristics, such as slower walking speed leads to greater
variabilities, older adults display a greater variability than young adults [44], which leads
to a significant different graphical characteristics. Therefore, the effects of different walking
conditions on the proposed metric should be investigated in the future studies. In addition,
we complemented the visual hodographs with a new quantitative metric provided by a
PCA algorithm. In the future, a shape recognition algorithm could further be developed
for hodographs in order to perform automatic pathologic gait recognition and classifica-
tion [45]. The combination of visual and quantitative metrics offers a great potential to
become a diagnostic tool for differentiating gait patterns between individuals and tracking
the progress of patients during their rehabilitation process.
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5. Conclusions

In summary, we developed an inertial sensor-based in-shoe system with optimized
sampling configurations for gait monitoring and analysis. We demonstrated that our
proposed algorithm had a promising performance for spatiotemporal gait parameters
estimation. Thus, the developed system has a great potential for clinical and daily life
applications. A new gait metric based on graphical eigenanalysis was proposed, and it
shows a high potential for gait diagnostic and gait rehabilitation assessment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/s21082869/s1, Video S1: Walking pattern of healthy subject 1. Video S2: Walking pattern of healthy
subject 2. Video S3: Walking pattern of healthy subject 3. Video S4: Walking pattern of stroke patient.
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