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Suppressing disease spreading 
by using information diffusion on 
multiplex networks
Wei Wang1,2,3, Quan-Hui Liu1,2, Shi-Min Cai1,2, Ming Tang1,2, Lidia A. Braunstein3,4 & 
H. Eugene Stanley3

Although there is always an interplay between the dynamics of information diffusion and disease 
spreading, the empirical research on the systemic coevolution mechanisms connecting these two 
spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics 
between information and disease spreading by utilizing real data and a proposed spreading model on 
multiplex network. Our empirical analysis finds asymmetrical interactions between the information 
and disease spreading dynamics. Our results obtained from both the theoretical framework and 
extensive stochastic numerical simulations suggest that an information outbreak can be triggered in a 
communication network by its own spreading dynamics or by a disease outbreak on a contact network, 
but that the disease threshold is not affected by information spreading. Our key finding is that there 
is an optimal information transmission rate that markedly suppresses the disease spreading. We find 
that the time evolution of the dynamics in the proposed model qualitatively agrees with the real-world 
spreading processes at the optimal information transmission rate.

The coevolution dynamics on complex networks has attracted much attention in recent years, since dynamic pro-
cesses, ubiquitous in the real world, are always interacting with each other1,2. In biological spreading dynamics, 
two strains of the same disease spread in the same population and interact through cross immunity3–5 or mutual 
reinforcement6. In social spreading dynamics, individuals are surrounded by multiple items of information sup-
plied by, e.g., Facebook, Twitter, and YouTube. These sources of information compete with each other for the 
limited attention-span of users, and the outcome is that only a few items of information survive and become pop-
ular7,8. Recently scholars have become aware of the coevolution or interplay between biological and social spread-
ingdynamics9–11. When a new disease enters a population, if individuals who are aware of its potential spread take 
preventive measures to protect themselves12,13 the disease spreading may be suppressed. Our investigation of the 
intricate interplay between information and disease spreading is a specific example of disease-behavior systems14.

Studying the micromechanisms of a disease-behavior system can help us understand coevolution dynamics 
and enable us to develop ways of predicting and controlling the disease spreading10. In this effort a number of 
excellent models15–17 have demonstrated the existence of non-trivial phenomena that differ substantially from 
those when there is independent spreading dynamics18–24. Researchers have demonstrated that the outbreak of a 
disease has a metacritical point16 that is associated with information spreading dynamics and multiplex network 
topology and that information propagation is promoted by disease spreading17. Funk et al. found that the disease 
threshold is altered once the information and disease evolve simultaneously15. These models make assumptions 
about the coevolution mechanisms of information and disease spreading and do not demonstrate the interacting 
mechanisms in real-world systems. Because we do not understand the microscopic coevolution mechanisms 
between information and disease spreading dynamics from real-world disease-behavior systems, we do not have a 
systematic understanding of coevolution dynamics and do not know how to utilize information diffusion to more 
effectively suppress the spread of disease.
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We present here a systematic investigation of the effects of interacting mechanisms on the coevolution pro-
cesses of information and disease spreading dynamics. We first demonstrate the existence of asymmetrical inter-
actions between the two dynamics by using real-world data from information and disease systems to analyze the 
coevolution. We then propose an asymmetric spreading dynamic model on multiplex networks to mimic the 
coupled spreading dynamics, which will allow us to understand the coevolution mechanics. The results, obtained 
from both the theoretical analyses and extensive simulations, suggest some interesting phenomena: the informa-
tion outbreak can be triggered by its own spreading dynamics or the disease outbreak, while the disease threshold 
is not affected by the information spreading. Our most important finding is that there is an optimal information 
transmission rate at which the outbreak size of the disease reaches its minimum value, and the time evolution of 
the dynamics in the proposed model qualitatively agrees with the dynamics of real-world spreading.

Results
Empirical analysis of real-world coevolution data. Information about disease can be obtained in many 
ways, including face-to-face communication, Facebook, Twitter, and other online tools. Since the growth of the 
Internet, search engines have enabled anyone to obtain instantaneous information about disease. Patients seek out 
and analyze prescriptions using search engines in hopes of obtaining a means of rapid recovery. Healthy individu-
als use search engines to identify protective measures against disease to maintain their good health.

To examine the coevolution of real-world data about information and disease, we use weekly synchronously 
evolving data on information and disease systems associated with influenza-like illness (ILI) in the US during 
an approximate 200-week period from 3 January 2010 to 21 September 2013. The ILI dataset records weekly 
outpatient visits to medical facilities, and Google Flu Trends (GFT) dataset keeps track of week queries in Google 
search engine about ILI symptoms25. The GFT is used to analyse the occurrence probability of a disease26. For 
simplicity, we assume that the volume of information about the disease is proportional to the GFT volume 
because any individual can use the Google search engine to gain information about ILI. For a detailed description 
of the data see ref. 26.

Figure 1(a) shows the real-data time series of information nG(t) and disease nD(t) indicating that macroscopi-
cally the two systems exhibit similar trends and confirming that the GFT effectively predicts disease spreading26,27 
— although some researchers have expressed skepticism28. To identify the coevolution mechanisms operating 
between information and disease spreading, we further investigate the time series from a microscopic point of 
view. Specifically, we study their relative growth rates vG(t) of nG(t) and vD(t) of nD(t) (see definitions in Method 
Section). Figure 1(b) shows the evolution of vG(t) and vD(t). Note that the same and opposite growth trends of 
vG(t) and vD(t) coexist. For example, at week 53 (week 153), vG(53) >  0 [vG(153) >  0] and vD(53) <  0 [vD(153) >  0]. 
Thus the GFT and ILI show the opposite (the same) growth trends.

To conceptualize the correlations of the growth trends between the two dynamics, we analyze the 
cross-correlations c(t) between the time series of vG(t) and vD(t) for a given window size wl

29 using the Pearson 
correlation coeff icient c(t)  between the two t ime series + +v t v t v t w{ ( ), ( 1), , ( )}G G G l  and 

+ +v t v t v t w{ ( ), ( 1), , ( )}D D D l . When c(t) >  0, the growth rates of information and disease share the same 
trend in the time interval wl. When c(t) <  0, the information and disease have opposite growth trends. Figure 1(c) 
shows that the positive and negative c(t) are uncovered for wl =  3 and wl =  20, respectively. This may be because 
individuals tend to search for disease information when they are infected or when someone they know is infected, 
and thus a disease outbreak promotes the spread of information, i.e., the growth trends of GFT and ILI will be the 
same. When individuals acquire information about the disease they then take action to protect themselves, and 
this causes the growth trends of GFT and ILI to go in opposite directions. We thus conclude that there are asym-
metric interactions between the dynamics of information and disease spreading, i.e., disease spreading promotes 
information spreading, but information spreading suppresses disease spreading. Figure 1(d) plots the fraction of 
negative correlations fP and positive correlations fN as a function of wl. The fraction of positive correlations fP 
(negative correlations fN) increases (decreases) with the wl, since individuals taking measures are dependent on 
the timeliness of the information. Note therefore that asymmetric interactions can only continue over a short 
period of time.

Coevolution dynamics on multiplex networks. We now propose a novel model based on the coev-
olution mechanisms in real-world data, i.e., the asymmetric interactions between information and disease 
spreading. Information spreads through communication networks and disease usually spreads through contact 
networks. Communication and contact networks usually have different topologies. To describe the distinct trans-
mission topologies of the information and disease we use a multiplex network30–33 and construct an artificial 
communication-contact coupled network without degree-degree correlations in intralayers and interlayers.

We generate uncorrelated two-layer networks  and  with degree distributions  P k( ) and  P k( ), where 
networks  and  represent the communication and contact networks, respectively. Nodes are individuals and 
edges are the interactions among individuals. Each node on layer  is randomly matched one-to-one with a node 
of layer . A schematic of the communication-contact coupled networks is shown in Fig. 2(a).

Using the analysis results from real-world data, we construct an asymmetric coevolution information and 
disease spreading model. In the communication network (layer ) we use the classic susceptible-infected- 
recovered (SIR) epidemiological model21,34,35 to describe the spreading of information about the disease. Each 
node can be in one of three states: susceptible, informed, or recovered. A susceptible individual has not acquired 
any information about the disease, infected (or informed) individuals are aware of the disease and can transmit 
their information to their neighbors on the communication layer, and recovered individuals have the information 
but do not transmit it to their neighbors. At each time step, each informed node transmits their information to 
each susceptible neighbor on layer  with a probability β . The informed node recovers with a probability γ. To 
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include the interacting mechanism between information and disease revealed in the real-world data analysis, i.e., 
that disease spreading promotes the information spreading, we assume that a susceptible node will become 
informed when its counterpart in layer  is infected, as shown in Fig. 2(b).

We now introduce a vaccination (V) state into the disease spreading dynamics on the contact network  
(layer ) and the model becomes SIRV36,37. The SIR component of the spreading dynamics is the same as the 
information spreading on layer  and differs only in the infection and recovery rates, β and γ , respectively. To 
introduce the mechanism from our real-world data analysis, i.e., that the spread of information suppresses disease 
spreading, we assume that an intelligent susceptible individual on layer  is vaccinated with probability p (i) when 
its counterpart node on layer  is informed and (ii) when the number of its neighbors in the infected state is equal 
to or greater than a static threshold φ [see Fig. 2(c)]. Since immunization is always expensive, condition (i) means 
that the individual must use the communication network to determine the perniciousness of the disease and 
condition (ii) means that the individual will adopt immunization measures only when the probability of infection 
is sufficiently high.

We initiate asymmetrical coupled coevolution dynamics by randomly infecting a tiny fraction of seed nodes 
on layer  and allowing their counterparts on layer  to become informed. We set the effective information 
transmission and disease transmission rates to be λ β γ= /   and   λ β γ= / , respectively. Without lack of 
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Figure 1. Weekly outpatient visits and Google Flu Trends (GFT) of influenza-like illness (ILI) from 3 
January 2010 to and 21 September 2013 in the United States. (a) The relative number of outpatient visits 
nD(t)/〈 nD(t)〉  (blue dashed line) and relative search queries aggregated in GFT nG(t)/〈 nG(t)〉  (red solid line) 
versus t, where = ∑ =n t n t t( ) ( )/D t

t
D1 maxmax  and = ∑ =n t n t t( ) ( )/G t

t
G1 maxmax , and tmax is the number of weeks.  

(b) The relative growth rate vD(t) (blue dashed line) and vG(t) (red solid line) of nD(t) and nG(t) versus t, 
respectively. (c) Cross-correlation c(t) between the two time series of vG(t) and vD(t) for the given window size 
wl =  3 (blue dashed line) and wl =  20 (red solid line). (d) The fraction of negative correlations fP (blue squares) 
and positive correlations fN (red circles) as a function of wl. In (a), nG(t) and nD(t) are divided their average 
values respectively. In (b), the circles and squares denote the relative growth rate at t =  53 and 153, respectively.
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generality we set A Bγ γ= = 1. A steady state will be reached when there are no more nodes in the informed or 
infected state.

Heterogeneous Mean-field theory. To quantify the asymmetrical coevolution dynamics, we develop a 
heterogeneous mean-field theory. The outbreak threshold and the fraction of infected or informed nodes in the 
final state are the two quantities that control the outcome. For the information spreading, the densities of suscep-
tible, informed, and recovered nodes with degree k  at time t are denoted by s t( )k




, 

ρ t( )k , and r t( )k




, respec-
tively. Analogously, for the disease spreading, the densities of the susceptible, infected, recovered, and vaccinated 
nodes with degree k at time t are denoted by 


s t( )k , 


ρ t( )k

A , r t( )k



, and v t( )k
B


, respectively.
We first study the time evolution of information spreading on a communication network, i.e., layer . The 

evolution equation of the susceptible node with degree k on layer  can be written

λ λ= − Θ + Θ
ds t

dt
s t k t k t

( )
( )[ ( ) ( )], (1)

k
k

A
A

A A A B B B
A

A

where k  is the average degree of layer , and Θ t( )  Θ t[ ( )] is the probability that a susceptible node connects 
to an informed (infected) neighbor on uncorrelated layer  ( )  (see details in the Supporting Information). The 
increase in ρ t( )k




 is equal to the decrease in s t( )k



, and thus the evolution equations for 

ρ t( )k  and 


r t( )k  are

ρ
λ λ ρ= Θ + Θ −

d t

dt
s t k t k t t

( )
( )[ ( ) ( )] ( ), (2)

k
k k

A
A

A A A B B B
AA

A A

and

ρ=
dr t

dt
t

( )
( ), (3)

k
k






respectively.
We next investigate the evolution of the disease spreading on layer , the contact network. The time evolution 

equations for the susceptible, infected, recovered, and vaccinated nodes on layer  are

λ= − Θ − Ψ
ds t

dt
k s t t k t

( )
( ) ( ) ( , ), (4)

k
k



 


 




Figure 2. Illustration of asymmetrical mechanisms of information and disease on multiplex networks.  
(a) A multiplex network is used to represent communication and contact networks, which are denoted as layer 
 and layer , respectively. Each layer has 5 nodes. (b) The promotion of information spreading by disease. If 
node 5 on layer  is infected, its counterpart on layer  becomes informed. (c) The suppression of disease 
spreading by information diffusion. Node 3 in layer  becomes vaccination only when: (1) its counterpart on 
layer  is in the informed state and (2) the number of its infected neighbors on layer  is equal to the threshold 
φ =  2.
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and


 = Ψ

dv t

dt
k t

( )
( , ), (7)

k
B

respectively, where Ψ k t( , ) is the probability that a susceptible node on layer  with degree k will be vaccinated. 
More details about the Eqs (1–7) can be found in the Supporting Information.

We describe the asymmetrical coevolution dynamics of information and disease spreading using Eqs (1–3) 
and (4–7), which allow us to obtain the density of each distinct state on layer  and  at time t, i.e.,

∑χ χ=t P k t( ) ( ) ( ),
(8)

h
k

h h h
h

h
k

where A B∈h { , } and χ ∈  {S, I, R, V}. When t →  ∞ , in the steady state, the final sizes of information and disease 
systems are R and R , respectively.

Initially only a tiny fraction of nodes on layers  and  are informed or infected, and most are susceptible. 
Thus we have ≈s 1k

A


, ≈s 1k
B


. Linearizing Eqs (2) and (5), i.e., neglecting the high order of ρk
A


 and 

ρk

B , the crit-
ical effective information transmission probability is

λ =
Λ
1 ,

(9)
c

C
1



where ΛC
1  is the maximal eigenvalue of matrix

A B

B

A
A A A A A A

B
B B B B B B
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= ′ − ′

′

′

C C D
C

C k k P k k

C k k P k k

0
,
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k k
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,

,

and

λ= ′ − ′′D k P k( 1) ( ),k k,


    

from which we obtain

A BΛ = Λ Λmax { , }, (10)C
1 1 1

where Λ
1  and Λ

1  are the maximal eigenvalues of the adjacent matrix of layers  and , respectively. More details 
can be found in the Supporting Information. The critical value λc  separates information spreading dynamics into 
local and global information regions. When λ λ≤ c

, it is in the local information region. When 
λ λ> c , it is 

in the global information region. In Eq. (9) the global information outbreak condition is correlated only with the 
topologies of layers  and , i.e., the immunization probability p and threshold φ do not affect the outbreak of 
information, but increasing the degree heterogeneity of layers  and   increases the information outbreak 
probability.

When λ λ> c , immunization can suppress disease spreading on subnetwork , and thus here immunization 
process and disease spreading can be treated as competing processes3. Ref. 3 demonstrates that the two competing 
processes can be treated as one after the other in the thermodynamic limit. When the immunization process 
spreads more quickly than the disease, it first spreads on layer  and then the disease spreads on the residual 
network (i.e., the network after immunization). When the disease spreads more quickly than the immunization, 
the opposite occurs. Using refs 3 and 17 we find that the immunization progresses more quickly than the disease, 
i.e., λ λ λ λ>u uA B B A , in which λ = 〈 〉 〈 〉 − 〈 〉k k k/( )u

2
     and    λ = 〈 〉 〈 〉 − 〈 〉k k k/( )u

2 , which are the thresh-
olds for the SIR model on a one-layer network21, and 


 are the moments of the degree distribution. Because in 

many real-world scenarios information spreads more quickly than disease, we focus on that case. Thus immuni-
zation and disease spreading on layer  can be treated successively and separately. When φ =  0, the approximate 
disease threshold is

λ =
〈 〉

− 〈 〉 − 〈 〉

k
V k k(1 )( )

,
(11)

c 2
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which is the same as in ref. 17. In Eq. (11), where =V pQB A, and Q is the final density of the informed popula-
tion without disease spreading obtained using link percolation theory21. From Eq. (11) we can see that, as 
expected, the threshold is bigger than in the SIR model without vaccination.

When φ ≥  1 we use competing percolation theory to obtain the approximate disease threshold. The informa-
tion first spreads on layer , and then the disease spreads on layer . Although many nodes on layer  receive the 
information for large values of λ , the counterparts of those informed nodes still cannot be immunized when λ  
is small. This is the case because according to the proposed model the susceptible nodes that are vaccinated must 
have authentication from both layers  and . These informed nodes cannot acquire authentication from layer  
when λ is below the disease threshold. Only for large values of λ, these informed nodes can obtain authentica-
tion simultaneously from layers  and . Here the immunized nodes are VB ≈  0 and thus the approximate disease 
threshold is

 

 
λ =

−

k
k k

,
(12)

c 2

which is the same as the outbreak threshold of SIR disease21, i.e., this kind of information-based immunization 
strategy does not affect the disease outbreak threshold, and this differs from the existing results16,17. The disease 
threshold is dependent only on the topology of layer  and is independent of the topology of layer , the immu-
nization probability p, and the threshold φ. The asymmetrical coevolution mechanisms presented in our model 
may explain why the disease threshold is not altered in some real-world situations38–40.

Simulation results. We perform extensive stochastic simulations to study the proposed asymmetrically 
interacting spreading dynamics on multiplex networks. In the simulations the network sizes and average degrees 
are set at A B= =N N 104 and A B= =k k 8, respectively. We use the uncorrelated configuration model to 
generate layers  and  according to the given degree distributions41,42. For each multiplex network, we perform 
the dynamics 104 times and measure the average final fraction of information size R , disease size R, and immu-
nization size V with five randomly selected seeds in layer B. We then average these results over 100 network 
realizations.

To understand the coevolution dynamics of information and disease, we use Erdős-Rényi (ER) networks to 
represent the communication and contact networks. The degree distributions of layer  and layer   are 
   

 = −P k e k k( ) / !k k  and = −P k e k k( ) / !k k
   

  , respectively.
Figure 3 shows how the immunization threshold φ affects the final information, disease, and vaccination sizes. 

For the information spreading on layer , we find that R increases with λ and λ [see Fig. 3(a,d)]. In addition, 
R  increases with φ because the individuals in layer  need a large φ value to guide their immunization decisions 

[see Fig. 3(c,f)], which causes R to increase with φ [see Fig. 3(b,e)]. As a result, the information spreading 
increases as disease spreading increases.

Figure 3(b,e) show that R  increases with φ, since individuals are increasingly reluctant to be immunized as φ 
increases, and this causes V to decrease with φ [see Fig. 3(c,f)]. Note that R  and V  as a function of λ  have a 
non-monotonic shape for φ =  2 and 4, that R  V( ) first decreases (increases) with λ  and then increases 
(decreases) with λ. Thus there is an optimal information transmission rate λ

O at which R V( )  reaches its min-
imum (maximum) value. Qualitatively this is because a node on layer  will be immunized only (i) when its 
counterpart on layer  is informed, and (ii) when the number of its infected neighbors nI  is larger than φ. For a 
given λ , condition (i) is difficult to fulfill when λ  is small and the spread of the information is slow. Increasing 
λ  allows more nodes to fulfill condition (i) and allows V R( )  to increase (decrease) with λ. When the value of 
λ is very large the information spreads so rapidly that condition (ii) can no longer be satisfied. Thus V decreases 
with λ , which enhances the spread of disease. The optimal phenomenon is not qualitatively affected by the recov-
ery rates of information and disease. As shown in Fig. 3(e), R versus λ  displays a non-monotonic shape for 
φ =  2 and 4, i.e., R first increases with λ and then decreases. When λ = .0 5 the information spreading is rapid. 
Increasing λ  allows more nodes to fulfill the second immunization condition and to be immunized [see 
Fig. 3(f)], and further leads to the decrease (φ =  2) or saturation (φ =  4) of R with λ . The theoretical predictions 
of our heterogeneous mean-field theory agree with the simulation predictions. The differences between the theo-
retical predictions and the simulations are caused by the dynamic correlations among the states of the neighbors 
and by finite-size network effects17. The dynamic correlations are produced when the information (disease) trans-
mission events to one node in layer  ( ) coming from two distinct neighbors are correlated43. In the case of 
coevolution dynamics, the dynamic correlations are also induced by the counterparts of susceptible nodes4.

For the disease spreading on layer , the disease threshold λc  for φ =  0 is clearly larger than the threshold 


λ = k1/c0 , which is the disease threshold without immunization (i.e., p =  0) [see the right arrow in Fig. 3(e)]. 
We can determine the numerical disease threshold by measuring the susceptibility44 or variability45 (see details in 
Method). Note that the disease threshold λc  for φ ≥  1 is the same as λc0, which is consistent with the theoretical 
prediction [see Eq. (12) and the left arrow in Fig. 3(e)]. This occurs because individuals choose immunization 
only when the number of their infected neighbors is equal to or greater than φ. The asymmetrical coevolution 
mechanisms proposed in our model may explain why choosing to be immunized during disease spreading does 
not affect the disease threshold38–40.

We use φ =  2 to measure the final information and disease sizes (see Fig. 4). According to Eq. (12), the disease 
threshold is λ = = .k1/ 0 125c


 . When λ = .0 2 , 0.5, and 0.8, any value of λ can cause an information out-

break due to an outbreak of disease on layer  [see Fig. 4(a)]. Thus the information outbreak threshold λc
A is zero. 
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Figure 4(b,c) show the optimal information transmission rate λO
  at which R  V( )  reaches its minimum (maxi-

mum) value. When λ = .0 2, 0.5, and 0.8, R  increases with λ because of the increase in the disease [see 
Fig. 4(d)]. Note that λc

 is not affected by λ [see the arrow in Fig. 4(e)]. As shown in Fig. 4(e), R  versus λ  first 
increases and then decreases for large λ = .0 5 and 0.8. This phenomenon can be understood in the same way 
with Fig. 3(e). There is again good agreement between the theoretical and numerical results.

Figure 5 shows the effects of λ  and λ on the final steady state for RA, RB, and VB for φ =  2 and shows the 
phase diagrams for the final sizes as a function of λA and λB. Figure 5(a) shows that R increases with λ and λ . 
The A Bλ λ−  plane is divided into a local (I) and global (II) information outbreak regions. In Fig. 5(a) region I 
and region II are separated by the λ = k1/c


  (horizontal white dashed line) and λ = k1/c

A
B  (vertical white 

dashed line) obtained from Eq. (10). Figure 5(b) shows how region I and region II are separated by λc
 (see verti-

cal white dashed line). For the minimum value of R  in region II, λ
O increases linearly with λ, as shown in 

Fig. 5(b) [see black lines and symbols in (b,c)]. At the optimal λO
 , R V( )  reaches its minimum (maximum) value, 
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Figure 3. With immunization thresholds φ being the parameter of interest, the final sizes of information, 
disease and vaccination on two layer ER-ER multiplex networks. (a) The final information size R, (b) the 
final disease size R, and (c) the final vaccination size V  versus information transmission rate λ for different 
values of immunization threshold ϕ with λ = .0 5. For different values of φ, (d) R , (e) R and (f) V  as a 
function of λ at λ = .0 5 . The symbols represent the simulation results and the lines are the theoretical 
predictions obtained by numerically solving Eqs (1–3) and (4–7). In (e), the two arrows respectively indicate the 
numerical disease thresholds for φ ≥  1 and φ =  0, which are obtained by observing χ. Other dynamical 
parameters are set to be λ = .0 5  and p =  0.8.
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as shown in Fig. 5(b,c). Note that λ
O is slightly smaller than λ  because whether information induces an individ-

ual to be vaccinated depends on the infection level of their neighbors. Our heterogeneous mean-field theory 
describes this phenomenon very well.

Thus we know that for a given disease transmission rate there is an optimal information transmission rate at 
which the disease spreading is markedly reduced. In order to determine the coevolution characteristics of infor-
mation and disease spreading when the information reaches its optimal transmission, we first look at the macro-
scopic coevolution of the two dynamics under different information transmission rates as shown in Fig. 6. We 
denote the fraction of nodes on layer  informed by their neighbors or by their counterpart nodes using 

ρ t( ) 
and A

Bρ t( ), respectively. Here ρ t( )  ρ t[ ( )] is the fraction of nodes obtaining the information (disease) on layer  
( ) at time t. For small λ = .0 13 below λO

  [see Fig. 6(a)], ρ t( )
 , A

Bρ t( ), and ρ t( )  reach their peaks simultane-
ously. Note that ρ t( )  is larger than ρ t( )

  and very close to ρ t( )A
B , which means that the spread of information is 

primarily induced by the disease outbreak. At λ = .0 22O
 , we find that ρ t( )

 , ρ t( )A
B , and ρ t( ) reach their peaks 

simultaneously, and that ρ t( )  is closer to ρ t( )
  than to ρ t( )A

B . Thus the information and disease have a similar 
spreading velocity. For a large value of λ = .0 4, the information spreads more quickly than the disease. Our 
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Figure 4. With disease transmission rate λ being the parameter of interest, the asymmetrically 
interacting dynamics spreads on ER-ER networks. (a) The final information size R, (b) the final disease size 
R, and (c) the vaccination size V  versus the information transmission rate λ for the disease transmission rate 
λ = .0 2 , 0.5 and 0.8. For λ = .0 2, 0.5 and 0.8, (d) R , (e) R  and (f) V as a function of λ. In the figures, 
symbols are the simulation results and the lines are the theoretical predictions. In (e), the arrow indicates the 
numerical disease threshold. We set other parameters to be φ =  2 and p =  0.8.
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results suggest that information and disease spreading have a similar macroscopic coevolution characteristic 
when the information transmission rate is at its optimal value.

Figure 7 shows the microscopic coevolution characteristics of the two dynamics at the optimal informa-
tion transmission rate. Figure 7(a) shows the time evolution of information and disease in three independent 
dynamical realizations that have similar trends in their macroscopic coevolution of information spreading and 
disease spreading. Figure 7(b) shows the relative growth rates of information vI(t) and disease vD(t). As in the 
real-world case in Fig. 1(b), the same and opposite growth trends are observed. Figure 7(c) shows the calculated 
cross-correlations between the two time series of vD(t) and vI(t). Both positive and negative cross-correlations 
exist when the window size is small [see Fig. 7(d)]. Note that Fig. 7 agrees well with the real-world situation 
shown in Fig. 1. Through extensive simulations, we find that heterogeneous networks display a similar phenom-
enon. Thus the coevolution between information and disease can become optimal in which the macroscopic and 
microscopic coevolution characteristics of information and disease exhibit similar trends and the information 
diffusion greatly suppresses the spread of disease.

To examine how topology affects multiplex systems, we next simulate different possible heterogeneities in the 
communication and contact networks (see Fig. 8). We generate scale-free (SF) networks with a power-law degree 
distribution ∼ γ−P k k( ) D by using an uncorrelated configuration model41,46 in which γD is the degree exponent. 

Figure 5. Asymmetrically interacting dynamics on ER-ER networks. The final density in each state relating 
the parameters λ  and λ: (a) the final information size R, (b) the final disease size R and (c) the vaccination 
size V. In (a), the horizontal and vertical dashed lines separate the A Bλ λ−  plane into local and global 
information outbreak regions, which are denoted as regions I and II. In (b), the vertical dashed line divides the 
plane into a local (region I) and a global (region II) disease outbreak regions. In (b), the blue circles ( λ = .0 13, 
λ = .0 3), green up triangle ( λ = .0 22, λ = .0 3 ) and gray diamond ( λ = .0 4, λ = .0 3) represent λ  being 

below, at and above λO
 , respectively (see more discussions in Fig. 6). The black squares (black lines) in (b,c) 

represent the optimal information transmission rate λ
O versus λ. Other parameters are set to be φ =  2 and 

p =  0.8.
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Through extensive simulations we find that the values of γD do not qualitatively affect the results. Without loss of 
generality we set γD =  3.0. Note that there is an optimal information transmission rate at which the disease is 
significantly suppressed [see Fig. 8(b,c)], and thus heterogeneity in network topology does not qualitatively affect 
this optimal phenomenon. We also find that the multiplex networks with a homogeneous communication layer 
and a heterogeneous contact layer have a greater optimal information transmission rate. As the information (dis-
ease) spreads more (less) widely on homogeneous (heterogeneous) networks for a large transmission rate, R is 
further reduced. Figure 8(e) shows that the disease threshold λc

 is determined only by the topology of layer , 
and that the topology of layer  does not affect λc .

For information spreading on layer  as shown in Fig. 8(a), R decreases with the degree heterogeneity of 
layer , since a homogeneous contact network facilitates the spread of disease for large λ = .0 520. In Fig. 8(b,c), 
the effects of the heterogeneity of layer  on R  and V are negligible when λ  is small, but R  increases with the 
heterogeneity of layer  when λ  is large because it is more difficult to immunize nodes [i.e., V  decreases with 
the heterogeneity of layer  in Fig. 8(c)].

Figure 8(d–f) show R, R  and V  as a function of λB on several networks for large λ = .0 5. The degree het-
erogeneity of layer  is a factor. When λ λ≤ c

, R  decreases with the heterogeneity of layer , but the effects 
of the heterogeneity of layer  on R and V  are negligible. When 

λ λ> c  the heterogeneity of layer  does not 
increase information diffusion, but promotes disease spreading because nodes are less likely to be immunized. We 
examine the effects of the heterogeneity of layer  and find that R  and R increase (decrease) with the degree 
heterogeneity of layer  for small (large) λ. When the degree heterogeneity of layer  is increased, the network 
has a large number of individuals with very small degrees and more individuals with large degrees. When λ  is 
small there are more hubs in heterogeneous networks that facilitate disease spreading because they are more likely 
to be infected, and this increases information diffusion. When λ  is large, however, there are many small-degree 
nodes with a low probability of being infected, and this produces smaller values of R, which causes smaller val-
ues of R .
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Bρ t( ), ρ t( ) and ρ t( )  for (a) λ = .0 13, (b) λ = .0 22  and (c) λ = .0 40. Other parameters are set to be 
λ = .0 3 , φ =  2 and p =  0.8.
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Discussion
We have systematically investigated the coevolution dynamics of information and disease spreading on multi-
plex networks. We first discover indications of asymmetrical interactions between the two spreading dynamics 
by analyzing real data, i.e., the weekly time series of information spreading and disease spreading in the form 
of influenza-like illness (ILI) evolving simultaneously in the US during an approximate 200-week period from 
3 January 2010 to 10 December 2013. Using these interacting mechanisms observed in real data, we propose a 
mathematical model for describing the coevolution spreading dynamics of information and disease on multiplex 
networks. We investigate the coupled dynamics using heterogeneous mean-field theory and stochastic simula-
tions. We find that information outbreaks can be triggered by the spreading dynamics within a communications 
network and also by disease outbreaks in the disease contact network, but we also find that the disease threshold 
is not affected by information spreading, i.e., that the outbreak of disease is solely dependent on the topology of 
the contact network. More important, for a given rate of disease transmission we find that there is an optimal 
information transmission rate that decreases the disease size to a minimum value, and the modeled evolution 
of information and disease spreading is consistent with real-world behavior. We also verify that heterogeneity in 
network topology does not invalidate the results. In addition, we find that when information diffuses slowly, the 
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degree heterogeneity of the communication network has a trivial impact on disease spreading. The homogeneity 
of the communication network can enhance the vaccination size and thus prevent disease spreading more effec-
tively when the spread of information is rapid.

The asymmetrical interacting mechanism we discover by analyzing real-world data provides solid evidence 
supporting the basic assumptions of previous researches16,17. Our data-driven model also reveals some funda-
mental coevolution mechanisms in the coevolution dynamics. Using these coevolution dynamics of information 
and disease we are able to identify phenomena that differ qualitatively from those found in previous research on 
disease-behavior systems. Our results enable us to quantify the optimal level of information transmission that 
suppresses disease spreading. The coevolution mechanisms also enable us to better understand why the disease 
threshold is unchanged even when information spreading in some real-world situations undergoes coevolution.

Further research on disease-behavior systems promises to discover additional real-world mechanisms that 
can be used to refine models of coevolution spreading dynamics. Developing a more accurate theoretical method 
is full of challenges because it is difficult to describe the strong dynamic correlations among the states of neigh-
boring nodes in a network. If we take dynamical correlations into account, we may be able to use such advanced 
theoretical methods as dynamic message-passing47,48 or pair approximation49,50.
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Methods
Relative growth rates. We define the relative growth rates vG(t) of nG(t) and vD(t) of nD(t) to be

=
+ −v t n t n t

n t
( ) ( 1) ( )

( ) (13)G
G G

G

and

=
+ −

.v t n t n t
n t

( ) ( 1) ( )
( ) (14)D

D D

D

If vG(t) >  0 [vD(t) >  0], nG(t) [nD(t)] shows an increasing trend at time t. If not, nG(t) [nD(t)] shows a decreasing 
trend at time t.

Variability measure. The variability χ42,45 is

χ =
−R R

R
,

(15)
h h

h

2 2

where Rh is the final information size R or disease size R , and 


 is the ensemble averaging. The value of χ 
exhibits a peak at the critical point at which the thresholds can be computed.

References
1. Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys. 87, 

925 (2015).
2. Perc, M. & Szolnoki, A. Coevolutionary gamesła mini review. BioSystems 99, 109–125 (2010).
3. Karrer, B. & Newman, M. E. J. Competing epidemics on complex networks. Phys. Rev. E 84, 036106 (2011).
4. Sanz, J., Xia, C.-Y., Meloni, S. & Moreno, Y. Dynamics of Interacting Diseases. Phys. Rev. X 4, 041005 (2014).
5. Marceau, V., Noël, P. A., Hébert-Dufresne, L., Allard, A. & Dubé, L. J. Modeling the dynamical interaction between epidemics on 

overlay networks. Phys. Rev. E 84, 026105 (2011).
6. Cai, W., Chen, L., Ghanbarnejad, F. & Grassberger, P. Avalanche outbreaks emerging in cooperative contagions. Nat. Phys. 11, 

936–940 (2015).
7. Gleeson, J. P., Cellai, D., Onnela, J.-P., Porter, M. A. & Reed-Tsochas, F. A simple generative model of collective online behaviour, 

Proc. Nat. Acad. Sci. USA 111, 10411 (2014).
8. Feng, L. et al. Competing for Attention in Social Media under Information Overload Conditions, PLoS One 10, e0126090 (2015).
9. Manfredi, P. & D’Onofrio, A. Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases (Springer-Verlag, 

Berlin, 2013).
10. Funk, S., Salathé, M. & Jansen, V. A. A. Modelling the influence of human behaviour on the spread of infectious diseases: a review.  

J. R. Soc. Interface 7, 1257 (2010).
11. Funk, S., Gilad, E. & Jansen, V. A. A. Endemic disease, awareness, and local behavioural response. J. Theor. Biol. 264, 501 (2010).
12. Valdez, L. D., Macri, P. A. & Braunstein, L. A. Intermittent social distancing strategy for epidemic control. Phys. Rev. E 85, 036108 

(2012).
13. Zuzek, L. A., Stanley, H. E. & Braunstein, L. A. Epidemic model with isolation in multilayer networks. Sci. Rep. 5, 12151 (2015).
14. Bauch, C. T. & Galvani, A. P. Social Factors in Epidemiology. Science 342, 47 (2013).
15. Funk, S., Gilada, E., Watkinsb, C. & Jansen, V. A. A. The spread of awareness and its impact on epidemic outbreaks. Proc. Natl. Acad. 

Sci. USA 106, 6872 (2009).
16. Granell, C., Gómez, S. & Arenas, A. Dynamical Interplay between Awareness and Epidemic Spreading in Multiplex Networks. Phys. 

Rev. Lett. 111, 128701 (2013).
17. Wang, W. et al. Asymmetrically interacting spreading dynamics on complex layered networks. Sci. Rep. 4, 5097 (2014).
18. Wang, W., Tang, M., Zhang, H.-F. & Lai, Y.-C. Dynamics of social contagions with memory of nonredundant information. Phys. Rev. 

E 92, 012820 (2015).
19. Watts, D. J. A simple model of global cascades on random networks. Proc. Natl. Acad. Sci. USA 99, 5766 (2002).
20. Pastor-Satorras, R. & Vespignani, A. Epidemic Spreading in Scale-Free Networks. Phys. Rev. Lett. 86, 3200 (2001).
21. Newman, M. E. J. The spread of epidemic disease on networks. Phys. Rev. E 66, 016128 (2002).
22. Kitsak, M. et al. Identification of influential spreaders in complex networks. Nat. Phys. 6, 888 (2010).
23. Kuperman, M. & Abramson, G. Small world effect in an epidemiological model. Phys. Rev. Lett. 86, 2909 (2001).
24. Castellano, C., Fortunato, S. & Loreto, V. Statistical physics of social dynamics. Rev. Mod. Phys. 81, 0034 (2009).
25. Preis, T. & Moat, H. S. Data from: Adaptive nowcasting of influenza outbreaks using Google searches. Dryad Digital Repository. 

Available at: http://dx.doi.org/10.5061/dryad.r06h2. (Accessed: 4th May 2015) (2014).
26. Preis, T. & Moat, H. S. Adaptive nowcasting of influenza outbreaks using Google searches. R. Soc. Open Sci. 1, 140095 (2014).
27. Ginsberg, J. et al. Detecting influenza epidemics using search engine query data. Nature 457, 1012 (2009).
28. Lazer, D., Kennedy, R., King, G. & Vespignani, A. The Parable of Google Flu: Traps in Big Data Analysis. Science 343, 1203 (2014).
29. Podobnik, B. & Stanley, H. E. Detrended Cross-Correlation Analysis: A New Method for Analyzing Two Nonstationary Time Series. 

Phys. Rev. Lett. 100, 084102 (2008).
30. Boccaletti, S. et al. The structure and dynamics of multilayer networks. Phys. Rep. 544, 1 (2014).
31. Gao, J., Buldyrev, S. V., Stanley, H. E. & Havlin, S. Networks formed from interdependent networks. Nat. Phys. 8, 40–48 (2012).
32. Wang, Z., Wang, L., Szolnoki, A. & Perc, M. Evolutionary games on multilayer networks: a colloquium. Eur. Phys. J. B 88, 1–15 

(2015).
33. Kivelä, M. et al. Multilayer Networks. J. Complex Networks 2, 203 (2014).
34. Moreno, Y., Pastor-Satorras, R. & Vespignani, A. Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J. B 26, 

521–529 (2002).
35. Serrano, M. A. & Boguñá, M. Percolation and epidemic thresholds in clustered networks. Phys. Rev. Lett. 97, 088701 (2006).
36. Ruan, Z., Tang, M. & Liu, Z. Epidemic spreading with information-driven vaccination. Phys. Rev. E 86, 036117 (2012).
37. Buono, C. & Braunstein, L. A. Immunization strategy for epidemic spreading on multilayer networks. Europhys. Lett. 109, 26001 

(2015).
38. Fisman, D., Khoo, E. & Tuite, A. Early epidemic dynamics of the West African 2014 Ebola outbreak: estimates derived with a simple 

two-parameter model. PLoS Curr. Outbreaks 6, 1 (2014).

http://dx.doi.org/10.5061/dryad.r06h2.


www.nature.com/scientificreports/

1 4Scientific RepoRts | 6:29259 | DOI: 10.1038/srep29259

39. Alia, S. T., Kadib, A. S. & Ferguson, N. M. Transmission dynamics of the 2009 influenza A (H1N1) pandemic in India: The impact 
of holiday-related school closure. Epidemics 5, 157–163 (2013).

40. Bermejo, M. et al. Ebola outbreak killed 5000 gorillas. Science 314, 1564 (2006).
41. Catanzaro, M., Boguñá, M. & Pastor-Satorras, R. Generation of uncorrelated random scale-free networks. Physc. Rev. E 71, 027103 

(2005).
42. Newman, M. E. J. Networks An Introduction (Oxford University Press, Oxford, 2010).
43. Altarelli, F., Braunstein, A., Dall’Asta, L., Wakeling, J. R. & Zecchina, R. Containing Epidemic Outbreaks by Message-Passing 

Techniques. Phys. Rev. X 4, 021024 (2014).
44. Ferreira, S. C., Castellano, C. & Pastor-Satorras, R. Epidemic thresholds of the susceptible-infected-susceptible model on networks: 

A comparison of numerical and theoretical results. Phys. Rev. E 86, 041125 (2012).
45. Shu, P., Wang, W., Tang, M. & Do, Y. Numerical identification of epidemic thresholds for susceptible-infectedrecovered model on 

finite-size networks. Chaos 25, 063104 (2015).
46. Yang, Z. & Zhou, T. Epidemic spreading in weighted networks: An edge-based mean-field solution. Phys. Rev. E 85(5), 056106 

(2012).
47. Karrer, B., Newman, M. E. J. & Zdeborová, L. Percolation on sparse networks. Phys. Rev. Lett. 113, 208702 (2014).
48. Radicchi, F. Percolation in real interdependent networks. Nat. Phys. 11, 597 (2015).
49. Eames, K. & Keeling, M. J. Modeling Dynamic and Network Heterogeneities in the Spread of Sexually Transmitted Diseases. Proc. 

Natl. Acad. Sci. USA 99, 13330 (2002).
50. Gross, T., D’Lima, C. J. D. & Blasius, B. Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96, 208701 (2006).

Acknowledgements
This work was partially supported by the National Natural Science Foundation of China under Grants Nos 
11575041 and 11105025, and China Scholarship Council. L.A.B. thanks ANCyP, Pict 0429/13 and UNMdP for 
financial support.

Author Contributions
W.W. and M.T. devised the research project. W.W. and Q.-H.L. performed numerical simulations. W.W., S.-M.C., 
M.T., L.A.B. and H.E.S. analyzed the results. W.W., Q.-H.L., S.-M.C., M.T., L.A.B. and H.E.S. wrote the paper.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Wang, W. et al. Suppressing disease spreading by using information diffusion on 
multiplex networks. Sci. Rep. 6, 29259; doi: 10.1038/srep29259 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Suppressing disease spreading by using information diffusion on multiplex networks
	Results
	Empirical analysis of real-world coevolution data. 
	Coevolution dynamics on multiplex networks. 
	Heterogeneous Mean-field theory. 
	Simulation results. 

	Discussion
	Methods
	Relative growth rates. 
	Variability measure. 

	Acknowledgements
	Author Contributions
	Figure 1.  Weekly outpatient visits and Google Flu Trends (GFT) of influenza-like illness (ILI) from 3 January 2010 to and 21 September 2013 in the United States.
	Figure 2.  Illustration of asymmetrical mechanisms of information and disease on multiplex networks.
	Figure 3.  With immunization thresholds φ being the parameter of interest, the final sizes of information, disease and vaccination on two layer ER-ER multiplex networks.
	Figure 4.  With disease transmission rate being the parameter of interest, the asymmetrically interacting dynamics spreads on ER-ER networks.
	Figure 5.  Asymmetrically interacting dynamics on ER-ER networks.
	Figure 6.  On ER-ER coupled networks, the time evolution of each type of nodes.
	Figure 7.  Asymmetrically interacting spreading dynamics on coupled ER-ER networks at the optimal information transmission rate.
	Figure 8.  Effect of degree heterogeneity on coevolution dynamics.



 
    
       
          application/pdf
          
             
                Suppressing disease spreading by using information diffusion on multiplex networks
            
         
          
             
                srep ,  (2016). doi:10.1038/srep29259
            
         
          
             
                Wei Wang
                Quan-Hui Liu
                Shi-Min Cai
                Ming Tang
                Lidia A. Braunstein
                H. Eugene Stanley
            
         
          doi:10.1038/srep29259
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep29259
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep29259
            
         
      
       
          
          
          
             
                doi:10.1038/srep29259
            
         
          
             
                srep ,  (2016). doi:10.1038/srep29259
            
         
          
          
      
       
       
          True
      
   




