
Reversed graph embedding resolves complex single-cell 
trajectories

Xiaojie Qiu1,2, Qi Mao3, Ying Tang4, Li Wang5, Raghav Chawla2, Hannah A. Pliner2, and 
Cole Trapnell1,2,*

1Molecular & Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA

2Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA

3HERE company, Chicago IL 60606, USA

4Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China

5Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, 
Chicago, USA

Abstract

Single-cell trajectories can unveil how gene regulation governs cell fate decisions. However, 

learning the structure of complex trajectories with two or more branches remains a challenging 

computational problem. We present Monocle 2, which uses reversed graph embedding to describe 

multiple fate decisions in a fully unsupervised manner. Applied to two studies of blood 

development, Monocle 2 revealed that mutations in key lineage transcription factors diverts cells 

to alternative fates.
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Introduction

Most cell state transitions, whether in development, reprogramming, or disease, are 

characterized by cascades of gene expression changes. We recently introduced a 

bioinformatics technique called “pseudotemporal ordering”, which applies machine learning 

to single-cell transcriptome sequencing (RNA-Seq) data to order cells by progression and 

reconstruct their “trajectory” as they differentiate or undergo some other type of biological 

transition1. Despite intense efforts to develop scalable, accurate pseudotime reconstruction 

algorithms (recently reviewed at2), state-of-the-art tools have several major limitations. Most 

pseudotime methods can only reconstruct linear trajectories, while others such as Wishbone3 

or DPT4 support branch identification with heuristic procedures, but either are unable to 

identify more than one branch point in the trajectory or require that the user specify the 

number of branches and cell fates as an input parameter.

Here, we describe Monocle 2 (Supplementary Software and https://github.com/cole-trapnell-

lab/monocle-release), which applies reversed graph embedding (RGE)5,6, a recently 

developed machine learning strategy, to accurately reconstruct complex single-cell 

trajectories. Monocle 2 requires no a priori information about the genes that characterize the 

biological process, the number of cell fates or branch points in the trajectory, or the design of 

the experiment. Monocle 2 outperforms not only its previous version but also more recently 

developed methods, producing more accurate, robust trajectories.

Results

Monocle 2 begins by identifying genes that define biological process using an unsupervised 

procedure we term “dpFeature”. The procedure works by selecting the genes differentially 

expressed between clusters of cells identified with tSNE dimension reduction followed by 

density peak clustering. When applied to four different datasets1,7–9 most of the genes 

returned by dpFeature were also recovered by a semi-supervised selection method guided by 

aspects of the experimental design and were highly enriched for Gene Ontology relevant to 

myogenesis, confirming that dpFeature is a powerful and general unsupervised feature 

selection approach. (Supplementary Figures 1–3)

We next sought to develop a pseudotime trajectory reconstruction algorithm that does not 

require the number of cell fates or branches as an input parameter. To do so, we employed 

reversed graph embedding5,6, a machine learning technique to learn a parsimonious 

principal graph. Informally, a principal graph is like a principal curve10 that passes through 

the “middle” of a dataset but is allowed to have branches11. However, learning a principal 

graph that describes a population of single-cell RNA-Seq profiles is very challenging 

because each expressed gene adds an additional dimension to the space. In general, learning 

geometry is dramatically harder in high-dimensional spaces12. Reversed graph embedding 

solves this problem by finding a mapping between the high dimensional gene expression 

space and a much lower dimensional one while simultaneously learning the structure of the 

graph in this reduced space.
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Monocle 2 uses DDRTree5,6, a scalable RGE algorithm, to learn a principal tree on a 

population of single cells by default, asserting that it describes the sequence of changes to 

global gene expression levels as a cell progresses through the biological process under study 

(Figure 1A). In contrast to other methods1,3,4,13, Monocle 2 identifies branch points that 

describe significant divergences in cellular state automatically. Monocle is also equipped 

with alternative RGE methods5,6 including one that in principle can learn cyclical or disjoint 

trajectories, though doing so requires some degree of parameter optimization on behalf of 

the user.

To assess the Monocle 2’s accuracy, we first applied it to myoblasts, which we previously 

reported to differentiate along a linear trajectory1 (Figure 1B). Surprisingly, Monocle 2 

reconstructed a trajectory with a single branch point leading to two outcomes (Figure 1C). 

Some genes associated with mitogen withdrawal, such as CCNB2 showed similar kinetics 

on both branches, but a number of genes required for muscle contraction were strongly 

activated only on one of the two branches of the Monocle 2 trajectory (Supplementary 

Figure 4). A global search for genes with significant branch-dependent expression using 

Branch Expression Analysis Modeling (BEAM)14 revealed that cells along these two 

outcomes, F1 and F2, differed in the expression of 887 genes (FDR < 10%), including 

numerous components of the contractile muscle program. The BEAM analysis suggested 

that only outcome F1 represented successful progression to fused myotubes (Supplementary 

Figure 4), consistent with immunofluorescence measurements of MYH2, which show a 

substantial fraction of isolated nuclei lacking MYH2 and that are not incorporated into 

myotubes (ref. Figures 1 and 4 of1).

A simulation of differentiation driven by a set of stochastic differential equations controlled 

by a hypothetical gene regulatory network15 demonstrated that Monocle 2 robustly and 

accurately reconstructed trajectories with up to three fates (Supplementary Figure 5–8, 

Supplementary Data 1, 2)16. In contrast to other methods, Monocle 2 also accurately learned 

a complex tree with five branches in a fully automatic fashion (Supplementary Figure 6B, 

Supplementary Data 3).

We next sought to compare Monocle 2 to state-of-the art algorithms for inferring single-cell 

trajectories, including Monocle 11, Wishbone3, Diffusion Pseudotime (DPT)4, and 

SLICER13. Unlike Monocle 2, these methods do not construct an explicit tree. Instead they 

order cells based on pairwise geodesic distances between them as approximated by a 

nearest-neighbor graph (Wishbone and SLICER) or minimum spanning tree (Monocle 1) or 

calculated analytically (DPT). Wishbone, SLICER, and DPT identify branches implicitly by 

analyzing patterns in the pseudotime orderings that are inconsistent with a linear trajectory. 

Furthermore, Wishbone assumes the trajectory has exactly one branch point, while DPT can 

detect more than one, but provides no means of automatically determining how many 

genuine branches exist in the data. We hypothesized that Monocle 2’s explicit trajectory 

structure would yield more robust pseudotimes and branch assignments than alternative 

algorithms.

We tested each algorithm using data from Paul et al, who analyzed transcriptomes of several 

thousand differentiating blood cells9. Monocle 2, DPT, and Wishbone produced qualitatively 
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similar trajectories, with CMP cells residing upstream of a branch at which GMP and 

erythroid cells diverge (Supplementary Figure 9–11). SLICER generated a branched 

trajectory in which the branch occurs within the erythroid population to bifurcate into either 

CMPs or GMPs. Monocle 2, Wishbone, and DPT produced orderings that were highly 

correlated with a “reference ordering”, constructed using a panel of markers similar to the 

approach introduced by Tirosh et al17, while SLICER and Monocle 1 were less so. Monocle 

2 assigned cells to branches as or more accurately than other methods (Figure 1D, 

Supplementary Figure 10), but Monocle 2’s assignments were far more consistent when 

provided with subsampled fractions of the cells (Figure 1E, Supplementary Figure 9F,G). 

When run on the myoblast data, DPT positioned most fully differentiated cells along a major 

branch, with incompletely differentiated cells split along a minor branch or not assigned to 

either, while Wishbone failed to discriminate correctly between the two outcomes 

(Supplementary Figure 12). Although Monocle 2 can be tuned for several user-specified 

parameters, its results were similar to the defaults over widely varying values 

(Supplementary Figures 13–14). Monocle 2’s running time scaled linearly in the number of 

input cells, consistent with its linear algorithmic complexity, processing 8365 cells in 9 

minutes (Supplemental Figures 13C) These benchmarks demonstrate that Monocle 2 

produces trajectories that are as accurate and more robust than state-of-art methods and yet 

makes fewer assumptions regarding the number of cell fates generated by the trajectory.

We also assessed Monocle 2’s alternative algorithms for dimensionality reduction and graph 

learning. DDRTree, SimplePPT and SGL-tree, which implement RGE to learn principal 

trees reported highly concordant trajectories when the data was initially reduced with PCA, 

ICA, and diffusion maps (Supplementary Figure 15. LLE, a reduction technique known to 

be highly sensitive to tuning parameters, sometimes led to incorrect reconstructions with 

SimplePPT. L1-graph, an RGE algorithm that can learn graphs with multiple components or 

cycles, often reported less refined graphs with numerous minor branches, but captured the 

overall trajectory structure accurately.

Because Monocle 2 can in principle learn complex trajectories with many branches, we 

reanalyzed the data from Paul et al. in 10 dimensions (selected based on variance explained 

by PCs) rather than the default of two. This higher-dimensional trajectory contained five 

branching events leading to six different outcomes, with cells classified by Paul et al. as 

fully differentiated monocytes, neutrophils, eosinophil, basophils, dendritic cells, 

megakaryocytes, and erythrocytes confined to distinct outcomes (Supplemental Figure 16). 

Thus, Monocle 2 can resolve complex branching processes.

Although Monocle 2’s trajectories for differentiating myoblasts and common myeloid 

progenitors were broadly consistent with the known sequence of regulatory events governing 

those processes, we sought further experimental means of validating the structure of the 

algorithm’s trajectories. Recently, Olsson et al profiled several hundred FACS-sorted cells 

during various stages of murine myelopoeisis, i.e. LSK, CMP, GMP and LKCD34+ cells. 

We analyzed these cells with Monocle 2 and reconstructed a trajectory with two major 

branches and three distinct fates (Figure 2, Supplementary Figure 17, 18). Lin−/Sca1+/c-Kit

+ (LSK) cells were concentrated at one tip of the tree, which we designated the root, with 
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CMP, GMP, and LKCD34+ cells distributed over the remainder of the tree (Figure 2A, 

Supplementary Figure 17A).

Monocle 2 placed cells classified as erythrocytes or megakaryocytes on a path to outcome 

FE, while granulocytes and monocytes by Olsson et al were confined to outcomes FG and 

FM respectively. Genes associated with the granulocytic and monocytic programs became 

progressively more differentially expressed following the second branch (Supplementary 

Figure 17B, C). Many of the genes with significantly branch-dependent expression (BEAM 

test14, FDR < 1%), were bound at their promoters by Irf8 or Gfi1, key activators of the 

monocytic and granulocytic expression programs, respectively (Supplementary Figure 17D, 

E).

Providing cells from mice lacking Gfi1 or Irf8 to Monocle 2 did not substantially alter the 

structure of the myeloid differentiation trajectory (Figure 2B). However, cells from Gfi1−/− 

mice were largely excluded from the branch occupied by wild-type granulocytes, and Irf8−/

− cells were depleted from the wild-type monocyte branch. That is, the loss of a gene known 

to activate a fate-specific expression program appeared to divert cells to the opposite fate. 

Cells from double knockout mice (Gfi1−/− Irf8−/−) were present on both monocyte and 

granulocyte branches, but concentrated closer to the branch point and away from the tips of 

the tree, suggesting that they did not fully differentiate (Supplementary Figure 19A).

Testing whether Gfi1−/− or Irf8−/− had fully adopted the monocyte and granulocyte 

expression programs, revealed that Gfi1−/− cells on the branch to FM express higher levels 

of genes from normally associated with granulocytes than wild-type monocytes 

(Supplementary Figure 19, Methods). Likewise, cells from Irf8−/− mice on the branch to FG 

showed aberrantly high levels of monocytic genes. Analysis of genetic perturbations from 

the large-scale transcriptomic study of hematopoiesis reported by Paul et al also revealed 

diversions of cells onto specific branches of the trajectory, suggesting that diversion of cells 

from one fate to another may be a consequence of losing a key fate regulator 

(Supplementary Figure 19G, H).

In addition to known differentiated cell types, Olsson et al. detected cells that express a mix 

of genes specific to different terminal cell fates. They also reported rare, transient cell states 

that mix hematopoietic/multipotent markers with differentiated markers. They concluded 

that both types of “mixed lineage” cells reside in the developmental hierarchy downstream 

of long-term and short-term HSCs but upstream of cells that have committed to a lineage. 

Consistent with this interpretation, Monocle 2 positioned mixed-lineage cells and rare 

transient cells (Supplementary Figure 20) upstream of the the granulocyte-monocyte branch.

Discussion

Single-cell RNA-Seq has spurred an explosion of computational methods to infer the precise 

sequence of gene regulatory events that drive transitions from one cellular state to another. 

However, most current methods rely on strong assumptions about the structure of a 

biological trajectory. Many also require the user to supervise trajectory inference, inject 

large amounts of a priori biological knowledge, or both.
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Monocle 2 learns complex cellular trajectories with multiple branches in a fully data-driven, 

unsupervised fashion with only limited assumptions regarding its structure. It employs a 

class of manifold learning algorithms that aim to embed a principal graph amongst the high-

dimensional single-cell RNA-seq data. In contrast to previous methods that infer branch 

structure using heuristic analyses of pairwise distances between cells, Monocle 2 can use 

this graph to directly identify developmental fate decisions. We have demonstrated through 

extensive benchmarking that Monocle 2 compares favorably with other tools such as 

Wishbone without requiring the user to specify the structure of the trajectory.

Analysis of multiple real and synthetic datasets demonstrated that Monocle 2 reconstructs 

trajectories that faithfully characterize cellular differentiation. Previously, we showed that 

loss of interferon signaling can create a new branch in an otherwise linear trajectory that 

reflects the response of dendritic cells to antigen14. Here, we show that cells from mice that 

lack transcription factors required for establishing specific myeloid fates were diverted onto 

alternative fates of the same trajectory without altering its structure. Why some loss of 

function mutations create branches while others divert cells along existing ones is unclear, 

but this question underscores the increasing power of analyzing single-cell trajectories. We 

also anticipate that Monocle 2 will be useful not just for expression data, but for single-cell 

chromatin accessibility18 or 3D structure19 analysis as well. We are confident that Monocle 

2 will help reveal how various layers of gene regulation coordinate developmental decision 

making within individual cells.

Online Methods

Reversed graph embedding

Monocle 2 uses a technique called reversed graph embedding5,6, 20 (RGE) to learn a graph 

structure that describes a single-cell experiment. RGE simultaneously learns a principal 

graph that represents the cell trajectory, as well as a function that maps points on the 

trajectory (which is embedded in low dimensions) back to the original high dimensional 

space. RGE aims to learn both a set of latent points  where  is the 

number of the set (or cell numbers) and an undirected graph  that connects these latent 

points. The latent points  in the low-dimensional space corresponds to the input data 

 in the high-dimensional space. The graph  contains a set of 

vertexes  and a set of weighted, undirected edges , where each 

corresponds to latent point , so the graph also resides in the latent, low-dimensional space.

In the context of the single-cell trajectory construction problem,  is typically a vector of 

the feature genes’ expression values (for example, based on dpFeature selection, see 

Supplementary Notes) of the th cell in a single-cell RNA-Seq experiment,  is the learned 

trajectory (for example, a tree) along which the cells transit, and  is the principal point on 

 corresponding to the cell .

RGE learns the graph  as well as a function that maps back to the input data space. Let 

denote the weight of edge , which represents the connectivity between  and . In 

other words,  means that edge  exists in , and 0 otherwise. Define  as the 
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projection function from  to some point in the high-dimensional space. To learn ,  and 

, we need to optimize

where  is a set of feasible graph structures parameterized , and  is a set of 

functions mapping a latent, low-dimensional point to a point in the original, high-

dimensional space.

As shown in5, the above optimization will learn graph structures in the latent space, but it 

does not measure the deviations of latent points to the observed data. That is, no effort is 

made to ensure that the graph nodes are embedded in a way relevant to the cloud of observed 

data points. To ensure the graph describes the overall structure of the observed data, RGE 

aims to position the latent points such that their image under the function  (that is, their 

corresponding positions in the high-dimensional space) will be close to the input data while 

also ensures neighbor points on low dimensional principal graph be “neighbors” in the input 

dimension. The optimization problem is formulated as

where  is a parameter that adjusts the relative strength of these two summations. In practice, 

implementing reversed graph embedding requires that we place some constraints on  and 

, as summarized briefly in the following sections.

SimplePPT: A simple principal tree algorithm

SimplePPT is the first RGE technique proposed by Mao et al for learning a tree structure to 

describe a set of observed data points. The tree can be learned in the original space or in 

some lower dimension retrieved by dimensionality reduction methods such as PCA20. 

SimplePPT makes some choices that simplify the optimization problem. Notably,  is 

optimized as one single variable instead of two separate sets of variables. Moreover, the loss 

function in the reversed graph embedding is replaced by the empirical quantization error, 

which serves as the measurement between the  and its corresponding observed points 

. The joint optimization of  is efficient from the perspective of optimization with 

respect to , which is solved by simply finding the minimum spanning tree.

The principal  graph algorithm

Mao et al later proposed an extension of SimplePPT that can learn arbitrary graphs, rather 

than just trees, which describes large datasets embedded in the same space as the input6. An 

 graph is a sparse graph which is based on the assumption that each data point (or cell) 

has a small number of neighborhoods in which the minimum number of points that span a 

low-dimensional affine subspace21 passing through that point. In addition, there may exist 
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noise in certain elements of  and a natural idea is to estimate the edge weights by tolerating 

these errors. In general, a sparse solution is more robust and facilitates the consequent 

identification of test sample (or sequenced single-cell samples). Unlike SimplePPT, this 

method learns the graph by formulating the optimization as a linear programming problem.

In the same work6, they also proposed a generalization of SimplePPT, which we term as 

SGL-tree (Principal Graph and Structure Learning for tree), to learn tree structure for large 

dataset by similarly considering clustering of data points as in DDRTree. Principal  graph 

and SGL-tree are all treated as SGL in this study.

DDRTree: Discriminative dimensionality reduction via learning a tree

DDRTree5, the default RGE technique used by Monocle 2, provides two key features not 

offered by SimplePPT learning framework. First, DDRTree does not assume the graph 

resides in the input space, and can reduce its dimensionality while learning the trajectory. 

Second, it also does not require that there be one node in the graph per data point, which 

greatly accelerates the algorithm and reduces its memory footprint.

Like SimplePPT, DDRTree learns a latent point for each cell, along with a linear projection 

function , where  is a matrix with columns that form 

an orthogonal basis  (  is the dimension of feature genes,  is the dimension 

of latent space). DDRTree simultaneously learns a graph on a second set of latent points 

. These points are treated as the centroids of  where  and the 

principal graph is the spanning tree of those centroids. The DDRTree scheme works by 

optimizing

In effect, the algorithm acts as soft -means clustering on points , and jointly learns a 

graph on the  cluster centers. The matrix  with the th element as  transforms the 

hard assignments used in -means into soft assignments with  as a regularization 

parameter. The above problem contains a number of analytical steps, and can be solved by 

alternating optimization until convergence. Moreover, because some of the more expensive 

numerical operations involve matrices that are  dimensional (instead of  dimensional), 

they have complexity that is invariant of the size of the input data for a small fixed . In 
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Monocle 2, we provide a procedure to automatically chooses a value of  that should work 

well for a wide range of datasets based on the number of cells  in the experiment:

During the first optimization iteration, these  centroids are initialized by using -mediods 

clustering in the low-dimensional space.

Pseudotime calculation and branch assignment

By default, Monocle 2 calls DDRTree to learn the principal tree describing a single cell 

experiment, and then projects each cell onto its nearest location on the tree. Monocle 2 

allows users to conveniently select a tip of the tree as the root and then transverses the tree 

from the root, computing the geodesic distance of each cell to the root cell, which is taken as 

its pseudotime, and assign branch or segment simultaneously.

DDRTree returns a principal tree of the centroids of cell clusters in low dimension. To 

calculate pseudotimes, Monocle 2 projects the cell’s latent points , to the principal graph 

formed by principal points, . For latent points not near tip principal points (end nodes of 

the principal tree), Monocle 2 finds the nearest line segment on the principal tree and then 

project them to the nearest point on that segment. More formally, we can define a vector 

between a cell , where  denotes the coordinates of the cell in the latent 

space, to the nearest principal point  by . The line segment formed by the two nearest 

principal points  is . Then we can calculate  as 

. The projection can be calculated as:

For latent points near the tip principal points, we will orthogonally project the latent point to 

the line segment formed by extending the tip principal point and its nearest neighbor 

principal point in the graph to obtain the projection point, that is, .

We then calculate the distance between all the projection points and construct a minimal 

spanning tree (MST) on the projection points. To avoid zero values of distance between cells 

projected to the same principal points, which prevents the calculation of a MST, the smallest 

positive distance between all cell pairs is added to all distance values. This MST is used to 

assign pseudotime for each cell (See below).

To encode the position of each cell within the branching structure of the trajectory, Monocle 

2 performs a depth-first traversal of the principal tree learned during RGE. Without loss of 
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generality, we assume one principal point corresponds to one latent point (for example, in 

the case we set  or each cell corresponds to its own cluster). Following the 

definition introduced in1, an ordering of cells (principal points) is obtained through a depth 

first search (DFS) of the learned principal tree starting from the root cell. We can then assign 

each cell to a trajectory segment,  which specifies the segment  by where the cell 

 is located based on the ordering list, , and the graph structure, . We set  at the root 

cell and increase a segment counter  every time we reach a new branch point. More 

formally, we can write the formula of segment assignment as:

where  represents all precedents  of  in the ordering , represents the degree of 

cell . T. For the general cases where the principal points is less than the cell numbers, cells 

will inherit the segment assignment of their nearest principal point.

Similar to our previous definition of pseudotime1, Monocle 2 calculates pseudotime based 

on the geodesic distance of each cell to the root cells on the MST of the projection points. 

Define pseudotime of cell  from a branching biological process  with branches given by 

as , we can calculate its pseudotime recursively by adding the pseudotime of its 

parent cell on the MST of the projection points (closest cell on the same branch) with the 

Euclidean distance, , between current and the parent on the 

MST, by setting the root cell as pseudotime 0. That is,

Assessing accuracy or robustness of pseudotime and branch assignments

We assessed the accuracy and robustness of each algorithm’s pseudotime assignment against 

the reference ordering by two measures of correlation (Pearson’s Rho (default) and 

Kendall’s Tau) between their pseudotime values.

We used adjusted Rand index (ARI)22, a common metric used for measuring clustering 

accuracy, to measure the accuracy or robustness of tree segment assignment. Given the 

number of common cells, denoted as , between the reference ordering and the ordering 

based on an algorithm (Monocle 2, Monocle 1, DPT, Wishbone or SLICER (when 

available)), and corresponding trajectory segment assignments for reference ordering and 

ordering based on a different algorithm,  and , namely,  and 

. The overlap between cells from segment  ( ) and cells from 

segment  ( ) in each of the two orderings is represented by the number  of cells in 

common, i.e. . Define the number of cells with segment  from reference 
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ordering is  and the number of cells with segment  from ordering based on an 

algorithm is . The adjusted Rand Index is then formulated as

which is a measure of the similarity between two data clusterings (or segment assignment in 

this case). When ARI is closer to 1, the segment assignment is more consistent between the 

two orderings.

For calculating the accuracy of pseudotime and branch assignment of the simulation 

(neuron/astro-genesis) and Paul dataset, the reference ordering corresponds to the real 

simulation and branches assignment based on manual assessment (see Supplementary 

Notes) or the pseudotime and branch (or cell type suggested from the original study17) from 

the marker-based ordering (see next section).

For calculating the robustness, the reference ordering is defined in the context of 

downsampling. We apply two different downsampling strategies. First, we downsample the 

full dataset, including the simulation data for neuron/astro-genesis, Paul dataset and the lung 

dataset, selecting  of the cells from the full dataset 25 times without replacement. Then 

we run Monocle 2, Monocle 1, DPT, and Wishbone to construct branched trajectory. 

SLICER was excluded from the downsampling analysis on account of its long running times 

and instability on occasional down-sample runs. Then we compare all pairs of downsamples 

by the metrics discussed above. We also progressively downsample all the full dataset over a 

range of increasing fractions of cells from the full dataset. Sampling is performed without 

replacement and three different subsets are generated for each proportion to serve as 

replicates. Then we run each software, including Monocle 1, Monocle 2, DPT, Wishbone, to 

construct branched trajectories for each fraction, which are compared to the corresponding 

trajectory built from the full dataset. ARI, Pearson’s Rho, Kendal’s Tau for all cases are then 

calculated as above.

In order to assess the robustness of Monocle 2 over different parameters choices, we run 

Monocle 2 and sample a large range for each parameter used in DDRTree, including, 

Dimension, lambda, maxIter, ncenter, param:gamm, sigma while keeping other parameters 

as default and compare the result to the ordering obtained by running Monocle 2 with all 

default parameters. Pearson’s Rho and ARI are used to calculate the robustness.

Comparing different algorithms to a marker-based ordering

In order to test the accuracy of each trajectory reconstruction algorithm, we compared their 

trajec-tories to an empirical ordering based on marker genes. Relying on results from Paul et 

al [8], we first select Pf4, Apoe, Flt3, Cd74 as CMP specific genes, Hba-a2, Car2, Cited4, 
Klf1 as MEP specific genes and Mpo, Prg2, Prtn3, Ctsg as GMP specific genes. Following 

the approach of Tirosh et al [9], we then select 100 other genes with expression correlated to 
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these marker genes to calculate a stemness score and GMP or MEP lineage score. We define 

cells with stemness score larger than 0 as CMP cell and any cells with positive lineage score 

as MEP cells and negative score as GMP cells. This grouping of cells is used for branch 

assignment accuracy evaluation in Supplementary Figure 9. We then define the reference 

pseudotime for each cell as:

where  corresponds to the origin   corresponds to the stemness score and  the 

lineage score for the lineage to which each cell is assigned, represents the Euclidean 

distance between two points, and  indicates the set of CMP cells.

Pseudotime correlations were computed on the paths from the root to each fate based on the 

reference ordering separately and then averaged. Since the empirical ordering based on 

marker genes is not perfect, we also investigate the accuracy of the ordering in terms of the 

absolute lag-1 autocorrelation of fitted spline curve for the selected marker genes. We first 

select the trajectory segments corresponding to the transition from the CMP cells to either 

MEP or GMP cells and then fit a kinetic curve for each marker gene for each transition with 

a spline curve with three degree of freedom. We then calculate the the absolute lag-1 

autocorrelation r, which is defined as following:

where  represents the gene expression at time stamp  is the mean expression across the 

pseudotime series for that gene. Higher autocorrelation value implies smoother gene 

expression dynamics based on the ordering. Those 300 cells are also used to calculate the 

accuracy of branch assignment with the branch assignment from the marker-based ordering.

Although a reference ordering based on markers from literature can serve as a reasonable 

gold-standard, it also introduces bias in a benchmarking analysis. Algorithms that order cells 

based on a small set of informative genes (which include or correlate the marker genes) will 

likely match it better than algorithms that order cells based on all genes. We therefore 

explored orthogonal means of measuring accuracy of each programs ordering based on the 

neuron simulation data (see Supplementary Notes).

Reconstruct complex haemopoiesis hierarchy

We check the scree plot to choose ten dimension as the intrinsic dimensions to reconstruct 

the developmental trajectory for the Paul dataset (cells used in Figure 1 of the original 

study9). Five branch points and six terminal lineages (monocytes, neutrophils or eosinophil, 

basophils, dendritic cells, megakaryocytes, and erythrocytes) are revealed. We ordered the 

cells using genes Paul et al. used to cluster their data rather than the genes from dpFeature, 

Qiu et al. Page 12

Nat Methods. Author manuscript; available in PMC 2018 February 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for the sake of consistency with their clusetering analysis. Similarly, we reconstruct Olsson 

datasets in four dimensions. The major bifurcation between the granulocyte and monocyte 

branch (GMP) as well as the intricate branch between GMP and megakaryocyte/erythrocyte 

(Ery/Meg) are revealed. Top 1, 000 genes from dpFeature based on WT cells are used in 

both of the WT and full datasets. The distribution (related to confusion matrix) of 

percentages of cells in each cluster from the original papers over each segment (state in 

Monocle 2) of the principal graph are calculated and visualized in the heatmap.

We applied BEAM analysis to identify genes significantly bifurcating between Ery/Meg and 

GMP branch on the Olsson wildtype dataset. We then calculate the instant log ratios (ILRs) 

of gene expression between Ery/Meg and GMP branch and find genes have mean ILR larger 

than 0.5. The ILRs are defined as:

So  is calculated as the log ratio of fitted value at interpolated pseudotime point  for 

the Ery/Meg lineage and that for the GMP lineage. Those genes are used to calculate the 

lineage score (simply calculated as average expression of those genes in each cell, same as 

stemness score below) for both of the Olsson and the Paul dataset which is used to color the 

cells in a tree plot transformed from the high dimensional principal graph (see 

Supplementary Notes). The same genes are used to create the multi-way heatmap for both of 

the Paul and Olsson dataset (see plot multiple_branches_heatmap function). Critical 

functional genes from this procedure are identified. Car1, Car2 (important erythroid 

functional genes for reversible hydration of carbon dioxide) as well as Elane, Prtn3 
(important proteases hydrolyze proteins within specialized neutrophil lysosomes as well as 

proteins of the extracellular matrix) are randomly chosen as example for creating multi-

lineage kinetic curves in both of the Olsson and Paul dataset (see 

plot_multiple_branches_pseudotime function).

In addition, pseudotime dependent genes for the Ery/Meg and GMP branch are identified in 

the Olsson wildtype dataset. All genes that always have lower expression from both lineages 

than the average in the progenitor cells are selected. Those genes are used to calculate the 

stemness score for both of the Olsson and the Paul dataset which is used to color the cells in 

the tree plot.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Monocle 2 discovers a cryptic alternative outcome in myoblast differentiation
(A) Monocle 2 learns single-cell trajectories by reversed graph embedding. Each cell can be 

represented as a point in a high-dimensional space where each dimension corresponds to the 

expression level of an ordering gene. The high dimensional data are first projected to a lower 

dimensional space (Z) by any of several dimension reduction methods such as PCA 

(default), diffusion maps, etc. Monocle 2 then constructs a spanning tree on an automatically 

selected set of centroids of the data. The number of centroids (black diamonds) is 

determined using a formula that scales sublinearly in the number of cells. These centroids 

are chosen automatically using k-medoids clustering in the initialized low-dimensional 

space. The algorithm then moves the cells towards their nearest vertex of the tree, updates 

the positions of the vertices to “fit” the cells, learns a new spanning tree, and iteratively 

continues this process until the tree and the positions of the cells have converged (see 

Equation 3 in Methods). Throughout this process, Monocle 2 maintains an invertible map 

between the high-dimensional space and the low-dimensional one, thus both learning the 
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trajectory and reducing the dimensionality of the data. In effect, the algorithm acts as soft K-

means clustering on points Z that maps them to the centroids, and jointly learns a graph on 

the centroids. Once Monocle 2 learns the tree, the user selects a tip as the “root”. Each cell’s 

pseudotime is calculated as its geodesic distance along the tree to the root, and its branch is 

automatically assigned based on the principal graph. (B) Monocle 1 reconstructs a linear 

trajectory for differentiating human skeletal myoblasts (HSMM)1. (C) Monocle 2 

automatically learns the underlying trajectory and detects that cells from 24–72 hours are 

divided into two branches. The same genes selected with dpFeature (Supplementary Figure 

1; Methods) were used for ordering for both of Monocle 1 and Monocle 2. (D) Accuracy of 

pseudotime calculation or branch assignments from each algorithm under repeated 

subsamples of 80% of the cells on the Paul dataset9. A marker based ordering (see 

Methods) is used as ground truth for results from each software in all downsamplings to 

compare with. (E) Consistency of pseudotime calculation or branch assignments from each 

algorithm under repeated subsamples of 80% of the cells on the Paul dataset9. All pairwise 

downsamplings are used to calculate the Pearson’s Rho and adjusted Rand index (ARI). 

Monocle 2, DPT, and Wishbone all use the full dataset for benchmark while Monocle 1 only 

uses a random downsampled 300 cells as for benchmarking.
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Figure 2. Genetic perturbations divert cells to alternative outcomes in Monocle 2 trajectories
(A) Monocle 2 trajectory of differentiating blood cells collected by Olsson et al8. Each 

subpanel corresponds to cells collected from a particular FACS gate in the experiment. Cells 

are colored according to their classification by the authors of the original study. (B) Cells 

with a single knockout of Irf8 or Gfi1 are diverted into the alternative granulocyte or 

monocyte branch, respectively. Double knockout cells are localized to both granulocyte and 

monocyte branches but concentrated near the branch point. Two branch points are identified, 

one that divides the erythroid or megakaryocyte outcome (FE) from the granulocyte/

monocyte progenitors (GMP), which then branches to the monocyte (FM) and granulocyte 

(FG) outcomes. All trajectories are reconstructed in four dimensions selected based variance 

explained by each PCA but rendered in two dimensions using layout_as_tree() from 

the igraph package.
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