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A B S T R A C T   

Keloid scars and Dupuytren’s disease are two common, chronic, and incurable fibroproliferative disorders that, among other shared clinical features, 
may induce joint contractures. We employed bulk RNA sequencing to discern potential shared gene expression patterns and underlying pathological 
pathways between these two conditions. Our aim was to uncover potential molecular targets that could pave the way for novel therapeutic stra
tegies. Differentially expressed genes (DEGs) were functionally annotated using Gene Ontology (GO) terms and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways with the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The protein-protein-interaction 
(PPI) networks were constructed by using the Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape. The Molecular Com
plex Detection (MCODE) plugin was used for downstream analysis of the PPI networks. A total of 1922 DEGs were identified within Dupuytren’s and 
keloid samples, yet no overlapping gene expression profiles were detected. Significantly enriched GO terms were related to skin development and 
tendon formation in keloid scars and Dupuytren’s disease, respectively. The PPI network analysis revealed 10 genes and the module analysis 
provided six protein networks, which might play an integral part in disease development. These genes, including CDH1, ERBB2, CASP3 and RPS27A, 
may serve as new targets for future research to develop biomarkers and/or therapeutic agents.   

1. Introduction 

Keloids are abnormal proliferations of scar tissue forming at the site of cutaneous injury. They may be defined as benign fibrous skin 
tumors with an uncontrolled cell proliferation beyond the borders of the original wound [1,2]. Dupuytren’s disease is a fibroproli
ferative disorder of the hands associated with an uncontrolled fibroblast growth and extracellular matrix deposition [3]. Both con
ditions are incurable, they both tend to chronically progress and have a certain genetic predisposition [4,5]. They both share a higher 
prevalence in specific ethnic groups and occur in areas of high mechanical stress [2,3]. Both diseases may induce contractures. Often 
times, surgery is necessary to improve function of the affected limb despite not being a definite cure due to a high rate of recurrence. 
Fibrotic Dupuytren’s nodules originate within the affected hand’s diseased aponeurosis, a robust network of fibrous tissue that in
terconnects the skin with the underlying structures of the hand, including bones and tendon sheaths. Typically devoid of pain, these 
nodules tend to align along the longitudinal axes, progressively forming strands that lead to finger contractures. This process ulti
mately culminates in significant constraints on hand function and a marked diminishment of the patient’s quality of life [5]. Both 
conditions share similarities on a microscopic level, as well. For one, keloids and Dupuytren’s disease show an increase of fibroblasts 
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with an excessive extracellular matrix deposition, particularly collagen type I and III [5,6]. It is known that molecular changes in 
contractile myofibroblasts and regulation of matrix proliferation play a pivotal role in the evolution of both conditions, yet the cause of 
the diseases is not fully understood [3,4]. New therapeutic strategies, such as pharmacological injections, radiotherapy and ultrasound 
were tested, but their outcomes are unsatisfactory and inferior to surgical removal of the fibrotic tissue [2,7]. Based on these path
ophysiological similarities, we hypothesized that common molecular characteristics may exist between Dupuytren’s disease and keloid 
scars. In an attempt to detect similarities on a molecular level and to identify potential molecular targets for a non-surgical, potentially 
definitive therapy, in this study we applied high throughput next generation RNA-sequencing to three tissue samples of either 
condition. 

2. Materials and methods 

2.1. Ethics statement, sample acquisition and processing 

This study was approved by the ethical commission of the Ludwig-Maximilians-University Munich (Project number 19–177). All six 
donors were at least 18 years old and signed informed consent prior to enrolment in the study. Human keloid scar tissue was obtained 
from three patients during either implant removal or surgical scar correction for aesthetical reasons. Keloids were classified as such by 
the surgeon and the study nurse independently. Three samples of Dupuytren’s tissue were obtained during surgical correction of finger 
contractures. In Supplementary Table S1 detailed patient and sample information is listed. To ensure an appropriate RNA quality of the 
samples, all samples were processed immediately after dissection from the patient inside the operating room. The dissected samples 
were minced in a drop of ice cold and sterile 0.9 % sodium chloride solution in a Petri dish with a scalpel. Afterwards, tissue pieces were 
transferred to 5 ml TRIzol (Thermo Fisher, USA) in a 15 ml falcon tube and transferred to the laboratory for further processing. To 
loosen the cell structures, the tissue pieces were homogenized three times at 5000 rpm for 20 s using a high throughput tissue ho
mogenizer (Precellys 24, Bertin Technologies, France). Afterwards, the homogenate was centrifuged at 12,000 g for 10 min at 4 ◦C to 
remove leftover extracellular matrix pieces. Finally, the supernatant was stored in a − 80 ◦C freezer until sequencing library 
preparation. 

2.2. RNA library preparation, sequencing and Bioinformatic analysis 

For the total RNA isolation 5 ml TRIzol-tissue-homogenates (Directzol™) and the RNA MiniPrep Kit (Zymo Research, USA) with 96 
% ethanol were used according to the manufacturer’s protocol. Subsequently, the RNA integrity was validated with a BioAnalyzer 
(Agilent, USA). Following the instructions provided by the manufacturer, RNA-sequencing libraries were generated with the SENSE 
mRNA-Seq Library Prep Kit V2 (Lexogen, Austria). All libraries were sequenced on the same run with a HiSeq1500 device (Illumina, 
USA) at a read length of 50 bp and a sequencing depth of approximately 20 million reads per sample. The next step was to demultiplex 
the samples with the corresponding Illumina sequencing primers. After demultiplexing, reads were aligned against the human 
reference genome (release GRCh38.101) using STAR (version 2.7.2b) to establish read per gene counts for 60672 genes. Before 
processing the differentially expressed genes, the genes that were lower than 10 reads in the total of the whole samples were filtered 
out by the rowSum method [8] and the analysis was performed with the remaining 22914 genes. The gene expression was normalized 
using the variance stabilizing transformation (vst) method and the dimensionality was reduced with a principal component analysis 
(PCA) [9–11]. For differential gene expression analysis, the DESeq2 package (version 1.28.1) was used with a predefined p-adjusted 
value cut off of ≤0.05 and a Log2FoldChange cut off of ±2 [12]. To generate the MA plots, we employed ggpubr [13]. The Venn 
diagram was constructed based on genes displaying significant differential expression, characterized by a p-adjusted value < 0.05. To 
identify significant Gene Ontology (GO) Biological Pathways, we conducted a Gene Set Enrichment Analysis (GSEA) for each con
dition. This was accomplished using the R package clusterProfiler (version 3.14) [14]. 

2.3. Functional enrichment analysis of DEGs 

The list of significant DEGs was used to perform The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis using the 
Database for Annotation Visualization and Integrated Discovery (DAVID) online tool [15,16]. Cut-off values were a p-value <0.05 and 
a gene count per annotated pathway ≥2. 

2.4. Protein-protein-interaction (PPI) network and module analysis 

The PPI network was constructed by using the Search Tool for the Retrieval of Interacting Genes (STRING) database based on all 
significantly up- or downregulated DEGs. A preset combined protein interaction score of >0.4 was selected on the STRING database as 
a cut-off value to construct the network. Cytoscape was used to visualize the network [17]. The biological significance of the modules 
was assessed using the Molecular Complex Detection (MCODE) plugin. The modules were ranked by their degree and selected with an 
MCODE score >5 and a number of nodes >6 [18]. A KEGG pathway enrichment analysis was conducted for the top 5 modules of the 
PPI network. 
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3. Results 

3.1. Identification of DEGs and principal component analysis: keloids and Dupuytren’s disease display entirely distinct expression profiles 

We extracted high quality RNA from all tissue samples and identified a total of 1922 differentially expressed genes, which were 
statistically significant (padj. <0.05). Out of these 1922 genes, 1401 genes have been upregulated within the keloid scar samples 
whereas 521 genes have been upregulated within the Dupuytren’s disease samples. A full list of all significantly DEGs can be found in 
the supplementary tables (Table S2). The principal component analysis (Fig. 1A) revealed a tight clustering among the Dupuytren 
samples, while greater variability was observed in the keloid group. Interestingly, despite clear clinical and microscopic similarities, 
we found absolutely no overlap between the two diseases. They displayed entirely distinct expression profiles. Fig. 1B depicts the Top 
100 differentially expressed genes between both entities. Most of the genes belong to the family encoding for skin related processes, e. 
g., FLG2, which is essential for normal cell-cell adhesion and proper cornification [19]. IVL encodes the expression of the eponymous 
protein and contributes to the formation and protection of corneocytes [20]. In addition, it has a crucial role in normal skin, aberrant 
expression patterns of IVL have been found in keloid scar tissues and have been associated with increased epidermal thickness [21]. 

The Venn diagram in Fig. 2A shows that 1401 genes were significantly upregulated in keloid tissue and 521 genes were significantly 
upregulated in the Dupuytren’s disease group. The diagram further shows that there was no overlap in significantly expressed genes. In 
total there were 13571 expressed genes. The MA plot (Fig. 2B) displays significantly and non-significantly expressed genes. In tissue 
samples of Dupuytren’s disease several genes were significantly upregulated in comparison to keloid samples, e.g., HCN1 (Hyper
polarization Activated Cyclic Nucleotide Gated Potassium Channel 1; FC = 8.5, padj. < 0.05). Similarly, TREM1 (Triggering Receptor 
Expressed on Myeloid Cells 1; FC = 8.4, padj. < 0.05) and MYO3A (Myosin IIIA) transcripts (FC = 8.4, padj. < 0.05) were significantly 
upregulated. As expected, several transcripts of proteins relevant to skin related processes were significantly upregulated in keloid 
tissue as opposed to the Dupuytren’s disease samples, namely, FLG2 (Filaggrin 2) (FC = 12.7, padj. < 0.05) and LCE2B (Late Cornified 
Envelope 2B) (FC = 11.4, padj. < 0.05). 

Fig. 1. A) A principal component analysis was performed on the regularized log transformed count data using DESeq2. Green dots represent the 
Dupuytren samples and blue dots the keloid samples. Despite clinical and microscopical similarities, there is absolutely no overlap between the two 
conditions. B) This figure represents a heatmap of differentially expressed genes between the keloid and Dupuytren samples. The Top 100 genes 
displayed in the map were clustered using the hierarchical average linkage clustering and Euclidean distances in the R package for Nonnegative 
Matrix Factorization. 
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3.2. GO functional enrichement analysis 

To better undrstand the biological differences of the two conditions, we performed a functional enrichment analysis to determine 
dysregulated Gene Ontology (GO) categories (Fig. 3) [22,23]. The analysis unveiled a pronounced focus on metabolic processes related 
to glucan and glycogen within the Dupuytren group. The associated terms encompassed glycogen metabolic process (GO:0005977), 
cellular glucan metabolic process (GO:0006073) and glucan metabolic process (GO:0044042). Moreover, numerous functional bio
logical processes relevant to tendon development such as tendon formation (GO:0035992), tendon cell differentiation (GO:0035990) 
and tendon development (GO:0035989) exhibited a pronounced concentration among patients affected by Dupuytren’s disease. 
Notably, in keloid samples, processes involved in skin development (GO:0043588) and especially the epidermis (GO:0008544), as well 
as the differentiation of keratinocytes (GO:0030216) and associated epidermal cell differentiation (GO:0009913) were enriched. For a 
comprehensive list of all enriched GO terms, refer to the supplementary file (Table S3). 

3.3. KEGG pathway analysis, GO functional enrichement analysis of selected pathways and construction of the PPI network including 
module analysis 

A KEGG pathway analysis revealed 29 and 21 significantly enriched pathways (Table S4A and B) for keloids and Dupuytren’s 
disease, respectively, including arachidonic acid metabolism, metabolic pathways, transcriptional dysregulation in cancer and cell 
adhesion molecules. The Top 5 KEGG pathways are shown in Table 1. In light of the considerable number of enriched genes within the 
KEGG pathway (hsa01100), we conducted a GO enrichment analysis using the DAVID online tool, employing default parameters based 
on annotated genes. The objective was to pinpoint pertinent biological processes. Notably, the analysis yielded a robust enrichment of 
GO terms associated with sphingolipid and eicosanoid metabolic processes. For a comprehensive rundown of these GO terms, please 
refer to the attached document (Table S5). Significant genes identified via KEGG and GO enrichment analysis were exemplarily 
visualized in the arachidonic acid metabolism (hsa00590) and the sphingolipid metabolism (hsa00600) pathway using the KEGG 
pathways maps online tool (Fig. S1). 

For further analysis the list of significant DEGs was mapped using the STRING database to construct a PPI network. The Top 10 
genes with the highest degrees were identified using the software Cytoscape, assuming that these play a major role in the pathogenesis 
(Table 2). The MCODE plug-in identified six modules with a score of >5 and more than 6 nodes. Fig. 4 illustrates the PPI network for 
Module2. The remaining networks can be accessed in supplementary files (Figs. S2–4). 

For example, KEGG enrichment analysis of each module showed that the genes in Module 3 (including ALOX15, CYP2C9, 
PLA2G2F, PLA2G3, PLB1 ITGA3, COL4A3 and ITGA8) were associated with arachidonic acid metabolism, linoleic acid metabolism 
and ECM-receptor interaction. Table 3 provides a compilation of the Top 3 KEGG pathways associated with each module, ranked by 
their respective p-values. For Module 1 there were no annotated pathways. A list of all annotated KEGG pathways, which were 
associated with each individual module can be found in the attachment (Tables S6A–F). 

Fig. 2. A) The Venn-Diagram displays all differentially expressed genes and shows no overlap between Dupuytren’s disease and keloid scar tissue 
samples. In total 13571 genes were expressed. B) The MA plot illustrates the upregulated genes of keloid scar and Dupuytren’s disease samples. The 
data points above the x-axis depict upregulated genes in keloid scars, whereas data points below the x-axis show upregulated genes in Dupuytren 
tissue samples. Blue dots indicate significantly upregulated genes in keloid scar tissue, while green dots denote significantly upregulated genes in 
Dupuytren’s disease tissue. Grey data points represent not significantly regulated genes. 
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Fig. 3. Dot plot showing the Top 10 enriched GO biological processes of differentially expressed genes in keloid scars (A) and Dupuytren’s disease 
(B). The processes are ranked according to the gene ratio. The Gene ratio is the proportion of genes that significantly correlated with the total 
number of genes associated to that process. The p-adjusted value is represented by the shading of the dots. The diameter of the dots represents the 
process specific gene count, which refers to the number of genes associated with each GO biological process. 

Table 1 
This table displays the KEGG pathway enrichment analysis of the DEGs of keloid scars and Dupuytren’s disease samples using the Database for 
Annotation Visualization and Integrated Discovery (DAVID) online tool. The following cut-off criteria were applied: p-value <0.05 and a gene count 
≥2.  

KEGG pathway term Description No. of enriched genes p-value 

Upregulated in keloids    

hsa01100 Metabolic pathways 150 1.37 × 10− 6 

hsa00590 Arachidonic acid metabolism 17 1.98 × 10− 6 

hsa04530 Tight junction 25 4.51 × 10− 4 

hsa00591 Linoleic acid metabolism 9 6.76 × 10− 4 

hsa00600 Sphingolipid metabolism 12 7.32 × 10− 4 

Upregulated in Dupuytren’s samples    
hsa05171 Coronavirus disease - COVID-19 16 1.60 × 10− 3 

hsa03010 Ribosome 13 1.85 × 10− 3 

hsa05202 Transcriptional misregulation in cancer 14 2.25 × 10− 3 

hsa04514 Cell adhesion molecules 12 3.61 × 10− 3 

hsa04350 TGF-β signaling pathway 9 4.19 × 10− 3  
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4. Discussion 

Keloid scars and Dupuytren’s disease share several clinical and microscopic similarities. For example, both conditions show an 
accumulation in different ethnic groups. Keloids occur in all races with a preponderance in Africans or people of African descent [24]. 
By contrast Dupuytren’s disease is rare in Africans and mostly affects people of Caucasian descent [25]. Studies have shown that 
individuals with a positive family history are more susceptible to the disease, and they are more prone to developing an earlier onset 
coupled with a higher severity. These findings demonstrate a genetic predisposition in both conditions [3,26,27]. The diseases occur in 
different regions of the body. Whereas Dupuytren’s disease mainly affects the aponeurosis of the palms of the hands and rarely the soles 
of the feet (which is then called Ledderhose’s disease), keloids tend to occur within the skin of the chest, shoulders, chin, neck, lower 
legs and ears [4,5]. Although on a macroscopical level the affected regions appear to be quite distinct, microscopically both share 
common characteristics. Both keloid scars and Dupuytren’s disease seem to form preferentially on mechanically stressed regions [5, 
28]. Moreover the conditions are characterized by hyperproliferation of extracellular matrix, particularly collagen type I and III [29, 
30]. On a molecular level, in both conditions transforming growth factor beta (TGF-β) has been extensively studied and seems to play a 

Table 2 
The Top 10 genes selected by the highest degree as calculated using Cytoscape.  

Gene symbol Gene name Degree Upregulated in 

CDH1 Cadherin 1 332 Keloid 
ERBB2 Erb-B2 Receptor Tyrosine Kinase 2 258 Keloid 
EGF Epidermal Growth Factor 256 Keloid 
NOTCH1 Notch Receptor 1 200 Keloid 
CASP3 Caspase 3 194 Dupuytren’s disease 
RPS27A Ribosomal Protein S27a 192 Dupuytren’s disease 
CXCL8 C-X-C Motif Chemokine Ligand 8 180 Dupuytren’s disease 
IL10 Interleukin 10 180 Dupuytren’s disease 
SOX9 SRY-Box Transcription Factor 9 174 Keloid 
ITGB1 Integrin Subunit Beta 1 174 Dupuytren’s disease  

Fig. 4. Significant Modules identified with the MCODE plugin, Module 2 (MCODE score = 16.71, nodes = 35). Blue nodes represent significantly 
upregulated DEGs in keloids and green nodes represent DEGs within Dupuytren’s samples respectively. The node diameter is proportional to the 
number of degrees of each node. 
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major role in fibroblast proliferation [31,32]. Regardless of the ever-increasing scientific understanding, both diseases tend to have 
high recurrence rates, and no definitive cure for either condition has been found. In both cases, surgery remains the mainstay of 
treatment if joint contractures or aesthetic disturbances occur. 

To identify potential molecular targets for therapy and to substantiate the known similarities on a molecular level, we have 
compared gene expression profiles of the two common fibrotic spectrum disorders. Furthermore, we evaluated the PPI networks and 
associated pathways, which may play a role in the onset and progression of both diseases. 

Our findings suggest characteristic molecular alterations within the two conditions. Interestingly, we found absolutely no over
lapping gene expression profiles between them. Our analysis unveiled key biological processes and signaling pathways that could 
potentially hold pivotal roles in driving their onset and progression. Additionally, we identified ten genes for each disease which 
appear to be of central importance in disease development. These genes may provide useful starting points for the development of new 
therapeutic agents. 

Differential gene expression analysis revealed 1922 DEGs, including 1401 upregulated genes within the keloid tissue samples and 
only 521 upregulated genes within the Dupuytren’s disease samples. Most upregulated genes were found in keloids, and most of them 
are mainly associated with skin development and related processes. The reason for the significantly lager fraction of upregulated genes 
compared to downregulated genes might be due to the great number of genes encoding for skin development and keratinization. 

Enrichment analysis of the identified DEGs within the keloid samples revealed several significantly enriched KEGG pathways, 
including arachidonic acid metabolism, metabolic pathways, tight junctions, and linoleic acid metabolism. In line with our findings is 
that keloids bear higher levels of arachidonic acid when compared to skin of keloid-prone and non-keloid-prone patients [33]. 
Arachidonic acid has several downstream products including eicosanoids such as leukotrienes, prostanoids of prostaglandins, pros
tacyclins and thromboxanes. These molecules are believed to be proinflammatory in nature and thereby contributing to the formation 
of keloid scars [34]. Furthermore, we found an upregulation of lipid and sphingolipid metabolic processes further suggesting that both 
processes hold a significant role in chronic inflammation, potentially contributing to keloid formation [34,35]. Little is known about 
lipid metabolism and inflammation in keloids. Among the enriched KEGG pathways within the Dupuytren’s cohort were cell adhesion 
molecules, transcriptional dysregulation in cancer and the TGF-β signaling pathway. The TGF-β signaling pathway plays an important 
role in keloid and Dupuytren’s disease formation [36,37]. TGF-β is a pivotal component in producing the myofibroblast phenotype 

Table 3 
This table shows the top 3 KEGG pathways of significant modules identified using MCODE in Cystoscape and the DAVID online tool.  

KEGG pathway 
term 

Description p-value Genes 

Module 2    

hsa04110 Cell cycle 8.02 ×
10− 6 

ESPL1, ORC1, PLK1, E2F1, BUB1B, TTK 

hsa05219 Bladder cancer 1.06 ×
10− 4 

CDH1, EGF, ERBB2, E2F1 

hsa05215 Prostate cancer 1.40 ×
10− 3 

ZEB1, EGF, ERBB2, E2F1 

Module 3    
hsa00590 Arachidonic acid 

metabolism 
4.73 ×
10− 21 

CYP2J2, PLA2G2F, PLA2G4F, PLA2G4D, PLA2G4E, PLA2G2A, CYP4F3, ALOX15, PLA2G3, 
ALOX12, ALOX12B, CYP4F8, ALOX15B, PLB1, PTGS1, CYP2C9 

hsa00591 Linoleic acid metabolism 8.54 ×
10− 14 

CYP2J2, PLA2G2F, CYP2C9, PLA2G4F, PLA2G4D, PLA2G4E, ALOX15, PLA2G2A, PLA2G3, PLB1 

hsa04512 ECM-receptor interaction 1.07 ×
10− 10 

COL2A1, ITGA3, ITGB4, COL4A3, ITGA8, COL4A6, COL4A5, COL9A3, ITGAV, ITGB7, ITGB6 

Module 4    
hsa00600 Sphingolipid metabolism 3.60 ×

10− 11 
CERS3, SMPD3, SMPD2, CERS4, UGT8, ACER1, DEGS2, PLPP2, SGPP2 

hsa04916 Melanogenesis 6.20 ×
10− 5 

DCT, TYRP1, WNT7A, MITF, TYR, WNT4 

hsa04071 Sphingolipid signaling 
pathway 

1.35 ×
10− 4 

CERS3, SMPD2, CERS4, ACER1, DEGS2, SGPP2 

Module 5    
hsa05224 Breast cancer 2.13 ×

10− 6 
FGF5, NOTCH3, FGF16, WNT10A, WNT3A, WNT16, DLL1, FGF22, FGF10 

hsa05200 Pathways in cancer 4.82 ×
10− 5 

NTRK1, NOTCH3, WNT10A, WNT3A, PTCH1, TGFA, WNT16, DLL1, FGF5, FGF16, FGFR3, 
FGF22, FGF10 

hsa05226 Gastric cancer 2.38 ×
10− 4 

FGF5, FGF16, WNT10A, WNT3A, WNT16, FGF22, FGF10 

Module 6    
hsa04151 PI3K-Akt signaling 

pathway 
2.95 ×
10− 8 

GNG10, CHRM1, GNG2, ERBB3, LPAR5, PDGFD, PDGFC, LPAR1, LPAR2, LPAR3 

hsa04072 Phospholipase D signaling 
pathway 

1.69 ×
10− 5 

LPAR5, PDGFD, PDGFC, LPAR1, LPAR2, LPAR3 

hsa04015 Rap1 signaling pathway 9.09 ×
10− 5 

LPAR5, PDGFD, PDGFC, LPAR1, LPAR2, LPAR3  
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which is responsible for aberrant collagen deposition and contraction in Dupuytren’s disease and supposedly keloid scars [38–40]. 
Therefore, monitoring these signaling pathways may aid in the prediction of the progression of these two diseases. 

A PPI network analysis of the DEGs revealed that CDH1, ERBB2, EGF, NOTCH1, CASP3, RPS27A, CXL8, IL10, SOX9 and ITGB1 hold 
key positions in the pathogenesis of Dupuytren’s disease and keloid formation. CDH1, which encodes for the protein E-cadherin, had 
similar expression levels in keloid keratinocytes when compared to normal keratinocytes. The protein levels of E-cadherin are 
diminished in keloids and are lost in cancer cells undergoing endothelial-mesenchymal transition (EMT), indicating a switch to 
mesenchymal markers such as N-cadherin [41–43]. The oncogene ERBB2 was identified to be attenuated in keloids and is believed to 
play a major role in margin migration via neuregulin-1 (NRG1) [44]. EGF increases fibroblast proliferation and motility [45]. To the 
more, EGF alters TGF-β1 signaling, which is a major pathway in the pathogenesis of keloid formation, leading to accumulation of ECM 
components [46]. Although our studies indicate an upregulation of EGF signaling, the evidence in the literature is contradictory, with 
several studies also suggesting a decreased expression of EGF [47]. The highly conserved Notch pathway is essential to the regulation 
of key cellular processes and functions such as fibroblast cell proliferation and migration. Notch-1, a member of a family comprising 
four transmembrane receptors (Notch-1 to Notch-4), has been identified to be increasingly expressed in keloids and hypertrophic scar 
tissue when compared to normal skin [48–50]. Blocking of Notch signaling resulted in decreased scar formation and prevention of 
tissue fibrosis in an experimental setting [51,52]. Our results are in line with these findings and suggest a crucial role for Notch 
signaling in the development of keloids. In addition, SOX9, which is important for chondrogenesis, was significantly upregulated [53]. 

In a previous investigation, Jung et al. identified that terms related to collagen and ECM were enriched in tissue samples of patients 
suffering from Dupuytren’s disease [54]. In the present study DEGs, including ITGB1, COL2A1, ITGA8 and ITGAV, were predominantly 
enriched in the ECM-receptor interaction pathway. In accordance with that, Layton et al. found that pericytes derived from 
Dupuytren’s disease nodules express several integrin receptors including ITGB1 and ITGAV [55]. It may therefore be speculated that 
these pathways and genes contribute to the progression of Dupuytren’s disease. In addition, a KEGG pathway analysis of each indi
vidual module revealed that pathways, which also play a role in the development of different cancerous diseases, appear to be enriched 
in the fibrotic diseases assessed in our study. Using PCR analysis, Docheva et al. showed that fibronectin-binding integrins β3 and β5 
are upregulated in Dupuytren’s disease [56]. 

It has to be kept in mind, however, that the sample size in our study was small and additional experiments, for example reverse 
transcription-quantitative polymerase chain reaction, were not performed to confirm mRNA expression levels. Thus, further studies 
are required to verify these genetic signatures. 

5. Conclusion 

Our study showed that Dupuytren’s disease and keloids, despite some obvious similarities, share indubitably no overlapping gene 
expression profiles. Our results indicate that CDH1, ERBB2, EGF, NOTCH1 and SOX9 play a crucial role in the onset and development 
of keloids. On the other hand, CASP3, RPS27A, CXCL8, IL-10 and ITGB1 play a pivotal role in the pathogenesis of Dupuytren’s disease. 

We identified important upregulated KEGG pathways of both keloids and Dupuytren’s disease, some of which haven’t been 
described in the literature before and therefore warrant further investigation. They include metabolic pathways (hsa01100), arach
idonic acid metabolism (hsa00590) and transcriptional dysregulation in cancer (hsa05202). 
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