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ABSTRACT: The ability to interact with different partners is
one of the most important features in proteins. Proteins that
bind a large number of partners (hubs) have been often
associated with intrinsic disorder. However, many examples
exist of hubs with an ordered structure, and evidence of a
general mechanism promoting promiscuity in ordered proteins
is still elusive. An intriguing hypothesis is that promiscuous
binding sites have specific dynamical properties, distinct from
the rest of the interface and pre-existing in the protein isolated
state. Here, we present the first comprehensive study of the
intrinsic dynamics of promiscuous residues in a large protein data set. Different computational methods, from coarse-grained
elastic models to geometry-based sampling methods and to full-atom Molecular Dynamics simulations, were used to generate
conformational ensembles for the isolated proteins. The flexibility and dynamic correlations of interface residues with a different
degree of binding promiscuity were calculated and compared considering side chain and backbone motions, the latter both on a
local and on a global scale. The study revealed that (a) promiscuous residues tend to be more flexible than nonpromiscuous ones,
(b) this additional flexibility has a higher degree of organization, and (c) evolutionary conservation and binding promiscuity have
opposite effects on intrinsic dynamics. Findings on simulated ensembles were also validated on ensembles of experimental
structures extracted from the Protein Data Bank (PDB). Additionally, the low occurrence of single nucleotide polymorphisms
observed for promiscuous residues indicated a tendency to preserve binding diversity at these positions. A case study on two
ubiquitin-like proteins exemplifies how binding promiscuity in evolutionary related proteins can be modulated by the fine-tuning
of the interface dynamics. The interplay between promiscuity and flexibility highlighted here can inspire new directions in
protein−protein interaction prediction and design methods.

■ INTRODUCTION

The ability of proteins to interact with different partners is
essential to the life of the cell. Indeed, the withdrawal or damage
of proteins with a high number of connections in protein−
protein interaction (PPI) networks (hubs) is often lethal1 or
associated with disease.2

Binding to multiple partners can be promoted by different
factors,3−9 including multiple domains, domain repeats, multiple
interaction sites, intrinsically disordered regions, conformational
changes, highly charged surfaces, post-translational modifica-
tions, and alternative splicing. Even if using different
definitions,4,10−12 hub proteins have been traditionally classified
in two groups, according to their tendency to use the same
(“date”, “singlish-interface,” or “sociable” hubs) or distinct
(“party”, “multiple interface,” or “stable” hubs) interfaces to
interact with different partners. Promiscuity in binding sites that
are reused in different complexes has been often found to rely on
the ability of the protein to adopt different conformations
according to the partner,12−16 with changes ranging from local
side chain reorientations to global rearrangements and to
disorder-to-order transitions.

The role of intrinsic disorder in hub proteins has been
thoroughly investigated in the past.3,4,9,15,17 However, there are
many examples of multipartner proteins with an ordered
structure, such as calmodulin, ubiquitin, or Ras proteins. In
these cases, a possibility is that, in the absence of intrinsic
disorder, promiscuity is promoted by specific dynamical
properties pre-existing in the protein isolated state. Indeed, in
the last decades an increasing number of experimental and
theoretical studies18−23 have shown that the conformational
changes related with a change in the protein state (binding to
ligands, post-translational modifications, interaction with light)
can be sampled by the protein also in the initial unperturbed
state. Some recent works highlighted that in specific cases the
formation of multiple arrangements at a protein−protein
interface can be assisted by conformational fluctuations in the
unbound state in one of the partners.16,24−27 However, only a few
large-scale studies28 of structure-based PPI networks have
explicitly considered the inherent flexibility of proteins and
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evidence of a general relationship between intrinsic dynamics
and binding promiscuity in ordered proteins is still missing.
A first problem in the determination of a link between intrinsic

dynamics and binding promiscuity is that, while classifications in
PPI networks are usually made at the protein level (e.g., hub and
nonhub), the regions in a protein that are involved in interactions
with partners (semi-interfaces or simply interfaces in the
following) can have a largely heterogeneous composition in
terms of different properties, including mobility,29−31 evolu-
tionary conservation,32 binding promiscuity,13,33 and binding
affinity.34−36 Thus, a promiscuous protein can be composed of
both nonpromiscuous and promiscuous residues, each with a
different degree of intrinsic flexibility. Moreover, the flexibility of
a protein can be measured in terms of different space and time
scales, with previous works usually focusing on either backbone
motions,24,28,31,37 slow and highly collective, or side chain
motions,30 faster and more localized.
Here, we present the first large scale study of the intrinsic

dynamical properties of promiscuous residues, where wemapped
residue-based measures of conformational flexibility and binding
promiscuity on interfaces of a large data set of proteins. Both
backbone and side chain intrinsic motions were described with in
silico generated conformational ensembles of the isolated
proteins. The analysis revealed higher flexibility levels for
promiscuous residues compared to nonpromiscuous ones. This
additional flexibility was found to be highly organized in
correlated motions both on a local and on a global scale,
indicating that, when intrinsic disorder is not a major factor, an
ordered form of flexibility can take over to promote binding
promiscuity. Remarkably, the magnitude of intrinsic motions in
promiscuous residues showed a reduced dependence from
evolutionary conservation when compared with nonpromiscu-
ous ones, providing an unprecedented indication that binding
affinity and promiscuity can have opposite effects on residue
dynamics. The functional importance of promiscuous residues
was also confirmed with an investigation of the distribution of
single nucleotide polymorphisms (SNPs) across interface
regions, which suggests that residues in promiscuous positions
have a reduced tolerance to genetic variations, related to the
necessity to preserve their binding polyvalence.

■ METHODS

Data Set Preparation. A data set of proteins was generated
using the PiSite database38 (Figure 1). A nonredundant list of
proteins from PiSite was used, composed of 7739 proteins with
sequence identity <30% identified by clustering the sequences of
110325 proteins from 51482 PDB entries.38 For a given protein,
PiSite collects all the PDB entries containing the protein itself or
very close homologues (>90% sequence identity). The original
protein from the nonredundant PiSite list and its homologues
define a sequence family. In the following, we will refer to
sequence families as simply families and to the original proteins
in the nonredundant PiSite list as Family Representatives (FRs).
In PiSite, all the PDB complexes containing a member of the
family are used to define the family binding properties (number
of partners and binding states), which are then mapped onto the
FR. The basic assumption is that, because of their high sequence
similarity, members of the same family have a very similar
behavior in terms of binding interactions, so that structural
information on partners can be transferred from the family
members to the FR. In this way, the partner annotation of FR is
enriched compared to when only FR occurrences in the PDB are

considered, and the bias due to the incompleteness of the PDB is
reduced.12

For each family in nonredundant PiSite (Figure 1), we selected
the members with known UniProtKB and SCOP IDs using the
PDBSWS PDB/UniProt mapping39 and the SCOP IDs using the
Astral SCOP database40 (v 1.75). Only the families with
unambiguous SCOP domain classification across all the
members and with at least one member with known UniProtKB
ID were retained. We then selected 251 families that satisfied the
following requirements:

(1) Their members have only one SCOP domain.
(2) The sequences of the resolved structures in the family

cover at least 75% of the corresponding UniProtKB
sequences.

(3) They have at least one partner with known structure.
(4) There is at least one structure in the family with no gaps in

the resolvedmain chain. The ungapped X-ray structure with
the best resolution in the family was selected as the
structural representative (SR) to be used in the simulations
and structural analyses. When no crystallographic structure
with a complete main chain was found, an ungapped NMR
structure was selected as SR if available.

The 251 families define our full data set SFull (Supporting
Information (SI) Table S1). Each family includes on average∼20
members, for a total of 4917 PDB chains.
The PDB and chain IDs of partners from structural complexes

(or ‘structural partners’) were extracted from PiSite for each family
in SFull and mapped to UniProtKB with the PDBSWSmapping. For
consistencywith the PiSite database, redundancies were removed by
clustering the partner sequences with BLASTCLUST41 (sequence
identity ≤30%, sequence coverage ≥50%) to define the total
number of structural partners (npS) of the family. This was used to
classify the families of SFull as monopartner (npS = 1, for a total of
151 families) and multipartner (npS≥ 2, for a total of 100 families).
Each of the main SCOP classes (α, β, α/β, α+β) was represented in
both groupswith at least 14 entries. The proteins in the families have
an average size of 217 (monopartner) and 167 (multipartner)
residues, as measured from the SRs.
Family partners identified by nonstructural detection methods

were extracted from the IntAct42 database using the UniprotKB
IDs of each family member. All the binary interactions were
retained. The total number of unique partners (np) of each family
was obtained using BLASTCLUST (see above) on the sequences
of all the partners extracted from either IntAct or PiSite.
In the following, we will often refer to a family as simply a

protein, with the FR as its sequence representative. Unless
otherwise stated, structural properties and simulated conforma-
tional ensembles were calculated from the SR of the family, while
binding multiplicity profiles and ensembles of experimental
structures were built-up using all the family members (see the
following and inset in Figure 1).
MD simulations (see below) were performed on a subset

(SMD) of SFull composed of 6 monopartner and 6 multipartner
proteins. The SMD proteins were selected using stricter criteria to
increase the confidence of their classification, so that multi-
partner proteins have at least 4 structural partners, the
monopartner proteins have both np and npS = 1, SCOP classes
are equally sampled by the two groups and the average size of the
proteins in the two groups is comparable (SI Tables S1 and S2).
A second data set (SSoc) was considered to test and compare

the findings observed on SFull. SSoc is composed of sociable
proteins12 (SI Table S3), defined as having at least 3 structural
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partners and 3 different binding states.38 Starting from the
original list of 102 sociable proteins,12 69 were selected so that
the FR has a complete main chain structure. The FR was used as
the structural representative SR for the simulations and structural
analyses. Since the original data set of sociable proteins was not
filtered for monodomain proteins, SSoc includes entries with
more than one SCOP domain (SI Table S3).
Only a limited number of proteins in the data sets (4 in SFull

and 5 in SSoc) contained post-translational modifications (PTMs)
in the PDB structure, amounting to less than 3% of the total.
None of these was found in the SMD subset. Thus, PTMs were
not explicitly taken into account and residues with PTMs were
modeled using the corresponding unmodified residue. A
systematic study of the effects of PTMs on interface dynamics
would require ad hoc data sets and a standardized framework

including parameters for a large range of PTMs. A complete set
of tools for the inclusion of PTMs in MD simulations has been
recently proposed.43,44

Interface Definition. For each SFull family f, interface
residues were mapped on the SR by analyzing all the PDB
binary complexes Af:B (where Af is a member of the family and B
is one of its partners) listed in the PiSite database for the selected
family members. For consistency with PiSite, the binary
complexes were extracted from the PDB biological units. The
POPSComp method45 was used to determine the profiles of
normalized solvent accessible surface area (SASA) that is buried
upon complex formation for each chain Af ΔSASAn(i, Af:B) =
(SASA(i, Af) − SASA(i, Af:B))/ SASA(i, Af), where SASA(i, Af)
and SASA(i, Af:B) are the SASAs of residue i in the isolated and
bound Af molecule, respectively. All the ΔSASAn profiles of the

Figure 1. Generation of SFull and SMD data sets. The flowchart shows the steps followed in the generation of the SFull and SMD data sets from the
nonredundant PiSite database. The operations indicated in blue on the right were performed on all the members of each family. The applied filters are
indicated in orange. The inset shows how the components of each family are defined and used. See Methods in the main text for a full description of the
procedures involved.
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family were then mapped onto the SR sequence using Af−SR
sequence alignments given by the program ProFit.46 The
resulting ΔSASAn(i, SR:B) values were used to define the SR
interfaces. A SR residue i was considered to be part of a SR:B
interface if upon complex formation it buries at least 10% of its
SASA, that is, if ΔSASAn(i, SR:B) > 0.1. If i is found in interfaces
involving n different partners, its bindingmultiplicity b(i) is set to
n. The binding multiplicity was used to partition the interface
residues into three different binding classes. Residues with b ≥ 2
were classified as multipartner (cmulti), while residues with b = 1
were grouped in the cmono class if belonging to monopartner SRs
and in the cmono_in_multi class if belonging to multipartner SRs (SI
Table S4). Because of differences in the definition of the interface
(distance-based in PiSite and SASA-based here) and of the
selection process applied in the data set generation (see Data Set
Preparation), the binding multiplicity used for the SFull data set
may differ in isolated positions from the one recorded in PiSite.
To ensure full consistency in the analysis of the SSoc data set,
original b profiles from PiSite were used for sociable proteins.
There was some redundancy in the PDB biological units of

each family, so that very similar Af:B complexes were observed.
Interface redundancy was eliminated by clustering the SR-
mapped ΔSASA profiles according to their overlap matrix Oij =
(ΔSASAi(i∩j) + ΔSASAj(i∩j))/(ΔSASAi + ΔSASAj), where
ΔSASAi is the buried SASA of SR in interface i andΔSASAi(i∩j)
is the surface area of the SR residues involved both in interface i
and j, calculated using the coordinates of interface i. The
clustering was performed with the complete linkage method and
the optimal number of clusters was chosen by maximizing the
average silhouette47 value s. An average smax of 0.84 (±0.19) was
obtained for the SFull families, indicating a good partitioning of the
interfaces into the clusters. The interfaces with the largest SASA
within a given cluster were chosen as representatives to generate the
final nonredundant set of 695 interfaces (SI Table S4).
The interfaces were partitioned into three classes according to

the maximum binding multiplicity of their residues and the
binding class of the corresponding proteins (SI Table S4).
Consistently with the residue classification, interfaces containing
at least one multipartner residue where defined as multipartner
(cmulti), while the remaining interfaces were classified as cmono and
cmono_in_multi if belonging to mono- or multipartner proteins,
respectively. The distributions of the total and relative hydro-
phobic interface sizes for cmulti (average ΔSASA = 1583 Å2,
average ΔSASAphob

r = 62%) and cmono (average ΔSASA = 1346
Å2, average ΔSASAphob

r = 61%) were not statistically different,
while the cmono_in_multi interfaces were significantly smaller
(average ΔSASA = 803 Å2, Wilcoxon p-value <2 × 10−6) and
less hydrophobic (average ΔSASAphob

r = 55%, Wilcoxon p-value
<2 × 10−4). The values of the relative hydrophobic interface size
(ΔSASAphob

r) were calculated as the relative contribution to the
total ΔSASA of the interface residues classified as hydrophobic
in POPS.48

Interface Analysis. The physicochemical properties of
interface residues in the different binding classes were analyzed
in terms of propensities relative to all solvent exposed residues in
the corresponding protein class.33,49 The propensity Px(ci) of
property x in the binding class ci was calculated as Px(ci) = px(ci)/
px(surf), where px(ci) and px(surf) are the fraction of residues
with property x in ci and at the surface, respectively. A Px(ci)
value >1 indicates a higher abundance of residues with a given
property in ci than in the rest of the surface. Solvent-exposed or
surface residues were defined as having a relative accessibility
SASAr ≥ 15%50 in the SR of the family. The SASAr values were

calculated normalizing the SASA of each residue by that of the
corresponding amino acid type X in the AXA tripeptide, where X
is in an extended side chain conformation51 selected from the
Dunbrack and Cohen rotamer library52 as implemented in
PyMOL.53 Propensities were calculated for the amino acid
identity, the evolutionary conservation grade as determined by
ConSurf,54 the DSSP55 secondary structure definition, the
relative accessibility of the isolated protein SASAr, and the
extent of surface burial in the complex ΔSASAn. To provide a
measure of the uncertainty associated with this calculation and to
rule out the possibility that the observed propensities were biased
by a few cases, confidence intervals (CI) at 95% were calculated
by bootstrap resampling with 1000 replicates. The statistical
significance of differences between the propensities was
estimated with a Student’s t test on the CI.56,57 Resampling
and statistical analyses were performed with R.58

Interaction hot spots were predicted using different methods,
namely ANCHOR,59 Robetta,60 PISA,61 HotPoint,62 and
KFC2a/b.63 The prediction was performed on the nonredundant
interfaces described above. The criteria used for the hot spot
definition are summarized in SI Table S5. Robetta, HotPoint, and
the KFC2a/b methods have been specifically parametrized for
hot spot prediction against experimental alanine scanning data
and the default criteria for residue classification defined in the
original publications were used. The ANCHOR server59 has
instead been designed to scan for residues that, besides
contributing significantly to the binding energy, are also ‘anchors’
(i.e., they have a large exposed surface in the monomeric state).
In addition, we used PISA, an established method to determine
the thermodynamic stability of protein assemblies and to
distinguish biological interfaces from artifacts of crystal
packing.61 Here, the single contributions of the residues to the
interface stability were used to estimate their importance in the
complex formation. Thresholds on ANCHOR and PISA binding
free energies were selected to obtain an overall hot spot fraction
comparable to the other methods.
Hydration scores Shyd were evaluated for each protein in the

SMD data set from the spatial distribution of water molecules
observed in MD trajectories (see below). Water density maps
g(r)64−66 were calculated at discrete points r defined by a 0.5-Å
spaced rectangular grid around the solute. Frames saved every 0.1
ps from the last 10 ns of the trajectory were superimposed to a
reference using Cα atom positions to remove the overall roto-
translational motion of the protein. The number density of the
water oxygen atoms was then averaged at each grid point over the
MD frames and normalized by the bulk density evaluated in the
6−8 Å shell around the solute. The hydration sites were then
identified as local maxima of the density map with g(r) > 1 and
used to define the hydration score Shyd as previously described.

66

Residues with a high Shyd score were surrounded either by a large
number of maxima or by maxima with a high density. The Shyd
value of each residue i of type aa was standardized by calculating
the ratio (Shyd − μhyd

aa)/σhyd
aa, where μhyd

aa and σhyd
aa indicate

the average and standard deviation of Shyd calculated over
residues of type aa.

Generation of Conformational Ensembles. Ensembles of
conformations were generated for each SR in the SFull and SSoc

data sets with the tCONCOORD67 method. Given a starting
structure, tCONCOORD samples alternative conformations by
fulfilling a set of geometrical constraints as determined from the
initial coordinates and interaction types (e.g., covalent bonds,
hydrogen bonds, salt bridges, or hydrophobic interactions).
Under-wrapped hydrogen bonds68 are detected and modeled as
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unstable. Each SR in the data sets was first energy-minimized
using the OPLS-AA69 force field with 250 steps of the steepest
descent algorithm. Ensembles of 500 structures were then
generated using standard tCONCOORD parameters.67,70

Molecular Dynamics (MD) simulations of the 12 SRs of the
SMD data set (SI Table S2) were performed with GROMACS
4.0.71 The initial structures were solvated with a cubic box of SPC
water molecules, setting the minimal distance between the
protein and the box boundaries to 12 Å. Ionizable residues were
modeled in their standard protonation state at pH 7. The systems
were then neutralized adding the appropriate number of
counterions. The final composition of the systems is detailed
in SI Table S6. The GROMOS-96 force field was used with the
43a1 parameter set.72 Periodic boundary conditions were
imposed. All the bonds were frozen and a 2-fs time step was
used. The Berendsen73 algorithm was employed for temperature
and pressure regulation, with coupling constants of 0.2 and 1 ps,
respectively. The electrostatic interactions were calculated with
the particle mesh Ewald method,74 with a 14-Å cutoff for the
direct space sums, a 1.2-Å FFT grid spacing, and a 4-order
interpolation polynomial for the reciprocal space sums. For van
der Waals interactions, a 14-Å cutoff was used. The neighbor list
for noncovalent interactions was updated every 5 steps. The
systems were first minimized with 1000 steps of steepest
descent. Harmonic positional restraints with a force constant of
4.8 kcal·mol·Å−2 were imposed onto the protein heavy atoms
and gradually reduced to 1.2 kcal·mol·Å−2 in 80 ps, while the
temperature was increased from 200 to 300 K at constant
volume. The system was then simulated at constant temperature
(300 K) and pressure (1 bar) for 100 ps. After the removal of
harmonic restraints, 2 ns of equilibration were run in NPT
conditions. NPT production simulations were then run for 40 ns
for each system. System coordinates were saved every 0.1 ps.
Gaussian Network Model (GNM) calculations were per-

formed by representing each protein in SFull as a network of Cα

atoms linked by harmonic springs. Each node was assumed to
fluctuate according to a Gaussian distribution around its
equilibrium position, defined by the coordinates of the starting
structure. Root mean square fluctuation (RMSF) values were
derived for each Cα atom by inverting the Kirchhoff matrix75

built-up using a unitary force constant for the springs and a 7 Å
cutoff on the distance between Cα atoms.
The conformational variability within each family of SFull was

evaluated on the ensemble of PDB structures composed by all
the family members as defined in Data Set Preparation. The
ensembles were built-up by collecting either X-ray or NMR
occurrences as listed in PiSite. Ensembles with more than one
structure were found for 241 proteins in SFull and 11 proteins in
SMD. In the generation of the ensembles, the PDB structures were
first aligned with ProFit. Only the residues occurring in all the
structures were retained, so that the resulting ensembles could be
analyzed as pseudotrajectories with standard MD analysis tools.
Each structure was also labeled as bound or unbound according
to its binding state as reported in PiSite.
Analysis of Flexibility. Cα and side chain root-mean-square

fluctuations (RMSF) of the residues from their average position
were calculated for the generated tCONCOORD,MD, and PDB
ensembles. Cα RMSF profiles were determined after removal of
the overall roto-translational motion by best-fit superposition of
the structures to all the Cα atoms of the starting experimental
structure (SR) used as a reference. For side chains, the
RMSF values were calculated after removal of the main chain

roto-translation of the single residues,30 using the experimental
structure as a reference for the best-fit superposition.
The comparison of flexibilities between different proteins and

types of ensemble was performed using standardized Cα and side
chain RMSF profiles Z-score(i) = (RMSFj(i) − μj)/σj, where
RMSFj(i) is the RMSF of residue i in protein j, while μj and σj are
the average and standard deviation of the RMSFj distribution.
Relevant rearrangements on protein interfaces could also arise

from subtle conformational changes of local structures.23,76

These changes are often difficult to detect by traditional flexibility
analysis and require the isolation of local dynamics from the
global motion.23 To this end, the dynamics of local structures in
the tCONCOORD and MD ensembles was analyzed with a
fragment-based approach. It was previously shown that local
conformational changes and their correlation are effectively
described by means of a Structural Alphabet (SA) including
prototypical geometries of backbone fragments.23,77 In the
present study, theM32K25 SA77 was used. This SA comprises 25
representative fragments of 4 consecutive Cα atoms, and it was
specifically designed to include the most typical local structures,
as well as to correctly describe conformational transitions
sampled by molecular simulations. Each fragment in the SA is
labeled with a letter representing a prototypical conformational
state. Therefore, any 4-residue-long segment in a protein structure
can be annotated with a letter. The labeling is performed by
identification of the most similar SA fragment in terms of root-mean-
square deviation (RMSD)23,77,78 between the protein segment and
the letter. The conformationof a protein of n residues can be encoded
into a structural string of length n − 3.79 Following this procedure an
ensemble of conformations is condensed to an alignment of structural
strings. A column of this alignment summarizes the conformational
states sampled by a protein segment within the simulation.
The correlation of conformational changes in a pair of protein

segments (i,j) can be calculated as normalized Mutual Information
(MI) between the associated columns in the alignment (eq 1):

ε= −I C C I C C C C H C C( ; ) ( ( ; ) ( ; ))/ ( , )n
i j i j i j i j (1)

where Ci and Cj are the relevant columns in the structural string
alignment, I(Ci;Cj) is the MI, H(Ci,Cj) is the joint entropy,

80 and
ε(Ci;Cj) is the expected finite size error.81 It was previously
demonstrated that local correlated motions are instrumental for
allosteric signal transmission andmay be involved in conformational
changes of interacting interfaces.23 To this end, the distribution of
statistically significant local correlations was compared for surface
and interface fragments in the three binding classes. Statistically
significant correlations were identified as previously reported.23

To analyze the flexibility of single 4-residue fragments, a
fragment RMSF was calculated by defining n−3 sliding windows
or fragments of 4 adjacent Cα atoms. For all the structures in the
ensembles, each fragment was superimposed onto the reference
experimental structure SR independently from the rest of
the protein, to remove local roto-translational motions. The
fragment RMSF was then calculated as the quadratic mean of the
RMSF values of each Cα within the window.77

The correlation between single interfaces and global motions
was investigated with the Functional Mode Analysis (FMA).82

Given a functionally relevant property, FMA can be used to
identify the protein collective motion that is maximally correlated
with it (maximally correlated motion or MCM). This is usually
expressed as a linear combination of principal components (PCs)
derived from a principal component analysis (PCA)83 of the
system trajectory. We selected the FMA approach where the
coefficients of the linear expansion βi are determined by

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400486p | J. Chem. Theory Comput. 2013, 9, 5127−51475131



maximizing the Pearson correlation coefficient between the time
evolution of the functional property F(t) and the projection of
the trajectory onto the MCM. In this case, the variance of F
during the dynamics var(F) can be approximated as82 var(F) ≈
Σi=1,l βi

2 var(pci), where pci is the projection of the trajectory onto
the ith PC and l is the number of PCs considered in the MCM
expansion. The relative contribution of PCi to var(F) was thus
evaluated as pvari = βi

2 var(pci)/var(F).
The interface radius of gyration Rg

IF was considered in this
study as a functional quantity related to the overall shape of the
interface. Rg

IF was calculated over the Cα atoms of the interface
residues for each nonredundant interface in SFull. Using an
alternative property to describe the interface geometry, namely
the distance RMSD calculated over all the possible pairs of Cα

atoms in the interface,84 did not affect the conclusions described
in Results. The MCM was expanded in the essential space of all
Cα atoms, composed of the first l PCs accounting for the 90% of
the total Cα

fluctuation. An average essential space size of 15
(±7) PCs was observed in the whole data set. The first 450
structures of the tCONCOORD ensemble were used for the
PCA analysis and as training set for the construction of the linear
model. The remaining 50 structures were used for cross-
validation.82 On average, the optimized Pearson correlation
coefficient between the MCM and the Rg

IF was 0.81 (±0.20) and
0.79 (±0.23) for the training and cross-correlation sets,
respectively. This supports the validity of the linear model for the
MCM and rules out the possibility of overfitting in the
determination of the MCM. Since the motion along the MCM
can be restricted in the underlying energy landscape,82 while the PCs
in the essential space represent the directions along which the
protein motion has the largest amplitude, we also analyzed the
single PC contributions pvari (see above) to the overall Rg

IF variance.
The number nPC20 of distinct PCs with pvar≥ 20% (deviating from
the average value by∼1.6 σ) was determined. Different choices of the
pvar threshold produced qualitatively similar results.
The comparison of the conformational spaces sampled by

the MD, tCONCOORD and PDB ensembles was performed
by calculating the normalized overlap85 of the Cα covariance
matrices as

= − +CovMatOver(A, B) 1 d(A, B)/(trA trB)1/2
(2)

where A and B are the matrices to compare, tr is the trace
operator and d(A,B) is the matrix difference: d(A,B) = (tr[(A1/2

− B1/2)2])1/2. The overlap ranges from 0 (no overlap) to 1
(identical matrices). The cumulative overlap between two sets of
PCs was calculated as the average of the squared inner products
between all the possible pairs of PCs from the two sets.86 The
cumulative overlap is 1 if the space spanned by the two sets is
identical.
Estimates of per−residue configurational entropy values in the

MD ensembles were obtained using the heuristic Schlitter’s
formula87,88

σ= +
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where kB is the Boltzmann’s constant, T is the temperature, e is
the Euler’s number, ℏ is the Plank’s constant divided by 2π, M is a
diagonalmatrixwith the atomicmasses, andσ is the covariancematrix.
Entropy contributions from the overall protein roto-translation were
removed by superimposing each frame in the MD trajectories to the
reference experimental structure using all the Cα atoms. For each
residue, the covariancematrixσwas then calculated considering all the

atoms in the residue or only the main chain atoms. In the all-atom
case, to take into account differences in the side chain length, entropy
values were normalized by the total number of atoms in the residue
and multiplied by 10 (average number of atoms in a residue
considering heavy atoms and polar hydrogen atoms). It is to be noted
that the Schlitter’s formula is an approximation to the upper bound of
the entropy. Moreover, the decomposition into residue contributions
is not exact. Indeed, when applying eq 3 to single residues the
correlation between the residue and the rest of the protein is not
explicitly taken into account.88

Flexibility analyses were performed on all frames of the
tCONCOORD and PDB ensembles and on MD frames saved
every 1 ps.

Comparison of Conformational Ensembles.Most of the
findings presented in Results are based on the analysis of
tCONCOORD conformational ensembles. The tCONCOORD
method can be considered as a relatively fast method to explore
the conformational landscape of a protein. As explained above,
tCONCOORD generates alternative conformations of a protein
by satisfying the constraints derived from a starting structure. An
all atom representation of the protein is used, and even if energetic
terms are not directly involved in the generation of structures, the
parameters defining the upper and lower bounds of the constraints
depend on the type of interaction represented by each constraint.
These parameters were originally determined on the basis of MD
simulations.89 Subsequently, they were modified and combined
with an estimate of hydrogen bond stability to increase the portion
of conformational space explored by the ensemble.67 Compared to
MD simulations, tCONCOORD lacks an explicit representation
of solvent and long-range interactions, and it does not provide
direct time or energetic information on the simulated processes.
However, it is not affected by convergence issues, and it can rapidly
cover a large part of the accessible conformational space. Indeed,
tCONCOORD ensembles have been shown to be in general
representative of the structural variability of a protein on the basis
both ofMD simulations and experimental data.67,89−91 In particular,
they can be effectively used as predictors of the relative flexibility of
protein residues, to distinguish rigid regions from flexible ones.
Moreover, large conformational transitions between different states
of a protein (e.g., from the open unbound to a close bound-like
conformation of calmodulin67) can be successfully reproduced
starting from a single state.
To test the dependence of the main results of the paper on the

specific method used for the generation of the ensembles, we
considered three more sources of information on the conforma-
tional variability of the proteins. First, we performed short (40 ns)
equilibrium MD simulations in explicit water for 12 proteins
(SMD data set) selected from SFull (see Data Set Preparation).
These proteins were selected so that the main conclusions can be
tested on them; thus, (1) they are representative of the variability
of the original data set in terms of binding properties and fold, (2)
their partner annotation is the most reliable among the SFull

proteins, and (3) they do not have a bias in terms of size or
secondary structure composition. With respect to tCON-
COORD, ensembles from shortMD simulations can be expected
to provide a more accurate representation of the thermal
fluctuations around the starting state, but they are less likely to
sample the conformational space farther from it, particularly
when high-energy barriers are involved.
As a third method, we used the GNMmethod75,92 to calculate

equilibrium fluctuations around the SR structures from the complete
SFull data set. Elastic Network Models are often used when large data
sets are involved because of their reduced computational cost.28,93,94
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Differently from tCONCOORD and MD, the GNM adopts a
reduced, coarse-grained representation of the protein, where usually
only Cα atoms are considered. Their interactions are described by
harmonic potentials, so that aGaussiandistributionof thefluctuations
around the equilibrium positions is assumed. Despite its simplicity,
the GNM has been found to accurately describe the protein global
motions and in particular the equilibrium fluctuations in the
neighborhood of the starting structure.95−97

At last, the conformational variability actually observed in
experimental structures was analyzed by collecting all the PDB
occurrences of a given protein or of close homologues (see
Generation of Conformational Ensembles). These collections of
PDB structures (PDB ensembles) can contain useful information
on the protein conformational variability.98 Indeed, flexibility
indices from PDB ensembles have been compared in the past
with RMSF values from simulations.67,98 It is to be noted that
PDB ensembles can contain structures solved with different
techniques (X-ray and NMR), in different experimental
conditions and in different binding states. Thus, in addition to
conformational changes related to the protein intrinsic flexibility,
PDB ensembles can include changes induced by external factors
(e.g., binding to other proteins or ligands) or due to the different
experimental conditions. Moreover, they can be biased by
experimental errors and by the fact that the PDB covers only a
fraction of the known states of a protein.
For each of the described ensembles, it is possible to calculate

indices measuring the extent of the structural change sampled by
each residue within the ensemble (Analysis of Flexibility). As
explained above, flexibility indices from different ensembles
include different types of contributions and derive from sampling
of conformations on different space and time scales. In particular,
the absolute magnitude of the structural changes observed in the
selected ensembles can be expected to be different. For example,
the comparison of the pairwise RMSD distributions from
tCONCOORD and MD ensembles of SMD proteins (SI Table S7)
suggests that on average larger portions of the conformational space
are sampled by tCONCOORD than by MD simulations.
The relationship between binding promiscuity and flexibility

indices derived from the different ensembles will be discussed in
detail in the Results. However, the findings presented in this
paper depend mostly on the relative order of flexibility of the
residues in a protein and on the shape of the collective modes of
motion along which the protein is most free to move. Hence, it is
useful to briefly report the direct comparison of the order of
flexibility predicted by the different ensembles and the
calculation of the overlap between the PCs extracted from them.
The calculation of the correlation coefficients between the

RMSF profiles shows a generally good agreement among the
tCONCOORD, MD, and GNM ensembles in the SMD database
(SI Table S8), with average correlations ranging from 0.69 (MD/
GNM) to 0.75 (Cα tCON/MD). These values are in line with
previous comparisons performed on different proteins.89,97,99,100

A good agreement between tCONCOORD andMD simulations
was also found for side chains fluctuations, with an average
correlation coefficient of 0.71. Moreover, when the comparison
between GNM and tCONCOORD Cα RMSF profiles is
extended from the SMD to the SFull data set, similar values of
average correlation coefficients are obtained (0.70 for SMD and
0.75 for SFull), indicating that SMD is not biased toward cases with
high correlation values. As expected considering the higher
heterogeneity of PDB ensembles, smaller values were obtained
for the average correlation values between simulated and PDB

ensembles, ranging from 0.47 for GNM/PDB in SFull to 0.63 for
MD/PDB side chain profiles in SMD.
The conformational spaces sampled by the tCONCOORD

and MD ensembles of SMD were also compared (SI Table S9) by
calculating:

(a) The normalized overlap between the overall covariance
matrices of Cα atoms (CovMatOver, see eq 2). This value
depends on the similarity both of the shape of the collective
modes ofmotion (eigenvectors of the covariancematrix) and
of the amplitude of the fluctuations along these motions
(eigenvalues).

(b) The cumulative overlap between the essential subspaces
spanned by the first 15 PCs (CumOver15). A value of 15
was chosen for CumOver15 since it is the average size of
the essential space used for the FMA analysis of
tCONCOORD ensembles (Analysis of Flexibility sec-
tion). This overlap index depends uniquely on the
covariance matrix eigenvectors.

(c) The maximum inner product between selected pairs of
PCs from the compared ensembles (MaxInpr). MaxInpr
was calculated to measure how well a PC from the
tCONCOORD essential space can reproduce any of the
first 3 PCs from MD. Similarly to CumOver15, this index
does not depend on the covariance matrix eigenvalues.

The comparison of tCONCOORD andMD covariance matrices
(CovMatOver) indicates a partial overlap between the two types of
ensembles, with an average value of 0.339 (SI Table S9). The
observation of higher values for CumOver15 (average = 0.474) and
MaxInpr (average=0.566) indicates a better agreement in the shapeof
the collectivemotions (defined by the relative amplitude and direction
of Cα motions) than in the absolute amplitude of the fluctuations
along them. These results are in line with previous observations.89

The MaxInpr index was used also to compare the first 3 PCs
from the PDB ensembles with the PCs from the essential space of
tCONCOORD and MD ensembles. Smaller values were
obtained for both the PDB/tCON (average = 0.421) and the
PDB/MD (average = 0.373) pairs compared to the MD/PDB
ones (average = 0.566), indicating that collective motions in the
simulated ensembles are more similar to each other than to the
principal modes of structural change observed in the PDB
ensembles. The larger values found in general for PDB/tCON
pairs of PCs than for PDB/MD ones indicate that PDB PCs are
better reproduced by tCONCOORD ensembles for the set of
proteins studied here. This might be related to a more complete
coverage of large conformational changes by tCONCOORD
than by MD simulations (SI Table S7).

Analysis of SNPs.Human homologues of proteins in the SFull

and SSoc data set were identified running NCBI-BLAST
v.2.2.26+101 (cutoff E-value = 1 × 10−2) against a self-compiled
library composed of 2583 human proteins with solved or
homologous structures, annotated partner interactions and SNP
mapping. Information on nonsynonymous SNPs was retrieved
from the dbSNP database (build 315, ftp://ftp.ncbi.nlm.nih.gov/
snp/organisms/human_9606/database/b135_archive/
organism_data/b135_SNPContigLocusId_37_3.bcp),102 while
disease-related SNPs (DisSNPs) were extracted from the Online
Mendelian Inheritance in Man (OMIM) database (www.omim.
org/downloads);103 therefore, only genetically inherited diseases
variations are considered here. SNPs and DisSNPs were mapped
back on the original sequences of the SFull and SSoc proteins using
the BLAST sequence alignment. This procedure produced SNP
annotation for 38 proteins of SFull and 25 proteins of SSoc.
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Per-protein propensity values were calculated for each binding
class and for each protein with the formulas described in
Interface Analysis, using as reference the SNPs and DisSNPs
abundance found at the surface of the single proteins.

■ RESULTS

A data set of 251 monodomain proteins (SFull) was extracted
from the PDB and partitioned into 151 monopartner and 100
multipartner proteins using the PiSite database38 (Methods).
The composition of the data set in terms of 7 general protein
function categories (SI Figure S1) was obtained using a
functional annotation of SCOP superfamilies.104,105 As ex-
pected,2,12,33 monopartner proteins (cyan) showed an enrich-

ment in the metabolism and general categories, while multi-
partner proteins (magenta) were particularly rich in the
categories related to extra- and intracellular processes,
information, and regulation.
Interface residues for each protein in SFull were extracted from

its PDB complexes and partitioned into binding classes according
to their binding multiplicity b (Methods). In particular, two
classes cmono and cmono_in_multi were defined for monopartner
residues (b = 1) belonging to monopartner and multipartner
proteins, respectively. Examples of both types of residues are
given in Figure 2A, left (cmono) and middle (cmono_in_multi) panels.
Residues with b ≥ 2 were assigned to the cmulti class (Figure 2A,
right panel). A total of 12 622 interfaces residues were found,

Figure 2. Physicochemical properties of interface residues in the cmono, cmono_in_multi, and cmulti binding classes. (A) Examples of cmono (left), cmono_in_multi
(middle), and cmulti (right) interfaces. The residues involved in each interface are color-mapped onto the surface in cyan (cmono), blue (cmono_in_multi), and
orange (cmulti). Selected partners are represented as cartoon. Left: PDB ID 1x8d, chains D/C. Middle: PDB ID 1pp9, chains S/B. Right: PDB ID 1b6c,
chains E/F. (B−E) Different types of calculated propensities relative to the surface of cmono (cyan), cmono_in_multi (blue), and cmulti (orange) residues of
SFull. Error bars and significance levels were estimated with bootstrap resampling. Stars are drawn above cmono_in_multi and cmulti distributions, indicating
the significance levels (*** p-value <0.001, ** 0.001 ≤ p-value <0.01, * 0.01 ≤ p-value <0.05) of the comparison with cmono (cyan) and cmono_in_multi
(blue). (B) Amino acid propensity Paa. (C) Conservation propensity Pcons. The conservation is expressed as ConSurf conservation grade (Gcons, ranging
from 1, less conserved, to 9, most conserved). (D) DSSP secondary structure (SS) propensity PSS. The three SS groups collect positions annotated as
helix (H = “H” + “G” + “I” in the DSSP dictionary), strand (E = “E” + “B”) and loop (L = blank + “S” + “T”). (E) Relative solvent accessibility (SASAr)
propensity PSASA

r. Three levels of SASAr are considered, with SASAr < 20%, 20% ≤ SASAr < 50%, and SASAr ≥ 50%. (F) Fraction of SFull interface
residues with a small (<20%), medium (20−50%) or large (≥50%) normalized buried SASA (ΔSASAn). The maximum ΔSASAn value is used for
residues involved in more than one complex. (G) Standardized hydration score Shyd in the SMD binding classes.
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with cmono, cmono_in_multi, and cmulti accounting for 54, 36, and 10%,
respectively, of the overall population (SI Table S4). The results
obtained on the SFull data set were compared with those from a
second smaller data set SSoc, a collection of highly promiscuous
proteins (Methods). As for SFull, the 4690 interface residues of
SSoc were partitioned into cmono_in_multi (59%) and cmulti (41%)
residues (SI Table S4).
Simulated ensembles of accessible conformations were

generated for each isolated protein in SFull and SSoc using the
tCONCOORD method (Methods). To test the dependence of
results from the method used for the generation of the
ensembles, we performed also GNM calculations on all SFull

proteins and Molecular Dynamics (MD) simulations on selected
cases (SMD data set, Methods). The intrinsic flexibility of the
residues was described measuring the RMSF from average
positions either of the Cα or of the side chain atoms. Correlations
in residue motions were calculated using either Cα Cartesian
coordinates, providing collective motions,83 or the fragment
encoding from a Structural Alphabet (SA), providing local
correlated motions23 (Methods). The same analyses were
performed on the ensemble of experimental structures generated
by collecting all the occurrences of a given protein in the PDB
(Methods).
The results section is organized as follows. A first character-

ization of the physicochemical properties of interface residues
will be followed by the presentation of the central results on
intrinsic flexibility. In particular, the distribution of flexibility
among the different binding classes, its dependence from
evolutionary conservation, and the relationship between
correlated motions and interface shape modulation will be
discussed. The results obtained from the simulated ensembles
will then be compared with the conformational variability found
in the experimental structures. The findings from the
investigation of the relationship between binding promiscuity
and SNPs occurrence will be then introduced. The section will be
closed by a case study exemplifying the general conclusions.
Multipartner Residues Have Distinctive Physicochem-

ical Properties. In this section, we will characterize the residues
in the three binding classes according to different physicochem-
ical properties. In particular, amino acid identity, evolutionary
conservation, solvent accessibility, and secondary structure were
determined and compared with results from different data
sets.2,6,8,12,13,33

The overall interface composition showed a previously
documented33,51,106 enrichment with respect to the surface in
large aromatic (F, W, Y), hydrophobic (M, A, I, L, V) and specific
polar/charged (C, Q, R) amino acids (Figure 2B). When
compared to the cmono and cmono_in_multi classes (cyan and blue),
cmulti residues (orange) were found to be richer in the polar/
charged Q, D, and R and, less significantly, in the aromatic F and
Y amino acids. On the other side, cmulti turned out to be
particularly poor in hydrophobic amino acids (M, A, I, L, V).
These findings are consistent with the more pronounced polar
character generally found in hub interfaces.2,6,12 Moreover, the
polyvalence of the Q amino acid (which can be either an
hydrogen bond donor or acceptor) and the long or bulky side
chains of R, Y, and F are particularly suitable to adapt to different
interfaces with different local arrangements.4,6,8 The analysis on
SSoc (SI Figure S2A) confirmed the cmulti enrichment in Q, R, F,
and Y, together with a preference, specific to the sociable cmulti
residues, for the I and M amino acids.
As expected,7 the conservation propensity Pcons indicated that

interface regions have a higher abundance of conserved residues

than the overall surface (Figure 2C). Indeed, Pcons was >0 for
ConSurf54 conservation grades (Gcons) > 5 in all the binding
classes. Interestingly, the cmulti group, while poorer in residues
with intermediate conservation (Gcons = 7, 8) was found to be
richer in highly conserved residues (Gcons = 9) than the cmono and
cmono_in_multi groups, both for the SFull (Figure 2C) and the SSoc

(SI Figure S2B) data set. No large deviations from the average
surface values were observed for the abundance of secondary
structure elements in the three interface residue classes of SFull

(Pss ∼ 1 in Figure 2D). However, when compared with the two
cmono (cyan) and cmono_in_multi (blue) classes, cmulti residues
showed a tendency to be richer in loops and poorer in strands. A
similar preference for loops has been found for ‘overlapping
regions’ in date hub proteins.13 These regions are conceptually
close, even if differently defined, to our multipartner residues. No
significant differences in the secondary structure composition
were found between cmono_in_multi (green) and cmulti (red) residues
in the SSoc data set (SI Figure S2C), which both showed a general
enrichment in α-helices with respect to the surface.
PSASA (Figure 2E) gives the propensity of an interface residue

to expose a small (<20%), medium (20−50%), or large (>50%)
fraction of its solvent accessible surface area (SASA, see
Methods), as measured on the isolated protein. Interestingly,
very exposed residues (>50%) were found to be particularly
frequent in the cmulti group, as compared with both the cmono and
cmono_in_multi groups, either for the S

Full (Figure 2E) and the SSoc

(SI Figure S2D) data set. Similarly, if the fraction of SASA buried
upon complexation is considered (Figure 2F), a higher proportion
of residues with a large relativeΔSASA (>50%) was found for cmulti
residues than cmono and cmono_in_multi ones. An analogous propensity
for burying large portions of SASA has been found in overlapping
regions of date hub proteins.13

For the proteins in the SMD subset of SFull, it was possible to
evaluate the hydrophilicity (Shyd, Methods) of the residues from
the distribution of water molecules around the solute in the MD
simulations. To eliminate the dependence from the amino acid
identity, each Shyd value was standardized against the Shyd
distributions of the corresponding amino acid type. Even if a
reduced statistical significance was observed, probably due to the
smaller size of the SMD data set, the comparison of the Shyd
Z-scores showed that monopartner residues in multipartner
proteins tend to be less hydrated (Figure 2G) than the other two
classes. Indeed, the presence of water molecules has been observed
in PDB complexes involvingmultipartner interfaces.107Our findings
would indicate that the tendency to strongly coordinate water
molecules is mainly due to the promiscuous part of the interface.
To summarize these results, we found that multipartner residues

have characteristic physicochemical features that distinguish them
from monopartner residues belonging either to mono- or
multipartner proteins. In particular, they tend to be richer in
specific charged/polar (R, Q, D) and aromatic (Y, F) amino acids
and in loops, and to bemore conserved,more solvent exposed in the
isolated protein, and more buried in the complex. Moreover, within
multipartner proteins, multipartner residues seem to be preferen-
tially hydrated compared to monopartner ones.

Multipartner Residues Have a Higher Intrinsic Con-
formational Flexibility. In the following sections, we will
analyze the correlation between intrinsic conformational
flexibility and binding multiplicity. We measured the intrinsic
flexibility of SFull residues in terms of RMSF Z-score values of
either Cα or side chain atoms. The distribution of flexibility values
observed for cmulti residues in tCONCOORD ensembles was
compared with that of cmono and cmono_in_multi residues (averages
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are reported in Figure 3A and B, light colors). All the pairwise
comparisons indicated a significant difference between the
distributions (p-values <0.01), with an average flexibility order
cmulti > cmono > cmono_in_multi for both C

α (Figure 3A) and side chain
(Figure 3B) RMSF values. A similar analysis on the SSoc data set
(SI Figure S3A and B) confirmed that multipartner residues
(red) in sociable proteins are on average more flexible than the
monopartner ones (green).

The intrinsic flexibility of interface residues in the different
classes was compared also using alternative conformational
ensembles (Methods). In particular, equilibrium fluctuations
around the native structure were evaluated using full-atom MD
simulations and coarse-grained GNM calculations. Remarkably,
multipartner residues showed the largest average mobility among
the binding classes for all the considered ensembles and flexibility
indices (Cα, side chain and fragment RMSF), in both the
complete SFull data set and the SMD subset (SI Figure S4). Also,
the relative flexibility order of the cmono and cmono_in_multi residue
groups was generally preserved, except for Cα

flexibility in SMD. In
many cases, similar significance levels in the distribution
comparison were obtained from the different ensembles. This
indicates that, despite the differences in the methods used for the
generation of the ensembles, in all of them, multipartner residues
have flexibility properties distinct from the monopartner ones.
To assess the possible impact of these flexibility differences on

binding energetics, the configurational entropy of single residues
was estimated with the Schlitter’s formula (Methods) applied
to the MD ensembles of multipartner proteins in SMD

(SI Table S10). The per-residue entropy term TS (where T =
300 K and S is calculated according to eq 3) of multipartner
residueswasonaveragehigher thanmonopartner onesby1.04kcal/mol
for the whole residue (considering an average residue size of
10 atoms) and ∼0.44 kcal/mol for the residue main chain, with
maximum differences of 1.52 and 0.65 kcal/mol, respectively
(SI Table S10). It has to be noted that the Schlitter’s formula
gives only an approximate estimate of the entropic term (Methods).
Moreover, accurate measures of the impact of flexibility on the
binding free energywould require that protein partners are explicitly
taken into account in the calculation.
A further measure of the relationship between flexibility and

binding was obtained by calculating the correlation coefficient
between profiles of tCONCOORD RMSF and binding multi-
plicity b for each protein in SFull (SI Figure S5). The observation
of large correlation coefficients in this analysis would require not
only a difference in flexibility between mono- and multipartner
residues but also that, within multipartner residues, higher b values
correspond to higher RMSF values. This makes this test more
stringent than the previous one. Indeed, small average correlations
were found for both mono- and multipartner proteins, using either
Cα (SI Figure S5A) or side chain (SI Figure S5B) RMSF values.
However, the distribution of multipartner proteins (magenta) was
shifted toward significantly higher values than monopartner ones
(cyan) in both cases, with some multipartner proteins showing
correlation coefficients as high as 0.6.
The presented results show that, compared to monopartner

residues, multipartner residues have an average ‘excess’ of
intrinsic flexibility, which could be used by the residues to adapt
to the different environments provided by the different partners
when binding occurs. In the subsequent section, we will further
refine this analysis by focusing on the interface residues that are
most important for the interaction with the partner.

Opposite Effects of Evolutionary Conservation and
Binding Promiscuity on Intrinsic Flexibility. Previous
studies highlighted an increased rigidity for hot spots30,31,108

and in general for evolutionary conserved interface residues, which
have been found to prefer preorganized bound-like conformation
even in the unbound state.29 Thus, we analyzed the relationship
between evolutionary conservation and conformational flexibility
in our data set, to highlight possible differences in the behavior of
the three residue binding classes.

Figure 3.Conformational flexibility of interface residues in SFull and SMD.
(A/B) Average Cα (A) and side chain (B) RMSF Z-scores
(tCONCOORD) calculated over cmono (cyan), cmono_in_multi (blue),
and cmulti (orange) residues in the S

Full data set. The standard error of the
mean is represented with an error bar. The significance levels from
pairwise Wilcoxon comparison tests are reported with a star code (see
Figure 2 legend). Stars are drawn above cmono_in_multi and cmulti bars
indicating the significance levels of the comparison with cmono (cyan) and
cmono_in_multi (blue). Averages and significance levels calculated
considering only the residues with the highest ConSurf conservation
grade (Gcons = 9) are also reported in dark colors. (C) Dependence of
tCONCOORD average Cα RMSF Z-scores (dots) from evolutionary
conservation for cmono (cyan), cmono_in_multi (blue), cmulti (orange)
residues. Residues are partitioned into 9 groups according to their
ConSurf conservation grade (Gcons). A best-fit linear regression is also
reported for each binding class. (D/E) Average Cα RMSF Z-scores
calculated from tCONCOORD (D) andMD (E) ensembles over highly
conserved (Gcons = 9) cmono (cyan), cmono_in_multi (blue), and cmulti
(orange) residues in the SMD data set. The standard error of the mean is
representedwith an error bar. The significance levels frompairwiseWilcoxon
comparison tests are reported with a star code (see Figure 2 legend).
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A small but significant anticorrelation between flexibility from
tCONCOORD ensembles and conservation was found by plotting
the averageCαRMSFZ-scores of interface residues in SFull against the
ConSurf conservation grade valueGcons (Figure 3C). A best-fit linear
regression showed that this dependence is slightly more pronounced
for the cmono class (cyan), producing an increased difference between
cmono and cmulti C

αRMSF distributions when only themost conserved
residues are compared (dark cyan and dark orange bars in Figure 3A).
The same slope was found for the cmono_in_multi (blue) and cmulti
(orange) linear models (Figure 3C), so that cmono_in_multi average C

α

flexibility was consistently smaller than cmulti for all the Gcons values.
Similar findings, but with reduced differences between the residue
binding classes, were observed when considering side chain RMSF
values (Figure 3B and SI S3F).
To check if these results are affected by the method used to

generate the conformational ensembles, we compared tCON-
COORD and MD RMSF distributions for the most conserved
residues in the three binding classes of the SMD subset (Figure 3D
and E). A fully consistent picture was obtained from the two
methods, confirming the higher average flexibility of the most
conserved multipartner residues (orange) with respect to the
monopartner ones (cyan and blue). Moreover, the generality of
the results was checked on the SSoc data set (SI Figure S3C/E),
where cmulti residues (red) showed an even smaller dependence of
Cα RMSF from the conservation grade than all the other classes.
We further restricted our analysis to hot spot interface residues,

that is, the residues that contribute most to the binding energy upon
complex formation.7,34 Owing to the limited availability of
experimental information on hot spots, especially for multipartner
proteins,109 we identified candidate hot spots using different
prediction methods on the nonredundant set of interfaces of SFull.
For each protein and each method, a given residue was classified as
hot spot if it satisfies themethod criteria (Methods and SI Table S5)
in at least one of the interfaces in which it is involved. In agreement
with previous findings,35,109 the majority of multipartner hot spots
(from 79 to 88% depending on the specific method) was predicted
as such only in one interface (SI Table S11), indicating that hot
spots are partner-specific.35 Hot spot populations generated by
different predictors had only a partial overlap (SI Figure S6), as
expected from the differences in the strategies adopted by the
different methods (Methods). In spite of this, the comparison of the
conformational flexibility of mono- and multipartner hotspots
produced surprisingly consistent results (Figure 4). Indeed, the
highest average tCONCOORD flexibility was observed for cmulti hot
spots (orange) in almost all the cases for bothCα atoms (Figure 4A)
and side chains (Figure 4B).
The results presented in this section show that binding

promiscuity has a counteracting effect on the loss of flexibility
expected for more conserved positions. As a consequence, the
preference of promiscuous residues for a higher mobility is even
more pronounced when considering only the residues that are
more likely to be determinant for the binding to the partner.
Multipartner Proteins Use Different Global Motions to

Modulate Different Interfaces. In the previous sections, we
analyzed the flexibility of residues in terms of their equilibrium
fluctuations from the average position in the simulated ensembles.
Here, we extend this investigation to the correlation of these motions,
to highlight possible differences between monopartner and multi-
partner interfaces. In particular, we aimed at detecting to which extent
globalmotionsmodulate the interface dynamics in the different classes.
For each protein in SFull, a set of nonredundant interfaces was

extracted from all its PDB complexes. Each interface was then
assigned to a binding class cmono, cmono_in_multi, or cmulti according

to the maximum binding multiplicity of its residues (Methods
and SI Table S4). The collective motions of each SFull protein
were extracted by a principal component analysis (PCA) of its
tCONCOORD conformational ensemble. The first l principal
components (PCs) accounting for the 90% of the overall
fluctuation of Cα atoms were selected. While other choices would
be possible to represent collective motions, using PCs ensured
that the motions considered in the analysis were allowed by the
underlying energy landscape. The identification of the PCs mostly
correlated with each interface was performed through a functional
mode analysis (FMA),82 using as functional property the radius of
gyration of the interface Cα atoms (Rg

IF). The linear combination of
PCs that best correlates with the Rg

IF of each interface (maximally
correlated motion or MCM) was then calculated. The contribution
of single PCs to theMCM, together with the value of theMCM-Rg

IF

correlation, determines the fraction of theRg
IF variance that is due to

the motion along a given PC (pvar). A PC was considered to be
correlated with an interface if pvar ≥ 20%.
The number of Rg

IF-correlated PCs (nPC20
IF) was calculated

for each interface (Figure 5A). All the interfaces turned out to be
correlated on average with no more than 1 PC. The behavior of
cmono interfaces (cyan) was similar to that of the multipartner
ones (orange), while the cmono_in_multi interfaces (blue) seemed to

Figure 4. Conformational flexibility of hot spots. Average Cα (A) and
side chain (B) RMSF Z-scores (tCONCOORD) of predicted hotspots
in the three binding classes cmono (cyan), cmono_in_multi (blue), and cmulti
(orange) of the SFull data set. The standard error of the mean is
represented with an error bar. The significance levels from pairwise
Wilcoxon comparison tests between the RMSF distributions are
reported with a star code (see Figure 2 legend). For a given hotspot
prediction method, stars are drawn above cmono_in_multi and cmulti bars
indicating the significance levels of the comparison with cmono (cyan) and
cmono_in_multi (blue).
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be slightly less affected by the protein global motions. If the
number of unique Rg

IF-correlated PCs is summed over all the
interfaces of a given protein (nPC20

P in Figure 5B), a significant
difference is found between monopartner (cyan) and multi-
partner (magenta) proteins, indicating that the latter use a larger
number of independent global motions to modulate the shape of
their interfaces. Since for multipartner proteins each interface is
on average correlated with ∼0.9 PC and each protein has, on
average, four nonredundant interfaces, the peak at 3 for
multipartner nPC20

P implies that different interfaces tend to be
correlated with different PCs. Qualitatively similar results were
obtained when performing the FMA analysis on MD ensembles
of the SMD data set (SI Figure S7).
The PCs used in the FMA represent the main global or

collective motions of a protein. Correlations between residues

can also be analyzed by considering their local dynamics, that is,
by removing the overall roto-translation of the protein from their
motion. Indeed, it has been shown that analyzing local dynamics
can highlight communication pathways within the protein
that are difficult to identify solely from the collective motions
involving the entire structure.23 To this end, local motions were
analyzed with a fragment-based approach23,110 and the extent of
correlation was estimated by normalized mutual information In

(eq 1 in Methods). Correlations within interface residues of each
binding class (cyan, blue and orange in Figure 5C) calculated
from the tCONCOORD ensembles were found to be signifi-
cantly higher than those within mono- and multipartner surface
residues (light and dark gray), suggesting a higher level of com-
munication between interface residues. Interestingly, the cmulti
distribution (orange) was found to be significantly higher than
the cmono_in_multi one (blue), indicating that, within multipartner
proteins, multipartner residues are on average more correlated than
monopartner ones. No significant differences were instead found
between cmulti (orange) and cmono (cyan) distributions.

Multipartner Residues Have a Higher Conformational
Variability within Experimental Structures. In this section,
we will investigate if the higher intrinsic flexibility found for
multipartner residues correlates with the variability observed in
the experimental structures. Indeed, many proteins in the SFull

data set have a relatively large number of occurrences in the PDB
(>10 for ∼50% of the proteins). These PDB ensembles contain
information on the protein conformational variability98 that can
be extracted and compared with that derived from the simulated
ensembles.
The overall variability within the PDB ensemble of each

protein was decomposed into three different contributions
according to the binding state of the structures that are
compared: unbound−unbound (U−U), bound−bound (B−B),
and unbound−bound (U−B).The highest structural variability (as
measured by the maximum Cα RMSD calculated over all the
structure pairs of a given protein) was found on average for theU−
B pairs (2.66± 0.36 Å), followed by U−U (1.81± 0.28 Å) and B−
B (1.34 ± 0.15 Å). The U−U RMSD values can be considered as
related to the intrinsic plasticity of the isolated protein, which can
have different accessible states (‘pre-existing equilibrium’), while
the U−B values include also the structural changes caused by the
binding of the partners (‘induced fit’). The smaller variability
observed within bound structures (B−B) reflects the higher
number of constraints in the complexes.
For each of these different contributions, multipartner

proteins showed on average a higher conformational variability
(U−Umulti, B−Bmulti, and U−Bmulti, dark colors in Figure 6A) than
monopartner ones (U−Umono, B−Bmono, and U−Bmono, light
colors). This suggests that the higher intrinsic flexibility observed
for multipartner residues in isolated proteins could be used to
enhance pre-existing equilibrium or to assist induced-fit changes.
Indeed, the single contributions of the residues to the overall Cα

fluctuation within the PDB ensemble (Figure 6B−C) showed a
similar picture as that observed for the simulated RMSF (see also
SI Figure S4 for a direct comparison). A higher conformational
variability (Figure 6B, light colors) and a weaker dependence
from conservation (Figure 6C) were found for multipartner
residues, resulting in an increased RMSF difference between
highly conserved mono and multipartner residues (Figure 6B,
dark colors). The cmono and cmono_in_multi groups were instead
more similar to each other than in the simulated case, indicating a
comparable degree of variation within the PDB structures.
Consistently with the simulated ensembles, reduced differences

Figure 5. Analysis of correlated motions in SFull. (A/B) Correlation
between global and interface motions by functional mode analysis
(FMA) on tCONCOORD ensembles from the SFull data set. (A)
Number of PCs accounting for at least 20% of the Rg

IF variance of a given
interface (nPC20

IF). Average values calculated over interfaces of the
three binding classes cmono (cyan), cmono_in_multi (blue), and cmulti
(orange) are reported. (B) Distributions of nPC20 per protein
(nPC20

P), calculated as the number of unique PCs accounting for at
least 20% of the Rg

IF variance of any of the protein interfaces. Values for
monopartner (cyan) and multipartner (magenta) proteins are reported.
(C) Distributions of normalized MI (In) calculated over pairs of surface
residues in monopartner (light gray, smono) and multipartner (dark gray,
smulti) proteins, and over pairs of interface cmono (cyan), cmono_in_multi
(blue), and cmulti (orange) residues. In A and C, the standard error of the
mean is represented with an error bar. The significance levels from
pairwise Wilcoxon comparison tests are reported with a star code (see
Figure 2 legend).
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were found between the different binding classes when the side
chain variability was considered (SI Figure S8 and S4).
Multipartner Residues Have a Lower Propensity for

SNPs. In this section, we provide further insight on the
functional relevance of promiscuous residues by analyzing the
distribution of Single Nucleotide Polymorphisms (SNPs) across
the different binding classes considered in the previous sections.
Recent large-scale studies of the human genome such as the

International HapMap Project111 and the 1000 Genomes
Project112 have produced a large number of data that can be
used to accurately assess the relationship between genotype and
phenotype. In particular, SNPs are single nucleotide variations
observed at a specific location of the genome in at least 1% of the
population.113 The mapping of SNPs, and in particular
nonsynonymous SNPs, to protein regions is currently exploited
in a wide range of applications, from disease association studies to
pharmacogenomics.114 In this study, only missense non-
synonymous SNPs are considered.
In order to study the relationship between binding promiscuity

and human SNPs, human homologues of SFull and SSoc proteins
were identified. We recorded the occurrence of nonsynonymous
SNPs from the dbSNP database102 and of SNPs with a known
association with disease (DisSNPs) from the OMIM database103

(Methods). The SNP and DisSNP positions were then mapped
back to the original SFull and SSoc proteins.
The comparison of the SNP propensities of the different

binding classes with respect to the surface (Figure 7A, light
colors) showed that promiscuous positions in SFull (orange) are
less rich in SNPs than both classes of monopartner residues
(cyan and blue). Even if with reduced statistical significance, this
trend was confirmed by SSoc proteins (green and red). As an
example, the survivin protein, already in the human form in the
SFull data set, is shown in Figure 7B. While promiscuous (red
shades surface) and nonpromiscuous (light blue surface)
residues are present in survivin in almost equal proportion, 5
out of 6 interface SNPs (spheres) were found in nonpromiscuous
regions, mainly involved in the interaction with the survivin
partner borealin (green cartoon).
A possible explanation of these findings is that the human

equivalent of the promiscuous positions considered here tend to
be less tolerant to variation, probably due to the higher number
of constraints that they are experiencing to preserve effective
binding. Mutations at these sites might be more prone to yield a
lethal phenotype and are thus less likely to be viable.115

The analysis of DisSNPs (Figure 7A, dark colors) was strongly
affected by the small number of observations (SI Table S12). The
large uncertainty associated with the average propensities,
especially for the SSoc proteins, prevented the observation of
statistically significant differences between the binding classes. It
is thus evident that these results, while indicating an interesting
and unexplored relationship between binding diversity and
variability in the human genome, will need to be confirmed on a
larger data set of human proteins.
Case Study: Two Ubiquitin-like Proteins. In this section,

we will exemplify the relationship observed between binding and
flexibility analyzing two related multipartner proteins: Neddylin
and the small ubiquitin-related modifier 2 (SUMO-2).
Neddylin is a ubiquitin homologue (56% sequence identity,

Figure 8A) with the characteristic ubiquitin-like fold (Figure 8B/D).
The analysis of its complexes highlighted that, as for ubiquitin,116 the
Neddylin main interface is centered at an hydrophobic patch at the
C-terminus of the β5 strand (Figure 8B, green circle), involving
different hydrophobic residues from the β1-β2 loop (L8) and the

β3−5 strands (I44, V70, L71). This region is highly promiscuous
and rich of hot spots (sticks in Figure 8B). A secondary interaction
site, previously observed also in ubiquitin,116 was found at the α1
C-terminus (Figure 8B, yellow circle). This does not show any hot
spot and is mainly composed of monopartner residues.
A positive correlation was observed between the profiles of

binding multiplicity (orange) and Cα RMSF from the
tCONCOORD ensemble (blue) of Neddylin (Figure 8F),
with a correlation coefficient calculated over the exposed residues
of 0.36. Correspondingly, a higher average Cα RMSF Z-score

Figure 6. Analysis of the conformational variability within PDB
ensembles in SFull. (A) Averages of maximum Cα RMSD values
calculated over all the possible pairs of PDB structures within the
unbound (pink) and bound (green) ensembles, and between bound and
unbound structures (magenta) of each mono- (light color) and multi-
(dark color) partner protein. The standard error of the mean is
represented with an error bar. The significance levels from pairwise
Wilcoxon comparison tests between (mono, multi) pairs of distributions
are reported with a star code (see Figure 2 legend). (B) Average Cα

RMSF Z-scores (PDB ensembles) calculated over cmono (cyan),
cmono_in_multi (blue), and cmulti (orange) residues in the SFull data set.
The standard error of the mean is represented with an error bar. The
significance levels from pairwiseWilcoxon comparison tests are reported
with a star code (see Figure 2 legend). Averages and significance levels
calculated considering only the residues with the highest ConSurf
conservation grade (Gcons = 9) are also reported in dark colors. (C)
Dependence of PDB average Cα RMSF Z-scores (dots) from
evolutionary conservation for cmono (cyan), cmono_in_multi (blue), cmulti
(orange) residues. Residues are partitioned into 9 groups according to
their ConSurf conservation grade (Gcons). A best-fit linear regression is
also reported for each binding class.
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(SI Table S13) was found for multipartner residues (0.79± 1.48)
than monopartner ones (0.03 ± 0.72). Indeed, many multi-
partner residues (Figure 8B) are located at or in close proximity
of high-flexibility regions (Figure 8D), namely the β1-β2, α1-β3,
and β3-β4 loops, and the C-terminus. The intrinsic backbone
mobility of promiscuous locations in the simulated ensemble is
paralleled by a high conformational variability at these same
positions in the different PDB complexes where Neddylin
interacts with different partners (SI Table S13). Additionally, the
FMA analysis (Figure 9A) showed that the backbone flexibility of
each of the two representative interfaces mainly correlates with
one specific collective motion. In particular, PC4 (Figure 9B)
accounts for 54% of the Rg

IF variance of the main interface (green
bars in Figure 9A). A similar collective motion, involving a
‘pincer-like’ movement of the β1-β2 and α1-β3 loops, has been
observed in NMR ensembles of ubiquitin representing solution
dynamics up to the μs time scale.24

Multipartner residues of Neddylin seemed to rely less on side
chain flexibility than backbone mobility to adapt to different
environments, since the average side chain RMSF was
comparable to that of monopartner residues for both the
tCONCOORD and PDB ensembles (SI Table S13). Indeed,
while a few multipartner residues adopted different rotamers in
different complexes (e.g., R42 in SI Figure S9B), others relied
either on the backbone flexibility (L8 in SI Figure S9A) or on
their capacity to support different interaction geometries without
changing their conformation (e.g., H68 in SI Figure S9C, where it
interacts with an aromatic ring in either a T-shaped or parallel
stacking interaction).
The SUMO-2 protein, which is a homologue of ubiquitin in

spite of its low sequence identity (14%, Figure 8A), showed
important differences with respect to Neddylin in binding modes
and dynamics. This is consistent with this protein belonging to a
separate sequence subgroup117 of ubiquitin homologues,
characterized by the replacement of the key ubiquitin residues
Q41 and Y59 (yellow arrows and sticks in Figure 8A and D,

respectively) with two hydrophobic residues that are no longer
able to form hydrogen-bonds with the nearby loops (sticks in
Figure 8E). This is reflected in both the protein structure and
dynamics. In particular, compared to Neddylin the tCON-
COORD SUMO-2 ensemble presented a higher Cα

flexibility at
the α1 C-terminus and the α1/β3 loop (Figure 8E).
The increment in flexibility was paralleled by an increment

in binding promiscuity in this region. A multipartner interaction
site, typical of SUMO proteins, was found at the ‘groove’
defined by the α1 C-terminus and the β2 strand, which is
correspondingly enriched in multipartner hot spots with respect
to Neddylin (Figure 8C and G). Themapping of tCONCOORD
Cα and side chain RMSF onto the SUMO-2 surface (Figure 10C/D),
shows that the α/β groove is flanked by residues with high
flexibility either at Cα (β1-β2 loop) or side chain atoms (β2) or
both (α1 C-terminus). Moreover, the water density map from
the MD simulation showed that the region surrounding the
groove is richer in high-density hydration sites than the
nonpromiscuous regions (SI Figure S10).
The analysis of the SUMO-2 PDB structures (SI Table S14)

highlighted that, differently from Neddylin, side chain conforma-
tional changes are more important for multipartner residues
(average side chain RMSF Z-score = 0.56 ± 1.13) than for
monopartner ones (−0.06 ± 0.98). Particularly relevant is the
contribution of the R34 and Q35 hot spots at the α1 C-terminus,
with a side chain RMSF Z-score of 2.63 and 1.32, respectively.
Correspondingly, these residues adopt significantly different
rotamers in the different PDB complexes (Figure 10A/B).
This example suggests that a fine-tuning of the intrinsic dynamical

properties of the interface can be central in modulating the binding
specificity in evolutionary related proteins.

■ DISCUSSION
In this work, we studied the intrinsic conformational flexibility of
multipartner proteins to assess its role in promoting diversity of
binding. Through the generation of simulated conformational
ensembles from a starting experimental structure, we measured
the tendency of the isolated proteins to sample different
conformations independently from the interactions with their
partners. The conformational flexibility that we considered here
is a different concept from the intrinsic disorder analyzed in other
works on hub proteins,9,12,15,17,118 characterized by the absence of a
definite structure in all or part of the protein. It is also different from
the conformational plasticity12−14 as measured by the conforma-
tional changes observed when multiple experimental structures are
available. Indeed, if these structures correspond to different states,
such as bound and unbound conformations, the conformational
variability is likely to include also induced fit and allosteric effects in
addition to intrinsic flexibility.
The choice to consider the isolated protein is justified by many

studies indicating that the intrinsic dynamics of a protein is
correlated with its function.19,20,26,119−122 Indeed, even when
isolated, proteins have been shown to sample functionally
relevant states, which can then be stabilized or selected by
interactions with the environment such as post-translational
modifications or interactions with ligands.18 Many of these works
used elastic network models (ENM) to characterize the equilibrium
fluctuations within the native structure basin.28,95,120,123 In spite of
their simplicity, these methods have been shown to provide results
in good agreement with both experiments and more sophisticated
approaches such as MD. For this study, we chose a method of
intermediate complexity and computational cost, tCONCOORD.
While allowing for anharmonicities and providing a full atom

Figure 7. SNP and DisSNP propensity in the SFull and SSoc data sets. (A)
Propensities of SNPs (light colors) and DisSNPs (dark colors) relative
to the surface for cmono (cyan), cmono_in_multi (blue), cmulti (orange),
cmono_in_multi(Soc) (green) and cmulti(Soc) (red) interface residues. The
propensity is calculated per protein. The reported values are averages
over SFull monopartner proteins for cmono, S

Full multipartner proteins for
cmono_in_multi and cmulti, and S

Soc proteins for cmono_in_multi(Soc) and cmulti(Soc).
The error bars represent the standard error of the mean. The
significance levels from pairwise Student’s t tests are reported with a
star code (see Figure 2 legend). (B) SNPs in the human survivin protein.
SNPs found in the interface region of survivin are labeled and
represented as van der Waals spheres. The protein surface (transparent)
is colored according to the binding multiplicity b from blue (b = 0, non-
interface) to red (b = 3). A survivin binding partner (borealin) is also
represented as green cartoon (PDB ID: 2RAW).
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description of the protein where both backbone and side chains are
included, it is still faster than MD simulations.67

The interaction data on each protein of our SFull data set were
derived from a structural PPI database, PiSite,38 where partners
from all the PDB complexes involving homologues within a high

(>90%) sequence identity family are mapped onto a family
representative. Structural PPI databases generally contain higher-
confidence interaction data than interactome networks derived
from a range of different experimental methods, resulting in
degree distributions with shorter tails.11 In our SFull data set, this

Figure 8. Comparison of two ubiquitin-like proteins. (A) Sequence alignment of Ubiquitin (UniProt/KB ID: P0CG48), Neddylin (Q15843), and
SUMO-2 (P61956). The sequences were aligned using T-COFFEE v 9.02130 with default parameters. TheDSSP secondary structure of Ubiquitin (PDB
ID: 1ubi) is shown (top). Conserved residues are highlighted in red. Stars belowNeddylin and SUMO-2 sequences indicate cmono_in_multi (blue) and cmulti
(orange) residues identified as hotspots by at least two prediction methods. (B/C) Cartoon representation of Neddylin (B, PDB ID: 1ndd) and SUMO-
2 (C, PDB ID: 1wm3) structures. Residues are colored according to the binding multiplicity b from blue (b = 0, non-interface) to red (b = 4). Residues
identified as hotspots by at least two prediction methods are represented as sticks. The approximate boundaries of two representative interfaces of
Neddylin are indicated in B with a green (main interface) and yellow (secondary interaction site) dashed line. The insets show the structures of the
representative complexes (PDB ID 1xt9, chains B/A, and PDB ID 1r4n, chains J/C in the green and yellow insets, respectively). (D/E) Mapping of
tCONCOORDCαRMSF values ontoNeddylin (D) and SUMO-2 (E) structures. The structures are colored according to RMSF values from blue (0 Å)
to red (2 Å). Selected residues (highlighted with yellow arrows in panel A) are represented as yellow sticks, while hydrogen bonds in D are indicated as
dotted blue lines. (F/G) Profiles of binding multiplicity (b, blue) and Cα RMSF from tCONCOORD (orange) for Neddylin (F) and SUMO-2 (G).
DSSP annotation of the secondary structure is reported as magenta (helices) and yellow (strands) blocks.
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is reduced also by the fact that only monodomain proteins were
considered, so that a maximum number of 12 nonredundant
partners per protein was found. The investigation was limited to
monodomain proteins to exclude cases where multiple-partner
binding is simply achieved by using different domains or a
different relative arrangement of the domains.6

The relationship between conformational flexibility and ability
to bind multiple partners was analyzed primarily at the residue
level. Indeed, the composition of either proteins or interfaces in
terms of binding multiplicity turned out to be highly
heterogeneous, with 40% of multipartner proteins in SFull

presenting both mono- and multipartner interfaces and 91% of
multipartner interfaces including both mono- and multipartner
residues. Thus, we aimed mostly at identifying the dynamical
features specific of multipartner residues and not at character-
izing multipartner proteins as a whole.
Even if we did not attempt a classification of the SFull

multipartner proteins, more than 60% of them have at least
10% of their interface residues involved in interactions with
different partners, while only 8% multipartner proteins have no
overlapping interfaces. On the other hand, as found in different
data sets,124 very large overlaps between interfaces seem to be
avoided (only 5% of the multipartner proteins have more than
60% of their interface interacting with multiple partners). The
alternate data set SSoc used to validate our results, is composed of

proteins previously classified as ‘sociable’ or ‘transient’ hubs,12

that can be related, even if with a different definition, to date
hubs.
We found a significant difference in the intrinsic conforma-

tional flexibility of mono- (cmono and cmono_in_multi) and multi-
(cmulti) partner residues. In particular, the comparison between
cmono_in_multi and cmulti residues suggests a nonuniform distribu-
tion of the flexibility across the interface of multipartner proteins,
with multipartner residues being on average more flexible than
monopartner ones. This holds when considering either backbone
or side chain motions, suggesting that an enhanced ability to
sample different conformations, either globally or locally, can
indeed be exploited to support diversity of interactions.
Remarkably, a more pronounced tendency of promiscuous
residues to sample different conformations is observed in all the
different types of conformational ensembles analyzed in this
study and in two different protein data sets. This confirms the
generality and robustness of the present findings. Correlated
motions were also considered and their functional importance
assessed. The flexibility of multipartner proteins was found to
modulate the shape of single interfaces in a highly specific way, by
using different collective motions for different interfaces within
the same protein. Moreover, within multipartner proteins a
stronger correlation was found between the local motions of
multipartner residues, suggesting that promiscuous regions are
connected by preferential communication pathways.
Similarly to disorder,125 a higher flexibility at the interface of

isolated molecules is associated with a higher entropic penalty
upon binding. This entropy increment has been suggested to be
exploited by disordered multipartner proteins to decouple
binding affinity from binding specificity.126 On the other side,
residues considered to be important in the interaction with the
partner, either because of their high evolutionary conservation or
for being predicted as hot spots, have been shown to be more
rigid than the average.24,29−31 Here, we found that (a) there is a
clear anticorrelation between evolutionary conservation and
intrinsic flexibility and (b) this trend is reduced in the case of
multipartner residues, suggesting that the higher flexibility of
conserved multipartner residues is the result of a balance
between the counteracting effects of preserving binding strength
and allowing for binding diversity. In this context, the higher
propensity for conservation found for multipartner residues in
ordered proteins could reflect the higher number of evolutionary
constraints deriving from the necessity to optimize this balance.
The findings on intrinsic flexibility are confirmed by the

analysis on the conformational variability observed in the
experimental structures. Previous works using PDB ensembles
of different data sets have shown that overlapping regions in date
hub interfaces tend to visit more different side chain rotamers
than nonoverlapping ones13 and that sociable/hub proteins
sample more different overall backbone conformations than
nonsociable/nonhub ones.12 Here, we unified these results by
performing a systematic analysis on both side chain and
backbone changes at the residue level. Moreover, we
decomposed the overall variability observed in the PDB into
contributions from pairs of structures with the same and with
different binding states. Interestingly, we found a higher plasticity
for multipartner proteins not only when considering changes
between unbound and bound structures but also when analyzing
ensembles of unbound and bound structures separately. This is
highly consistent with the larger intrinsic flexibility found for the
multipartner residues in isolated proteins, since it implies a more

Figure 9. FMA analysis of Neddylin. (A) Decomposition of the Rg
IF

variance of the two representative interfaces of Neddylin into percentage
contributions (pvar) from the first 17 PCs of the tCONCOORD
ensemble. Green and yellow bars represent the pvar values for the
interfaces shown in the green and yellow insets in Figure 8B. (B)
Porcupine representation of the 4th PC of the Neddylin tCONCOORD
ensemble. Direction and relative amplitude of the motion of each Cα

atom along the PC is represented by orange spikes. The residues
involved in the main Neddylin interface (Figure 8B, green inset) are
color-mapped according to their binding multiplicity b onto the tube
representation of the average tCONCOORD structure.
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pronounced tendency to explore different conformations
independently from their binding state.
The higher propensity to conservation and surface burial upon

complexation of multipartner residues suggests that they have an
important role in defining the binding energetics. The
comparison of the intrinsic flexibility of predicted hot spot
residues from different binding classes confirmed the results
obtained on the whole set of interface residues. Indeed,
multipartner hot spots turned out to be on average more flexible
than monopartner ones independently from the specific method
used for hot spot prediction. This rules out the possibility that the
observed higher flexibility of multipartner residues in the whole
interface originates from residues that are only marginally
involved in the interaction with partners. Moreover, the
observation that promiscuous regions are depleted in SNPs,
even if to be confirmed on larger data sets of human proteins,
provides further evidence to the essentiality of these regions.
The findings presented in this work have potential applications

to methods for the prediction of PPIs,127 whose accuracy has
been recently brought to levels comparable to high-throughput
experiments.128 In particular, the introduction of per-residue
flexibility indices could be used for the identification of
promiscuous regions in protein interfaces. This could also be
relevant for the detection of druggable regions, which could be
targeted by small molecules or other proteins to inhibit
interactions with specific partners.129 A further possible
application is in protein design, where the specificity or

promiscuity of proteins could be enhanced by modifying the
distribution of flexibility across the interfaces.6,8
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Table S7: Analysis of pairwise RMSD distributions of
tCONCOORD and MD ensembles. Table S8: comparison

Figure 10. Binding properties and conformational flexibility of the α/β groove in SUMO-2. (A/B) Cartoon representation of two different complexes of
SUMO-2 (light green). Selected multipartner hot spots of SUMO-2 (blue) and interacting residues from partners (yellow) are shown as sticks. (A)
SUMO-2 homotrimer (PDB ID: 1wm2). The other two SUMO-2 proteins are shown in dark green. (B) Complex with Thymine-DNA glycosylase
(orange, PDB ID: 2d07). (C/D) Cα (C) and side chain (D) RMSF values mapped onto SUMO-2 surface (PDB ID: 1wm3). Residues are colored
according to their RMSF values from blue (0 Å) to red (2 Å).
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(9) Dosztańyi, Z.; Chen, J.; Dunker, A. K.; Simon, I.; Tompa, P.
Disorder and sequence repeats in hub proteins and their implications for
network evolution. J. Proteome Res. 2006, 5, 2985−2995.
(10) Han, J.-D. J.; Bertin, N.; Hao, T.; Goldberg, D. S.; Berriz, G. F.;
Zhang, L. V.; Dupuy, D.; Walhout, A. J. M.; Cusick, M. E.; Roth, F. P.;
Vidal, M. Evidence for dynamically organized modularity in the yeast
protein−protein interaction network. Nature 2004, 430, 88−93.
(11) Kim, P. M.; Lu, L. J.; Xia, Y.; Gerstein, M. B. Relating three-
dimensional structures to protein networks provides evolutionary
insights. Science 2006, 314, 1938−1941.
(12) Higurashi, M.; Ishida, T.; Kinoshita, K. Identification of transient
hub proteins and the possible structural basis for their multiple
interactions. Protein Sci. 2008, 17, 72−78.

(13) Dasgupta, B.; Nakamura, H.; Kinjo, A. R. Distinct roles of
overlapping and non-overlapping regions of hub protein interfaces in
recognition of multiple partners. J. Mol. Biol. 2011, 411, 713−727.
(14) Bhardwaj, N.; Abyzov, A.; Clarke, D.; Shou, C.; Gerstein, M. B.
Integration of protein motions withmolecular networks reveals different
mechanisms for permanent and transient interactions. Protein Sci. 2011,
20, 1745−1754.
(15) Kim, P. M.; Sboner, A.; Xia, Y.; Gerstein, M. The role of disorder
in interaction networks: A structural analysis. Mol. Syst. Biol. 2008, 4,
179.
(16) Nussinov, R.; Ma, B. Protein dynamics and conformational
selection in bidirectional signal transduction. BMC Biology 2012, 10, 1−
5.
(17) Fong, J. H.; Panchenko, A. R. Intrinsic disorder and protein
multibinding in domain, terminal, and linker regions.Mol. Biosyst. 2010,
6, 1821.
(18) Boehr, D. D.; Nussinov, R.; Wright, P. E. The role of dynamic
conformational ensembles in biomolecular recognition.Nat. Chem. Biol.
2009, 5, 789−796.
(19) del Sol, A.; Tsai, C.-J.; Ma, B.; Nussinov, R. The origin of allosteric
functional modulation: multiple pre-existing pathways. Structure 2009,
17, 1042−1050.
(20) Dobbins, S. E.; Lesk, V. I.; Sternberg, M. J. E. Insights into protein
flexibility: The relationship between normal modes and conformational
change upon protein−protein docking. Proc. Natl. Acad. Sci. U. S. A.
2008, 105, 10390−10395.
(21) Volkman, B. F.; Lipson, D.; Wemmer, D. E.; Kern, D. Two-state
allosteric behavior in a single-domain signaling protein. Science 2001,
291, 2429−2433.
(22) Haliloglu, T.; Erman, B. Analysis of correlations between energy
and residue fluctuations in native proteins and determination of specific
sites for binding. Phys. Rev. Lett. 2009, 102, 088103.
(23) Pandini, A.; Fornili, A.; Fraternali, F.; Kleinjung, J. Detection of
allosteric signal transmission by informationtheoretic analysis of
protein dynamics. FASEB J. 2012, 26, 868.
(24) Lange, O. F.; Lakomek, N. A.; Fares, C.; Schroder, G. F.; Walter,
K. F. A.; Becker, S.; Meiler, J.; Grubmuller, H.; Griesinger, C.; de Groot,
B. L. Recognition dynamics up to microseconds revealed from an RDC-
derived ubiquitin ensemble in solution. Science 2008, 320, 1471−1475.
(25) Peters, J. H.; de Groot, B. L. Ubiquitin dynamics in complexes
reveal molecular recognition mechanisms beyond induced fit and
conformational selection. PLoS Comput. Biol. 2012, 8, e1002704.
(26) Keskin, O. Binding induced conformational changes of proteins
correlate with their intrinsic fluctuations: A case study of antibodies.
BMC Struct. Biol. 2007, 7, 31.
(27) Münz, M.; Hein, J.; Biggin, P. C. The role of flexibility and
conformational selection in the binding promiscuity of PDZ domains.
PLoS Comput. Biol. 2012, 8, e1002749.
(28) Stein, A.; Rueda, M.; Panjkovich, A.; Orozco, M.; Aloy, P. A
systematic study of the energetics involved in structural changes upon
association and connectivity in protein interaction networks. Structure
2011, 19, 881−889.
(29) Yogurtcu, O. N.; Erdemli, S. B.; Nussinov, R.; Turkay, M.; Keskin,
O. Restricted mobility of conserved residues in protein−protein
interfaces in molecular simulations. Biophys. J. 2008, 94, 3475−3485.
(30) Rajamani, D.; Thiel, S.; Vajda, S.; Camacho, C. J. Anchor residues
in protein−protein interactions. Proc. Natl. Acad. Sci. U.S.A. 2004, 101,
11287−11292.
(31) Kuttner, Y. Y.; Engel, S. Protein hot spots: The islands of stability.
J. Mol. Biol. 2012, 415, 419−428.
(32) Bouvier, B.; Grünberg, R.; Nilges, M.; Cazals, F. Shelling the
Voronoi interface of protein−protein complexes reveals patterns of
residue conservation, dynamics, and composition. Proteins 2009, 76,
677−692.
(33) Davis, F. P.; Sali, A. The overlap of small molecule and protein
binding sites within families of protein structures. PLoS Comput. Biol.
2010, 6, e1000668.
(34) Bogan, A. A.; Thorn, K. S. Anatomy of hot spots in protein
interfaces. J. Mol. Biol. 1998, 280, 1−9.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400486p | J. Chem. Theory Comput. 2013, 9, 5127−51475144

http://pubs.acs.org
mailto:arianna.fornili@kcl.ac.uk
mailto:franca.fraternali@kcl.ac.uk


(35) Carbonell, P.; Nussinov, R.; del Sol, A. Energetic determinants of
protein binding specificity: Insights into protein interaction networks.
Proteomics 2009, 9, 1744−1753.
(36) Keskin, O.; Ma, B.; Nussinov, R. Hot regions in protein−protein
interactions: The organization and contribution of structurally
conserved hot spot residues. J. Mol. Biol. 2005, 345, 1281−1294.
(37) Qin, H.; Lim, L.; Song, J. Protein dynamics at Eph receptor−
ligand interfaces as revealed by crystallography, NMR, and MD
simulations. BMC Biophysics 2012, 5, 2.
(38) Higurashi, M.; Ishida, T.; Kinoshita, K. PiSite: A database of
protein interaction sites using multiple binding states in the PDB.
Nucleic Acids Res. 2009, 37, D360−D364.
(39) Martin, A. C. R. Mapping PDB chains to UniProtKB entries.
Bioinformatics 2005, 21, 4297−4301.
(40) Chandonia, J.-M.; Hon, G.; Walker, N. S.; Lo Conte, L.; Koehl, P.;
Levitt, M.; Brenner, S. E. The ASTRAL Compendium in 2004. Nucleic
Acids Res. 2004, 32, D189−92.
(41) Altschul, S. F.; Gish, W.; Miller, W.; Myers, E. W.; Lipman, D. J.
Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403−410.
(42) Aranda, B.; Achuthan, P.; Alam-Faruque, Y.; Armean, I.; Bridge,
A.; Derow, C.; Feuermann, M.; Ghanbarian, A. T.; Kerrien, S.; Khadake,
J.; Kerssemakers, J.; Leroy, C.; Menden, M.; Michaut, M.; Montecchi-
Palazzi, L.; Neuhauser, S. N.; Orchard, S.; Perreau, V.; Roechert, B.; van
Eijk, K.; Hermjakob, H. The IntAct molecular interaction database in
2010. Nucleic Acids Res. 2010, 38, D525−531.
(43) Margreitter, C.; Petrov, D.; Zagrovic, B. Vienna-PTM web server:
A toolkit forMD simulations of protein post-translational modifications.
Nucleic Acids Res. 2013, 41, W422−W426.
(44) Petrov, D.; Margreitter, C.; Grandits, M.; Oostenbrink, C.;
Zagrovic, B. A systematic framework for molecular dynamics
simulations. PLoS Comput. Biol. 2013, 9, e1003154.
(45) Kleinjung, J.; Fraternali, F. POPSCOMP: An automated
interaction analysis of biomolecular complexes. Nucleic Acids Res.
2005, 33, W342−W346.
(46) Martin, A. C. R.; Porter, C. T. ProFit, 2.6; 2008. Available online:
http://www.bioinf.org.uk/software/profit/.
(47) Rousseeuw, P. SilhouettesA graphical aid to the interpretation
and validation of cluster-analysis. J. Comput. Appl. Math. 1987, 20, 53−
65.
(48) Fraternali, F.; Cavallo, L. Parameter optimized surfaces (POPS):
Analysis of key interactions and conformational changes in the
ribosome. Nucleic Acids Res. 2002, 30, 2950−2960.
(49) Dong, Q.; Wang, X.; Lin, L.; Guan, Y. Exploiting residue-level and
profile-level interface propensities for usage in binding sites prediction
of proteins. BMC Bioinformatics 2007, 8, 147.
(50) Tuncbag, N.; Gursoy, A.; Keskin, O. Prediction of protein−
protein interactions: Unifying evolution and structure at protein
interfaces. Phys. Biol. 2011, 8, 035006.
(51) Jones, S.; Thornton, J. M. Protein−protein interactions: A review
of protein dimer structures. Prog. Biophys. Mol. Bio. 1995, 63, 31−65.
(52) Dunbrack, R. L.; Cohen, F. E. Bayesian statistical analysis of
protein side-chain rotamer preferences. Protein Sci. 1997, 6, 1661−1681.
(53) DeLano, W. The PyMOL Molecular Graphics System, DeLano
Scientific: San Carlos, CA, 2002.
(54) Goldenberg, O.; Erez, E.; Nimrod, G.; Ben-Tal, N. The ConSurf-
DB: Pre-calculated evolutionary conservation profiles of protein
structures. Nucleic Acids Res. 2009, 37, D323−D327.
(55) Kabsch, W.; Sander, C. Dictionary of protein secondary structure:
pattern recognition of hydrogen-bonded and geometrical features.
Biopolymers 1983, 22, 2577−2637.
(56) Wolfe, R.; Hanley, J. If we’re so different, why do we keep
overlapping? When 1 plus 1 doesn’t make 2. Can. Med. Assoc. J. 2002,
166, 65−66.
(57) Cumming, G.; Fidler, F.; Vaux, D. L. Error bars in experimental
biology. J. Cell Biol. 2007, 177, 7−11.
(58) R-Development-Core-Team. R: A Language and Environment for
Statistical Computing; R Foundation for Statistical Computing: Vienna,
Austria, 2010.
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