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Highlights

• Application of Kronecker product to construct parsimonious structural equation models
for multivariate longitudinal data.

• A method for the investigation of measurement bias with Kronecker product restricted
models.

• Application of these methods to health-related quality of life data from bone metastasis
patients, collected at 13 consecutive measurement occasions.

• The use of curves to facilitate substantive interpretation of apparent measurement
bias.

• Assessment of change in common factor means, after accounting for apparent
measurement bias.

Longitudinal measurement invariance is usually investigated with a longitudinal factor
model (LFM). However, with multiple measurement occasions, the number of parameters
to be estimated increases with a multiple of the number of measurement occasions.
To guard against too low ratios of numbers of subjects and numbers of parameters, we
can use Kronecker product restrictions to model the multivariate longitudinal structure
of the data. These restrictions can be imposed on all parameter matrices, including
measurement invariance restrictions on factor loadings and intercepts. The resulting
models are parsimonious and have attractive interpretation, but require different methods
for the investigation of measurement bias. Specifically, additional parameter matrices
are introduced to accommodate possible violations of measurement invariance. These
additional matrices consist of measurement bias parameters that are either fixed at zero
or free to be estimated. In cases of measurement bias, it is also possible to model
the bias over time, e.g., with linear or non-linear curves. Measurement bias detection
with Kronecker product restricted models will be illustrated with multivariate longitudinal
data from 682 bone metastasis patients whose health-related quality of life (HRQL) was
measured at 13 consecutive weeks.

Keywords: Kronecker product, multivariate longitudinal data, measurement invariance, structural equation

modeling (SEM), longitudinal three-mode model (L3MM), health-related quality of life (HRQoL)

A valid assessment of change requires that the meaning of the con-
struct stays the same across measurement occasions (Meredith,
1993). Longitudinal measurement invariance is usually investi-
gated with the longitudinal factor model (LFM). When R latent
variables are measured with K observed variables at J measure-
ment occasion, the mean, and covariance structures are given by:

μ = τ + �κ, (1)

and:

� = ���′ + �, (2)

where τ is a JK-vector of intercepts, � is a JK × JR matrix of
common factor loadings, κ is a JR-vector of common factor
means, � is a JR × JR symmetric matrix containing the variances
and covariances of the common factors, and � is a JK × JK
symmetric matrix containing the variances and covariances of the
residual factors. Although the LFM can be used to model multiple
measurement occasions, these models become progressively large
and unmanageable when the number of occasions increases.

One solution to this problem is the imposition of Kronecker
product restrictions that profit from the three-mode structure of
multivariate longitudinal data (Oort, 2001). The modes refer to
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the variables, the measurement occasions and the subjects, and
the resulting longitudinal three-mode models (L3MMs) are more
parsimonious and have attractive interpretation. For example,
Kronecker product restrictions can be imposed on factor loadings
and intercepts to comply with measurement invariance, using:

� = I ⊗ �0, (3)

and:
τ = u ⊗ τ0, (4)

where �0 is a K × R matrix of invariant common factor load-
ings, τ0 is a K × 1 vector of invariant intercepts, I is a J ×
J identity matrix, u is a J × 1 vector of ones, and the sym-
bol ⊗ denotes the Kronecker product. These restrictions imply
that factor loadings �0 and intercepts τ0 apply to all measure-
ment occasions. Although Kronecker product restrictions are
convenient to model measurement invariance, they require spe-
cial methods for the investigation of violations of measurement
invariance (i.e., measurement bias).

Specifically, to detect measurement bias in Kronecker prod-
uct restricted models, we introduce additional matrices A and B
to accommodate possible violations of measurement invariance,
using:

� = I ⊗ �0 + A, (5)

and:

τ = u ⊗ τ0 + B. (6)

These additional matrices consist of measurement bias param-
eters that are either fixed at zero or free to be estimated. This
method thus enables the detection of measurement bias in indi-
vidual parameters of � and τ. In this way, it is possible to establish
partial measurement invariance (Byrne et al., 1989). Moreover,
in cases of measurement bias, it is also possible to model the
bias over time, e.g., with linear or non-linear curves, which can
facilitate interpretation.

The aim of the present paper is to illustrate the detection
of measurement bias with Kronecker product restricted models
using multivariate longitudinal data from 682 bone metasta-
sis patients whose health-related quality of life (HRQL) was
measured in 13 consecutive weeks.

METHODS
Patients with painful bone metastases from a solid tumor were
enrolled from 17 radiotherapy institutes in The Netherlands.
Patients were randomized to receive radiotherapy of a single
fraction vs. multiple fractions as palliative treatment for pain.
Inclusion criteria were having one or more painful bone metas-
tases treatable in one target volume and having a pain score of
at least 2 on an 11-point scale from 0 (no pain at all) to 10
(worst imaginable pain) at time of admission to the radiotherapy.
Exclusion criteria were having metastases of malignant melanoma
or renal cell carcinoma, having metastases in the cervical spine,
having previously been irradiated for the same metastases, or
having a pathological fracture that needed surgical fixation or a
spinal cord compression. Side effects from radiation therapy vary
depending on the part of the body being treated, and may include

skin changes (dryness, itching, peeling, or blistering), fatigue,
loss of appetite, hair loss, diarrhea, nausea, and vomiting. Most
of these side effects go away within a few weeks after radiation
therapy.

HRQL questionnaires were administered at 13 measurement
occasions, before (T0) and every week after treatment with radio-
therapy (T1 through T12). These data are a subset of data from
the Dutch Bone Metastasis Study (Steenland et al., 1999; Van
der Linden et al., 2004). For the current study only patients
who survived at least 13 weeks from the start of treatment were
included, which resulted in a total sample size of 682 patients
(354 women). Patients’ primary tumor was either breast cancer
(n = 321), prostate cancer (n = 181), lung cancer (n = 106), or
other (n = 74). Ages ranged from 33 to 90, with a mean of 64.2
(standard deviation 11.5).

Treatment progression, therapeutic effects and/or side effects
may influence patients’ health status. In the area of HRQL a theo-
retical framework of measurement bias has been developed which
describes how changes in patients’ health status may prompt
behavioral, cognitive, and affective processes that affect patients’
response tendencies (Sprangers and Schwartz, 1999). Therefore, it
seems worthwhile to investigate measurement bias in our sample
of bone metastases patients.

MEASURES
HRQL was assessed with multiple questionnaires (for more infor-
mation see Verdam et al., submitted). Forty-five Items were
grouped using confirmatory factor analyses and substantive con-
siderations to compute eight health-indicators: physical function-
ing (PF; 4 items), mobility (MB; 5 items), social functioning (SF;
2 items), depression (DP; 8 items), listlessness (LS; 6 items), pain
(PA; 4 items), sickness (SI; 6 items), and treatment related symp-
toms (SY; 11 items). All scale scores were calculated as mean item
scores, ranging from 1 to 4, with higher scores indicating more
symptoms or dysfunctioning.

Intermittent missing item- and scale scores were imputed
using expectation-maximization. Per assessment, 29–35% of
respondents showed missing item scores and 1–3% of respon-
dents showed intermittent missing scale scores. Cronbach’s alpha
coefficients indicated moderate to good internal consistency reli-
ability (PF, alpha = 0.93; MB, alpha = 0.91; SF, alpha = 0.80; DP,
alpha = 0.94; LS, alpha = 0.72; SI, alpha = 0.74; PA alpha = 0.74;
SY, alpha = 0.69).

STRUCTURAL EQUATION MODELING
Structural equation models were fitted to the means, variances
and covariances of the eight observed health indicators using
OpenMx (Boker et al., 2011). OpenMx syntax is available in
Appendix I1. To achieve identification of all model parameters,

1OpenMx was used for statistical analyses because it provides a matrix
algebraic approach to structural equation modeling that facilitates the decom-
position of matrices that is required for the imposition of Kronecker product
restrictions. Other statistical software (e.g., LISREL and Mplus) could also
be used for statistical analyses presented in this article, but these programs
require a much longer, more complicated script as they only allow inequality
constraints on individual parameters.
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scales and origins of the common factors were established by
fixing the factor means at zero and the factor variances at one.
When factor loadings and intercepts were constrained to be equal
across occasion, only first occasion factor means and variances
were fixed. Model parameters of the additional matrices A and
B can be freely estimated, with the restriction that the computed
matrices of factor loadings and intercepts do not violate the gen-
eral guidelines for identification as described above. Identification
of model parameters of matrices that feature in the Kronecker
product restriction imposed on residual factor variances and
covariances was achieved by using the guidelines described by
Oort (2001).

Detection of measurement bias
The structural equation modeling procedure for the detection
of measurement bias included the following steps: (1) estab-
lishing an appropriate measurement model, (2) fitting a model
of measurement invariance, (3) detection of measurement bias,
(4) modeling the bias that was detected, and (5) assessment of
change.

Step 1: measurement model. The Measurement Model was estab-
lished on the basis of results of exploratory factor analyses and
substantive considerations. To take into account the multivariate
longitudinal structure of the data, the longitudinal three-mode
model (L3MM; Oort, 2001) was applied. To reduce the com-
plexity of the model (i.e., the number of parameter estimates)
Kronecker product restrictions were imposed on residual vari-
ances and covariances, using � = �T ⊗ �V. This restriction
entails that the matrix of residual variances and covariances
(�) is estimated indirectly by using a symmetric matrix that
contains the relationships between measurement occasions (�T,
of dimensions 13 × 13; with �T(1,1) = 1 for identification pur-
poses) and a diagonal matrix that contains the residual vari-
ances of only one measurement occasion (�V, of dimension
8 × 8). This implies that the changes in residual factor vari-
ances and covariances across occasions are proportionate for
all residual factors (for more details see Verdam et al., submit-
ted). The Measurement Model has no equality constraints across
occasions.

Step 2: measurement invariance model. The assumption of
longitudinal measurement invariance entails that factor load-
ings and intercepts are constrained to be equal across occa-
sions. These restrictions were imposed using the Kronecker
product with Equations (3) and (4), yielding the Measurement
Invariance Model. To test the assumption of measurement invari-
ance the model fit of the more restricted model can be com-
pared to the model fit of the model with no equality constraints
across occasions. When there is no significant deterioration in
model fit, the assumption of measurement invariance can be
retained.

Step 3: partial measurement invariance model. Detection of
measurement bias was done using a step-by-step modifica-
tion of the Measurement Invariance Model, to yield the Partial
Measurement Invariance Model which included all occurrences

of measurement bias. Measurement bias was operationalized as
differences across measurement occasions in parameter estimates
of factor loadings or intercepts. An iterative procedure was used,
where each invariant factor loading and intercept was investi-
gated one-by-one. Using Equations (5) and (6) all measurement
bias parameters across occasions that were associated with one
invariant parameter were freely estimated. The violations of mea-
surement invariance that yielded the largest improvement in
model fit were incorporated in the model. To test whether par-
tial measurement invariance is tenable the model fit of this model
can be compared to the model fit of the model with no equal-
ity constraints across measurement occasions. When there is no
significant deterioration in model fit, the assumption of partial
measurement invariance can be retained. The final model, the
Partial Measurement Invariance Model, thus includes measure-
ment invariance restrictions on most, but not all, factor loading
and intercept parameters.

Step 4: modeling occurrences of measurement bias. In case
of measurement bias, the bias was modeled using linear or
non-linear curves. The measurement bias parameters were
modeled as a function of the time of measurement (using
a time-coding), yielding estimates of intercept- and slope-
parameters that describe the trend of the bias. When the model
fit of the more restricted model did not significantly deteriorate
compared to the model fit of the model with freely estimated mea-
surement bias parameters, we retained the model which describes
the bias using a linear or non-linear curve. Interpretation of
parameter estimates provides insight in the trend of the bias that
was detected.

Step 5: assessment of change. Change in the common factor
means was assessed in the model where all measurement biases
were taken into account. A test of invariance was used to inves-
tigate differences in common factor means across occasions. To
evaluate the impact of measurement bias on the assessment of
change, we inspected the trajectories of common factor means,
before and after taking into account measurement bias.

Evaluation of model fit
To evaluate goodness-of-fit the chi-square test of exact fit
(CHISQ) was used, where a significant chi-square indicates a
significant difference between model and data. However, in the
practice of structural equation modeling, exact fit is rare, and with
large sample sizes and large numbers of degrees of freedom the
chi square test generally turns out to be significant. Therefore,
we also considered alternative measures of fit. The root mean
square error of approximation (RMSEA; Steiger and Lind, 1980;
Steiger, 1990) was used as a measure of approximate fit, where
RMSEA values below 0.05 indicate “close” approximate fit and
values below 0.08 indicate “reasonable” approximate fit (Browne
and Cudeck, 1992). Additionally, the expected cross-validation
index (ECVI; Browne and Cudeck, 1989) was used to compare
different models for the same data, where the model with the
smallest ECVI indicates the model with the best fit. For both
the RMSEA and ECVI, 95% confidence intervals were calculated
using the program NIESEM (Dudgeon, 2003).
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To evaluate differences between hierarchically related models
the chi-square difference test (CHISQdiff ) was used, where a sig-
nificant chi-square difference indicates a significant difference in
model-fit. The chi square difference test applied to hierarchically
nested models has essentially the same strengths and weaknesses
as the chi square test applied to a single model. Therefore, we
additionally considered the ECVI difference test (ECVIdiff ), where
the deterioration in model fit of the more restricted model is sig-
nificant when the value of the ECVI difference is significantly
larger than zero.

RESULTS
MEASUREMENT MODEL
Eight health-indicators were modeled to be reflective of two com-
mon factors: functional limitations and health impairments (see
Figure 1). Functional limitations was measured by three observed
variables, health impairments was measured by six observed
variables, with one observed variable in common. The squares
represent observed variables (scale scores), the circles on the top
represent the common factors, and the circles on the bottom
represent residual factors.

Classification of the common factors was based on the
International Classification of Functioning, Disability and Health
(World Health Organization, 2002) that provides a framework for
the description of health and health-related states. In this frame-
work, the term functioning refers to all body functions, activities
and participation, while disability refers to impairments, activ-
ity limitations and participation restrictions. These concepts are
reflected in the two common factors functional limitations (e.g.,
limitations of bodily functioning) and health impairments (e.g.,
health restrictions or symptoms). As social functioning is also

considered to be an important factor of HRQL, this scale was
added to the measurement and modeled to be influenced by both
functional limitations and health impairments (which agrees with
participation being a factor of both functioning and disability in
the WHO framework).

The Measurement Model yielded a chi-square test of exact fit
that was significant but the RMSEA measure indicated close fit
(see Model 1, Table 1).

DETECTION OF MEASUREMENT BIAS
To test the assumption of longitudinal measurement invari-
ance, factor loadings and intercepts were held invariant across
occasions using the Kronecker product restriction. The overall
fit of the Measurement Invariance Model showed reasonable fit
(RMSEA = 0.037, see Table 1), but comparison with the fit of the
model with no across occasions equality constraints showed a sig-
nificant deterioration in fit [CHISQdiff (156) = 735.2, p < 0.001;
ECVIdiff = 0.54, 95% CI: 0.39–0.71]. This indicates a violation of
measurement invariance.

To investigate which of the equality constraints across occa-
sions on factor loadings and intercepts were not tenable, an
iterative measurement bias detection approach was used. Step by
step modification of the Measurement Invariance Model yielded
the Partial Measurement Invariance Model, which showed three
cases of measurement bias. Each of the measurement biases that
was detected will be explained in more detail below. The fit of
the Partial Measurement Invariance Model was good (RMSEA =
0.035, see Table 1), and significantly better than the fit of
the Measurement Invariance Model [CHISQdiff (36) = 511.7, p <

0.001; ECVIdiff = 0.63, 95% CI: 0.50–0.77]. Moreover, compar-
ison with the Measurement Model showed that although there

FIGURE 1 | The measurement model. Circles represent latent variables
(common and residual factors) and squares represent observed variables (the
scale scores). FUNC, functional limitations; HEALTH, health impairments; PF,

physical functioning; MB, mobility; SF, social functioning; DP, depression; LS,
listlessness; PA, pain; SI, sickness; SY, treatment related symptoms; and
Res., Residual factors.
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Table 1 | Goodness of overall fit of models in the four-step measurement bias detection procedure.

Model Description DF CHISQ RMSEA [95% CI] ECVI [95% CI]

Model 1 Measurement model 4920 9094.7 0.035 [0.034;0.036] 15.59 [15.11; 16.09]

Model 2 Measurement invariance model 5076 9829.9 0.037 [0.036;0.038] 16.13 [15.62; 16.66]

Model 3 Partial measurement invariance model 5040 9318.2 0.035 [0.034;0.037] 15.50 [15.01; 16.01]

Model 4 Curves partial measurement invariance model 5070 9380.8 0.035 [0.034;0.037] 15.49 [15.00; 16.00]

n = 682.

Table 2 | Measurement invariant parameter estimates of the Partial

Measurement Invariance Model.

PF MB SF DP LS PA SI SY

INTERCEPTS (τ0)

3.03 2.12 2.25 1.98 2.29 Bias Bias 1.46

FACTOR LOADINGS (�0)

FUNC 0.90 0.70 0.29

HEALTH 0.27 0.39 0.43 0.35 Bias 0.19

N = 682; parameter estimates are unstandardized.

was still a significant difference in fit according to the chi-
square difference test, comparison of approximate fit using the
ECVI difference test indicated that the models can be con-
sidered approximately equivalent [CHISQdiff (120) = 223.5, p <

0.001; ECVIdiff = −0.09]. Therefore, the Partial Measurement
Invariance Model was retained. All invariant parameters of �0 and
τ0, and the measurement bias parameters of the three cases of
bias, are given in Tables 2,3, respectively.

Measurement bias intercept “pain”
The first bias that was detected was a measurement bias of the
indicator “pain.” The model where the intercept of the indicator
“pain” was freely estimated across occasions yielded the largest
improvement in model fit [CHISQdiff (12) = 287.7, p < 0.001;
ECVIdiff = 0.38, 95% CI: 0.28–0.49]. Inspection of the measure-
ment bias parameters shows that the estimate of the intercept
decreases over the first five measurement occasions and stabi-
lizes around the sixth measurement occasion (see Table 3). This
indicates that, given equal health impairments, patients report
decreasing pain over the first 4 weeks after treatment, after which
they report stable pain over time.

To get more insight in the trend of this bias, the measurement
bias parameters were modeled as a function of the time of mea-
surement. First, a linear curve was fitted to the bias. This model
yielded an intercept and slope parameter that can give insight in
the trend of the bias across occasions (see Figure 2), but the model
did not show a good fit to the data [CHISQdiff (11) = 189.9,
p < 0.001; ECVIdiff = 0.24, 95% CI: 0.16–0.33]. In addition, a
selection of non-linear curves was fitted to the measurement
bias parameters (see Figure 2) of which the quadratic curve
showed significant deterioration in fit [CHISQdiff (10) = 61.0,
p < 0.001; ECVIdiff = 0.05, 95% CI: 0.02–0.11], but the inverse
curve showed equivalent fit to the model with free intercepts
[CHISQdiff (10) = 18.7, p = 0.044; ECVIdiff = −0.01]. The slope

parameter gives an indication of the steepness and direction of the
measurement bias for the first five measurement occasions.

Measurement bias intercept “sickness”
The second step of the measurement bias detection proce-
dure showed that the equality constraint on the intercept
of the indicator “sickness” across occasions was not tenable
[CHISQdiff (12) = 141.9, p < 0.001; ECVIdiff = 0.17, 95% CI:
0.10–0.25]. Inspection of the measurement bias parameters shows
that the intercept of the indicator “sickness” increases over the
first four measurement occasions, after which it decreases and
stabilizes around the seventh measurement (see Table 3). Thus,
given equal health impairments, patients report more sickness in
the first 3 weeks after treatment, then report less sickness, and
after the sixth week after treatment report a stable, above baseline
level of sickness.

A model with a linear curve was fitted to the data, which
yielded a non-significant slope parameter estimate (see Figure 3),
and showed significant deterioration in fit compared to the
model with free intercepts [CHISQdiff (11) = 138.2, p < 0.001;
ECVIdiff = 0.16, 95% CI: 0.10–0.25]. As it can be seen from the
data that different parts of the trajectory of the intercept fol-
low different trends (i.e., first an increase and then a decrease
across measurement occasions), we modeled these trajectories in
the bias using piece-wise curves. Piece-wise curves were modeled
using additional time coding that applied to only part of the tra-
jectory. In this example, linear piece-wise curves were fitted to
the measurement bias parameters of “sickness” (see Figure 3),
where the model with two piece-wise curves did not show a good
fit to the data [CHISQdiff (10) = 64.7, p < 0.001; ECVIdiff =
0.06, 95% CI: 0.02–0.12], but the model with three piece-wise
curves showed equivalent fit to the model with free intercepts
[CHISQdiff (10) = 11.0, p = 0.274; ECVIdiff = −0.02]. The slope
parameters give an indication of the steepness and direction of the
measurement bias for the first three measurement occasions, and
the deviations from this trend for the fourth to sixth measurement
occasions, and the seventh to thirteenth measurement occasions
(see Figure 3).

Measurement bias factor loading “sickness”
The third bias that was detected was a measurement bias of the
indicator “sickness,” as freeing the equality constraint on the
factor loading across occasions yielded the largest improvement
in model fit [CHISQdiff (12) = 82.0, p < 0.001; ECVIdiff = 0.08,
95% CI: 0.03–0.14]. Inspection of the measurement bias param-
eters shows that the factor loading increases over the first four
measurement occasions, after which it decreases again toward
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Table 3 | Measurement bias parameter estimates of the Partial Measurement Invariance Model.

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

INTERCEPT “PAIN”

2.56 2.41 2.33 2.27 2.22 2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21

INTERCEPT “SICKNESS”

1.37 1.49 1.56 1.56 1.52 1.49 1.47 1.46 1.46 1.46 1.45 1.43 1.44

FACTOR LOADING “SICKNESS”

0.28 0.35 0.40 0.41 0.37 0.34 0.34 0.33 0.33 0.33 0.32 0.29 0.31

N = 682; parameter estimates are unstandardized.

FIGURE 2 | Curves fitted to the measurement bias parameters of the

intercept “pain.” The black line (circles) represents measurement bias
parameter estimates when they are freely estimated across occasions, the
blue line (triangles) when they are modeled using a linear curve, the red line
(squares) when they are modeled using a quadratic curve, and the purple
line (stars) when they are modeled using an inverse curve.

baseline level, although it shows a somewhat fluctuating pat-
tern (see Table 3). Thus, sickness becomes more important for
patients’ health impairments in the first 3 weeks after treatment,
but then its importance decreases again toward baseline level.

This occurrence of measurement bias was modeled using
a linear curve and a piece-wise linear curve (see Figure 4).
The model with the linear curve showed significant deteriora-
tion in fit [CHISQdiff (11) = 69.7, p < 0.001; ECVIdiff = 0.06,
95% CI: 0.02–0.12], but the model with two piece-wise curves
showed equivalent fit to the model with free factor loadings
[CHISQdiff (10) = 31.1, p < 0.001; ECVIdiff = 0.01, 95% CI:
−0.01–0.05]. The slope parameters give an indication of the
steepness and direction of the measurement bias for the first three
measurement occasions, and the deviations from this trend for
the fourth to thirteenth measurement occasions (see Figure 4).

CURVES PARTIAL MEASUREMENT INVARIANCE MODEL
The final model, the Curves Partial Measurement Invariance
Model, includes the three curves described above to model the
measurement biases that were detected. The overall fit of the
model was good (RMSEA = 0.035, see Table 1) and showed
equivalent model fit when compared to the model with no curves
fitted to the measurement biases [CHISQdiff (30) = 62.5, p <

0.001; ECVIdiff = −0.01].

FIGURE 3 | Curves fitted to the measurement bias parameters of the

intercept “sickness.” The black line (circles) represents measurement bias
parameter estimates when they are freely estimated across occasions, the
blue line (triangles) when they are modeled using a linear curve, the red line
(squares) when they are modeled using two piece-wise linear curves, and
the purple line (stars) when they are modeled using three piece-wise linear
curves.

ASSESSMENT OF CHANGE
The trajectory of the common factor functional limitations (see
Figure 5) indicates that patients showed a more or less con-
stant trajectory [CHISQdiff (12) = 39.8, p < 0.001; ECVIdiff =
0.02, 95% CI: −0.01–0.06]. As the biases that were detected con-
cern the measurement of health impairments, taking into account
measurement bias did not affect the trajectory of functional
limitations.

The trajectory of health impairments (see Figure 6) shows
that patients significantly improved [CHISQdiff (12) = 51.5, p <

0.001; ECVIdiff = 0.03, 95% CI: 0.001–0.085], although it seems
that patients slightly deteriorated again in the last 3 weeks of
measurement. Taking into account the measurement biases of
the indicators of health impairments affected the trajectory,
as it can be seen that health impairments would be generally
underestimated across occasions.

DISCUSSION
Measurement invariance is a prerequisite for a valid assessment
of change. Longitudinal measurement invariance is usually inves-
tigated with a LFM. However, in the situation when there are
many measurement occasions the LFM can become of unman-
ageable size. One solution to this problem is the imposition of
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FIGURE 4 | Linear curve of measurement bias parameters of the factor

loading “sickness.” The black line (circles) represents measurement bias
parameter estimates when they are freely estimated across occasions, the
blue line (triangles) when they are modeled using a linear curve, and the red
line (squares) represents measurement bias parameter estimates when
they are modeled using two piece-wise linear curves.

FIGURE 5 | Latent trajectories of functional limitations before and after

accounting for measurement bias. The dotted black line (circles)
represents estimates of the Measurement Invariance Model, and the solid
blue (squares) line represents parameter estimates of the Partial
Measurement Invariance Model, where all measurement biases are
incorporated in the model.

Kronecker product restrictions to model the multivariate longi-
tudinal structure of the data. In these models Kronecker product
restrictions also imply measurement invariance across measure-
ment occasions. As a result, measurement bias across occasion
cannot be investigated in the usual way, by testing equality con-
straints on individual parameters (intercepts and factor loadings).
Therefore, to investigate which measurement parameters show
violations of measurement invariance (i.e., measurement bias)
in Kronecker product restricted models, we propose a mod-
eling procedure that uses additional matrices to accommodate
possible bias. This enables the investigation of measurement
bias, to account for apparent bias, and use partial measurement
invariance to investigate change in common factor means.

The procedure that we propose enables the investigation of
measurement invariance in Kronecker product restricted models
for multivariate longitudinal data when the number of mea-
surement occasions is large. The procedure of measurement

FIGURE 6 | Latent trajectories of health impairments before and after

accounting for measurement bias. The dotted black line (circles)
represents estimates of the Measurement Invariance Model, and the solid
red (triangles) line represents parameter estimates of the Partial
Measurement Invariance Model, where all measurement biases are
incorporated in the model.

invariance investigation is not different from the usual proce-
dure, but requires alternative modeling as the usual LFM cannot
be applied in the situation when invariance restrictions on factor
loadings and intercepts are imposed using the Kronecker product.
Moreover, with additional matrices that are used to accommodate
possible violations of measurement invariance, it is possible to
further investigate and model detected biases. This paper there-
fore contributes to the existing literature on measurement bias
detection using structural equation modeling by: (1) using the
imposition of Kronecker product restrictions to enable factor
analyses of data from a large number of measurement occasions,
(2) describing a procedure that enables measurement invari-
ance investigation with Kronecker product restricted models,
and (3) modeling the measurement bias parameters to facilitate
interpretation of detected biases.

In case of bias, the detected measurement bias can be modeled
as a function of the time of measurement using linear or non-
linear curves. It should be noted that this technique was used in
an exploratory way, e.g., the curve that was fitted to the bias was
chosen after inspection of the trajectory of the measurement bias
parameters. Interpretation of bias is then facilitated by decreasing
the number of parameters to be interpreted, i.e., a slope parame-
ter indicates direction and strength of the trend of the bias across
time. Moreover, additional information could be used to test spe-
cific hypotheses, for example by incorporating the time of an
event (e.g., start of treatment) in modeling the curves.

In our illustrative sample of bone metastases patients impo-
sition of Kronecker product restrictions enabled the analyses of
multivariate data from 13 measurement occasions, and the pro-
posed procedure for the investigation of measurement invariance
enabled the detection of measurement bias, to account for appar-
ent bias, and use partial measurement invariance to investigate
change in HRQL. We found that patients showed a constant tra-
jectory of functional limitations and an improvement of health
impairments over time. If measurement bias had not been taken
into account, patient’s health impairments would generally be
underestimated. Moreover, measurement bias was detected in
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the intercept of the indicator pain, and in both the intercept
and factor loading of the indicator sickness. Given equal health
impairments, patients reported decreasing pain over the first
4 weeks after treatment, after which they reported stable pain
over time. In addition, given equal health impairments patients
reported more sickness in the first 3 weeks after treatment, after
which they again reported less sickness. Similarly, the impor-
tance of sickness became more important for patients’ health
impairments in the first 3 weeks and then decreased again toward
baseline level. A possible explanation for the bias in pain as a
measurement of health impairments could be that the radiother-
apy treatment led to a larger decrease in pain than in the other
indicators of health impairments. In the measurement of health
impairments, patients’ reporting of pain would then decrease rel-
ative to the other indicators. A possible explanation for the biases
in sickness could be that patients experienced side-effects from
radiotherapy and that symptoms related to sickness were rela-
tively more prevalent than the other symptoms. Sickness could
therefore have become more important to the measurement of
health impairments, relative to the other symptoms. As these side-
effects usually disappear after a few weeks, this could explain the
subsequent decrease in both the reporting of sickness relative to
the other symptoms and its importance in the measurement of
health impairments. These occurrences of measurement bias and
their impact on the assessment of change emphasize the impor-
tance of investigating measurement invariance when analyzing
longitudinal data. Our proposed procedure enables the investiga-
tion of measurement invariance in Kronecker product restricted
models, and therefore allows for a more complete interpretation
of findings from multivariate longitudinal data.

PRACTICAL GUIDELINES
The introduction of parameter matrices that can accommo-
date possible violations of measurement invariance enables the
investigation of bias in individual factor loading and intercepts.
Further investigation of cases of bias is possible through mod-
eling the measurement bias using linear and non-linear curves.
The proposed methods not only enable the investigation of mea-
surement bias with longitudinal three-mode models, but can also
enhance our understanding of occurrences of measurement bias
in multivariate longitudinal data.
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