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a b s t r a c t

Sulfiredoxin is a recently discovered member of the oxidoreductases family which plays a crucial role in
thiol homoeostasis when under oxidative stress. A myriad of systemic disorders have oxidative stress and
reactive oxygen species as the key components in their etiopathogenesis. Recent studies have evaluated
the role of this enzyme in oxidative stress mediated diseases such as atherosclerosis, chronic obstructive
pulmonary disease and a wide array of carcinomas. Its action is responsible for the normal functioning of
cells under oxidative stress and the promotion of cell survival in cancerous cells. This review will
highlight the cumulative effects of sulfiredoxin in various systemic disorders with a strong emphasis on
its target activity and the factors influencing its expression in such conditions.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Overview-sulfiredoxin

Sulfiredoxin, a redox protein was discovered by Sun et al. in
1994 [1]. It was characterized initially in mouse epidermal JB6
cells, progressing from early to late stages of carcinogenesis.
Sulfiredoxin causes activation of the mammalian peroxiredoxins,
a cluster of 6 enzymes, of which it specifically acts on 2-Cys
peroxiredoxins [Prx I–IV]. The peroxiredoxins are inactivated by
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the hyperoxidation caused due to the accumulation of hydrogen
peroxide and other free radicals, thereby resulting in a molecular
switch mechanism [2]. Sulfiredoxin is primarily located in the
cytosol and it gets translocated to the mitochondria during
increased oxidative burden [3]. Phosphorylation of the peroxir-
edoxin moiety is the first chemical step which can occur either by
a direct transfer of the gamma phosphate of ATP to the peroxir-
edoxin molecule or through sulfiredoxin acting as a phosphory-
lated intermediate [4].

Transcriptional regulation of sulfiredoxin expression is
mediated through activator protein-1 and nuclear factor ery-
throid-2 related factor-2 pathways. Sulfiredoxin as an AP-1 target
gene was first reported in a microarray based research for glucose/
cAMP regulated genes in Min6 insulin secreting cells [5]. A study
on the transcriptional regulation of sulfiredoxin in neurons pin-
pointed the sites of regulation to two cis-acting AP-1 consensus
sites [6]. The AP-1 inhibitor, TAM67 (a dominant-negative form of
c-Jun) inhibited the synaptic-activity dependent induction of the
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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sulfiredoxin promoter in neurons [7]; as well as its induction by
TPA (12-O tetradecanoylphorbol-13-acetate) in mouse JB6 cells [8].

A cis-acting promoter element called antioxidant response
element (ARE) recruits transcription factors such as Nrf2 and
maf proteins during oxidative stress. They regulate a group of
genes encoding antioxidative enzymes like sulfiredoxin and drug
metabolizing enzymes. The Nrf2 pathway was ascertained with
studies using Nrf2 activators such as 3H-1,2-dithiole-3-thione
(D3T), sulforaphane, which showed a significant induction in the
enzyme expression.

An interesting facet of sulfiredoxin is that the AP-1 and Nrf2
responsiveness is contained within the same sequence i.e the
proximal conserved AP-1 site is contained within the ARE site. The
apparent contradiction is that AP-1 is a target for tumour promot-
ing agents like TPA [8], whereas Nrf2 is a target for chemopre-
ventive compounds. So sulfiredoxin, as an Nrf2 activator has
chemopreventive effects due to its antioxidant property; on the
other hand, it has a diametrically opposite effect via the AP-1
pathway [9].

Sulfiredoxin causes reduction of the cysteine sulfinic acid
moiety of the peroxiredoxin enzyme back to its stable thiol state.
The reaction involves the utilization of ATP and magnesium by
sulfiredoxin in order to repair the enzyme. Since the inactivation is
caused by an increase in the ROS levels, hydrogen peroxide
performs its role as an intracellular cell signalling agent. This
results in the activation of sulfiredoxin which in turn exerts its
action on peroxiredoxins to efficiently neutralize the hydrogen
peroxide molecules and attenuate intra-cellular oxidative stress.
Peroxiredoxins also exist as dimers, decamers and high molecular
weight complexes, of which the highest chaperone activity is seen
in the latter two forms. Hyperoxidation results in the formation of
decamers and high molecular weight complexes, thereby increas-
ing the molecular chaperone activity of this enzyme. Reversal of
the hyperoxidation invokes a molecular switch mechanism from
chaperone to peroxidase activity, thereby terminating the signal-
ling function of hydrogen peroxide and at the same time protect-
ing the cells from oxidative damage caused by its accumulation
[10].

Modification of protein cysteine residues by disulphide bond
formation with glutathione (glutathionylation) is a reversible post-
translational modification of utmost importance in cell signalling
events following oxidative or nitrosative stress. It acts as a
protective mechanism for proteins from undergoing terminal
modifications, when exposed to oxidative stress. When the en-
vironment becomes more reducing, deglutathionylation takes
place by removal of the glutathione moiety from the protein,
either in an enzymatic or non-enzymatic manner. Glutathione,
with two cysteine residues takes part in both the reactions.
Sulfiredoxin possesses only one cysteine residue and highlights
its advantage by not getting glutathionylated during the process
[11]. So the other biologically relevant function of sulfiredoxin is
deglutathionylation of proteins such as peroxiredoxin, actin and
protein tytosine phosphatase 1B [12].
Systemic diseases and oxidative stress

Increased oxidative stress is the major etiopathogenic factor in
various systemic diseases such as diabetes mellitus, obesity,
atherosclerosis, hypertension, neurodegenerative disorders, in-
flammatory bone diseases like rheumatoid arthritis and period-
ontitis. The environmental or noxious stimuli from certain micro
organisms could contribute to the oxidative burden imposed on
these tissues.
Sulfiredoxin levels in health and disease

The assessed diseased states for this enzyme included athero-
sclerosis [13], chronic obstructive pulmonary disease [14] and a
wide array of carcinomatous lesions. The more invasive squamous
cell carcinoma, basal cell carcinoma to the less invasive small cell
and large cell lung carcinoma were reviewed for the levels of
sulfiredoxin.

Certain studies showed that there is a similarity in the expres-
sion of sulfiredoxin levels in a set of squamous cell [8,15] and
adenocarcinomas respectively [15,16]. Renal carcinoma and the
tumour adjacent renal epithelium cell lines were evaluated for
sulfiredoxin mRNA expression. The tumour cell lines showed a
significant increase in the target protein expression when com-
pared to the latter [49].

Correlation of immunohistochemical staining results of human
cross sectional studies revealed significantly high sulfiredoxin
positivity in squamous cell carcinoma (88.1%), basal cell carcinoma
(74.4%), melanoma (65.2%) followed by adenocarcinoma (55%),
large cell carcinoma (22.2%) and small cell carcinoma (9.1%). The
rise in sulfiredoxin positivity can be directly associated with the
invasive nature and the metastatic potential of the carcinoma. The
current findings can be explained by the fact that this protein has
been shown to increase the cell motility and invasion, which will
be elaborately discussed under the factors influenced by sulfir-
edoxin. This increased expression might have a potential value in
the diagnosis, prevention or treatment of these tumours. In benign
tumours such as papilloma (33%), condyloma (0%), dermato-fibro
sarcoma (0%), there is a decline in the levels of sulfiredoxin. Mild
sulfiredoxin positivity has been observed in chronic inflammatory
conditions (7.7%). Immunohistochemically, the localization of the
sulfiredoxin protein was towards the basal cell layer of the dermis
in chronic inflammation [8].

Since the lungs are the target organs of the majority of the
oxidative insult, robust antioxidant functioning is required for
homoeostasis. In an in vivo study, a significant decrease in the
sulfiredoxin expression in lungs with chronic obstructive pulmon-
ary disease was observed in comparison to healthy tissue samples.
This implied that the increase in oxidative stress in COPD lungs
could not be efficiently neutralized by the action of sulfiredoxin.
Low levels of sulfiredoxin results in impaired hydrogen peroxide
detoxification, thereby resulting in exarcebated oxidative burden
to the lungs [14].

Atherosclerosis is the major aetiological factor underlying
myocardial infarction and stroke. Nrf2, with its target genes like
sulfiredoxin has been implicated in the advanced stages of
atheromatous plaque formation [13]. This redox protein can play
a crucial role in the pathogenesis of the disease which requires an
interplay between oxidative stress and inflammatory response.
Plaque associated macrophages can undergo pro (M1) and anti-
inflammatory (M2) polarization based on the environmental
signals [17]. High levels of sulfiredoxin could be attributed to the
increased generation of reactive oxygen species due to the transi-
tion of M2–M1 subset of macrophages, which are pro-inflamma-
tory and essential for atherogenesis. The macrophages later
develop into foam cells in the atheroma plaques. Also, Nrf2 is
required to support the inflammatory reaction in the plaque, by
cholesterol crystal induced Nlrp3 inflammasome activation [18],
mediated by mitochondrial ROS production [19]. Hence this inter-
relationship is essential for the development of atherosclerosis.

The erythrocytes have an in-built oxidative stress response
network due to the auto-oxidation of haemoglobin. They can also
take up the oxidative stress from other tissues and diffuse it. Thus
sulfiredoxin performs its role as an antioxidant and the intrinsic
store remains constant even through the aging phases of the red
blood cells [20].



Table 1
Summary of results of the factors influencing sulfiredoxin expression.

No. Factors References Sulfiredoxin expression

Increase No change Decrease

Chemopreventive agents
1 Cinnamic aldehyde [21] ✓

2 Maesopsin-4-O-β D-
glucoside (TAT-2)

[22] ✓

3 Nitrofurtimox,
nitrofurtimoxþ
tetrathiomolybdate

[23] ✓

Hormones
4 Luteinizing hormone [32] ✓

5 Human chorionic
gonadotropin

[32] ✓

6 Adrenocorticotropic
hormone

[34] ✓

7 Dexamethasone [34] ✓

Pro-oxidants
8 Diquat [24] ✓

9 Ethanol [25] ✓

10 Pyrazole [26] ✓

11 Cadmium [27] ✓

12 Copper [28] ✓

Antioxidants
13 Sulforaphane and

curcumin
[29] ✓

14 Roasted coffee extracts [30] ✓

15 3H-1,2-dithiole-3-thione
(D3T)

[7] ✓

16 Rutin [31] ✓

17 Tiron and diphenylene
iodonium chloride

[32] ✓

Exogenous factors
18 Hyperoxia [39] ✓

19 Interferon-γ [35,36] ✓

20 Lipopolysaccharide [34–37] ✓

21 Nitric oxide [35] ✓

22 High cholesterol diet [31] ✓

Endogenous factors
23 Circadian rhythm [34] ✓ ✓

Transcription factors
24 Nrf2 [27,29] ✓

25 Nf-κβ inhibitor (IMD-
3054)

[28] ✓

26 RANKL [29] ✓
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Factors influencing sulfiredoxin expression

From the existing literature, various factors influencing the
expression of sulfiredoxin can be summarized in the following
order: chemotherapeutic agents, pro-oxidants, antioxidants, hor-
mones, exogenous, endogenous and transcription factors (Table 1).

The targeted chemotherapeutic drugs are cinnamic aldehyde
[21] and maesopsin 4-O-β D-glucoside [22], which are natural
extracts from cinnamon and Artocarpus tonkinensis, respectively.
The third drug is nitrofurtimox either given alone or in combina-
tion with tetrathiomolybdate [23]. These drugs function by indu-
cing the oxidative stress response genes and thereby increasing
the sulfiredoxin expression to function as an antioxidant. However,
it is paradoxical to note that the tumour cells secrete increased
amounts of this protein to facilitate its survival. Thus the mode of
action of these drugs with respect to the alteration in oxidative
stress response warrants further studies.

As the name suggests, pro-oxidants favour the increase in
oxidative stress which results in the accumulation of various free
radicals and reactive oxygen species. So, there is an onus on the
antioxidant system to effectively scavenge these free radicals.
Accordingly, the studies show that pro-oxidants such as diquat
[24], ethanol [25], pyrazole [26], cadmium [27] and copper [28]
show significantly high induction of the antioxidant enzyme
sulfiredoxin when injected into the liver of animals such as mice
and rats. Hence, sulfiredoxin could also be targeted as a biomarker
in hepatotoxicity induced by chronic ethanol consumption or
copper toxicity leading to Wilson’s disease.

Antioxidants interact with each other in order to fend off the
oxidative burden in the tissues. The classic example is the
synergistic action of Vitamin E and co-enzyme Q in lipid perox-
idation. The effects of antioxidants such as sulforaphane [29],
curcumin [29], roasted coffee extracts [30] and 3H-1,2-dithiole-3-
thione (D3T) [7] have been studied with respect to sulfiredoxin.
They induced a significantly higher expression of this antioxidant,
whereas agents such as rutin [31], tiron [32] and diphenylene
iodonium chloride [32] show a significant decrease in its expres-
sion. Further studies can be done to probe into the exact mechan-
ism of action of these agents on sulfiredoxin.

There is a strong involvement of reactive oxygen species in the
process of ovulation which has been demonstrated by adminis-
tering antioxidant agents to mice [33]. The sex hormones such as
gonadotropins and luteinizing hormone showed a marked in-
crease in the sulfiredoxin expression in rat ovaries and follicular
cells, which can be attributed to the higher oxidative burden
during ovulation [32]. Prx III, followed by Prx V has been
abundantly found in the adrenal cortex of mice. Accumulation of
hydrogen peroxide due to the inactivation of peroxiredoxin and its
subsequent activation results in a feedback mechanism which
controls the adrenal corticosteroid production, apart from the
hypothalamic–pituitary–adrenal axis. This mechanism is respon-
sible for the circadian periodicity of sulfiredoxin. Stimulation with
adrenocorticotropic hormone has been shown to increase the
sulfiredoxin levels, while dexamethasone has a suppressive effect
[34].

In vitro studies have showed the effects of bacterial lipopoly-
saccharide (LPS) [34–37] on sulfiredoxin levels in mouse bone
marrow derived macrophages. The individual stimuli with LPS
showed induction of sulfiredoxin expression. A combined stimulus
of LPS and the cytokine interferon-γ almost doubled the expres-
sion of this redox protein in comparison to the individual stimuli
[35,36]. This upregulation is mediated by nitric oxide which forms
peroxynitrite ion which in turn is responsible for killing of the
invading micro organisms [38]. Peroxynitrite is detrimental to the
producing cells and nearby tissues and they can be efficiently
scavenged by peroxiredoxins. Hence, it can be presumed that the
nitric oxide mediated sulfiredoxin induction can be a feedback
loop in preventing the excessive accumulation of peroxynitrite
ions.

Further, exogenous factors such as hyperoxia [39] and high
cholesterol diet [31] are involved in causing an unfavourable tilt in
the redox balance. They are the pre-requisites in the causation of
atherosclerosis and progressive lung damage. So they trigger the
induction of antioxidant enzymes such as sulfiredoxin in order to
combat the rise in the oxidative stress levels.

Sulfiredoxin expression is mediated via the transcription fac-
tors Nrf2 and AP-1. The Nrf2 null cells did not express sulfiredoxin,
thereby ascertaining the pathway [27,29]. Moreover the nuclear
factor κβ inhibitor IMD-3054 [28] and its ligand RANKL [29]
suppressed the expression of sulfiredoxin. Oxidative stress is
essential for the differentiation of osteoclasts from the monocyte
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cell lineage. Osteoblast and osteoclast coupling mediated by
RANK–RANKL binding is essential for osteoclastogenesis and bone
remodelling. So it can be assumed that in inflammatory bone
diseases such as periodontitis, the oxidative stress is maintained at
a higher level by the suppression of antioxidant enzymes such as
sulfiredoxin. This results in the differentiation of osteoclasts and
subsequent bone resorption characterized in the disease process.
Further studies using human tissue samples are warranted in
order to substantiate this data.
Factors influenced by sulfiredoxin

Most of the studies assessing the tumour related factors have
an in vitro design wherein a silencing RNA of sulfiredoxin is
introduced to nullify the production of the protein at the tran-
scriptional level. The Srx null mice showed a lower trend in
tumour incidence, and it was not statistically significant when
compared to the wild type and heterozygous counterparts [44].
Also it was reported that depletion of sulfiredoxin did not affect
the proliferation of cells in mouse skin tumours [45]. Another
study demonstrated that the over expression of sulfiredoxin
resulted in clonal expansion and cell growth with about 50% of
the cells present in the G1 phase of the cell cycle, followed by 10%
in S phase and 20% in G2 phase [41].
Table 2
Summary of results of the factors influenced by sulfiredoxin.

No. Factors References Sulfiredoxin How is it

Srxþ/þ Srx�/�

Survival rate
1 Patient survival [15,16,48] ✓ Srx posit

adenocar
receiving

2 Animal survival [42] ✓ Presence
produce

Tumour related
3 Incidence [44] ✓ Srx null

significan
4 Colony formation [8,46] ✓ Lack of c

A549 cell
5 Proliferation [45] ✓ Depletion
6 Clonal expansion and cell

growth
[41] ✓ Over exp

carcinom
7 Apoptotic cells [40,45] ✓ Increase

with red
8 Multiplicity [44,45] ✓ In Srx de

induced
9 Volume [45] ✓ Reduced
10 Cell migration [46,47] ✓ Migratio

human A
11 Invasion [47] ✓ Srx null

Oxidative stress related
12 Protein

carbonylation
[26] ✓ Srx null

compare
13 Malondialdehyde [26] ✓ Srx null m

on inject
14 Reactive oxygen species [40] ✓ Increased

Agents
15 Corticosterone [34] ✓ Sulfiredo
16 Adrenocorticotropic hormone [34] ✓ Sulfiredo

negative
17 Cisplatin [41] ✓ Sulfiredo

cisplatin.
Few studies have demonstrated that sulfiredoxin negativity
resulted in lack of anchorage dependent colony formation in
mouse JB6 [8] and human A549 cell lines [46]. Colony formation
is a hallmark of transformation and an in vitro correlate of
tumorigenicity in vivo. Depleted levels of this antioxidant resulted
in an increased percentage of intra tumoural apoptotic cells,
thereby showcasing the role of sulfiredoxin as a protective factor
in tumour cell survival. There is also a concomitant decrease in the
tumour multiplicity and volume due to the increase in apoptosis.
These parameters were assessed in colon carcinomas, skin tu-
mours and in lung A549 cells [40,44,45].

In human lung A549 cells, a wound was created to assess the
migration of sulfiredoxin positive and negative cells. The positive
cells migrated faster and there was a significant wound fill,
whereas the negative cells migrated at a slower rate [46,47]. The
invasiveness of the cells increased in sulfiredoxin positive cells
[47]. This is clinically relevant, as the most invasive and metastatic
tumours like squamous cell carcinoma, basal cell carcinoma and
melanoma showed the highest levels of sulfiredoxin expression.

Cisplatin is a chemotherapeutic drug which has been effectively
used in the management of sarcomas, lymphomas and small cell
lung carcinomas. An in vitro study demonstrated an average of
32% of dead cells in G1 subpopulation which was sulfiredoxin
positive when 2, 3, 4 mg/ml dosage of the drug was administered,
whereas only 15% of the sulfiredoxin negative cells were affected.
Thus, it can be inferred that sulfiredoxin had a dose dependent
influenced?

ivity did not have a correlation with the patient survival in pancreatic
cinoma and lung carcinoma (Stages I and II). Worse survival in patients
cytostatic drugs and radiation therapy
of Srx had a positive impact on the animal survival when induced with LPS to
endotoxic shock.

mice showed a lower trend in tumour incidence and it was not statistically
t when compared to wild type.
olony formation in Srx null cells has been observed in mouse JB6 and human
s.
of Srx did not affect the cell proliferation in skin tumours in mice.

ression of Srx promoted clonal expansion and cell growth in human lung
a A549 cells.
in intratumoural apoptotic cells in mouse skin tumours and human A549 cells
uced expression of Srx.
pleted state, tumour multiplicity is reduced by 2 fold in colon carcinomas
in mice.
tumour volume in Srx null mice with skin tumours.
n of Srx null cells was significantly slower than wild type when assessed in
549 cells.
cells were less invasive when tested with human A549 cells.

mice showed 1.6 fold increase in protein carbonylation products when
d to wild type on injection with pyrazole.
ice showed 1.7 fold increase in lipid peroxidation marker malondialdehyde

ion with pyrazole.
ROS levels in Srx null human A549 cells.

xin positivity causes an increase in the plasma corticosterone levels in mice.
xin levels causes a decrease in the plasma ACTH levels in mice due to the
feedback mechanism.
xin positive A549 cells show a dose dependent increased sensitivity to
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increased sensitivity to cisplatin. The plausible mechanism to the
drug sensitivity is elevated levels of the protein p53, which has
been elicited in this study and this protein has an important role in
lung cancer prognosis and drug response [41].

An elevated level of sulfiredoxin has been shown to protect
tumour cells from oxidative damage by the activation of peroxir-
edoxins. Certain studies observed the survival rate of patients
suffering from pancreatic adenocarcinoma and lung carcinomas
(Stages I and II) and tried to assess the prognostic value of
sulfiredoxin as a marker by correlating the survival rate with its
levels. But the results from those studies showed no significant
correlation with the patient survival in these conditions [16,48]. In
another study, sulfiredoxin positivity in lung tumour samples was
observed and this was associated with a decreased survival of
patients receiving cytostatic drugs or radiation therapy [15].

A sulfiredoxin null environment showed a marked increase in
oxidative stress markers like reactive oxygen species [40], protein
carbonylation products [26], and malondialdehyde (lipid perox-
idation product) [26], thereby confirming its antioxidant status.

In the presence of sulfiredoxin, elevated levels of plasma
corticosterone and a concomitant decrease in adrenocorticotropic
hormone were observed, and this has a bearing on the adrenal
steroidogenesis [34]. Also in another study, its presence has shown
to increase the survival rate of mice, especially females when
exposed to LPS mediated endotoxic shock [42]. Sulfiredoxin may
influence sepsis by controlling the strength of TLR signalling [43]
through its effect on peroxiredoxins.

The afore mentioned factors have been collectively summated
in Table 2.
Conclusion

Sulfiredoxin plays a key role in maintaining the redox balance
by effectively neutralizing hydrogen peroxide through peroxire-
doxins. This mechanism is maintained in health whereas in cancer
cells, it behaves like a double edged sword by causing the cells to
be more resistant to oxidative burden. This review concludes that
sulfiredoxin has a bearing on oxidative stress mediated conditions
which was evidently seen in atherosclerosis, chronic obstructive
pulmonary disease and malignancies. However, future longitudi-
nal and interventional studies are necessary to provide conclusive
evidence on these results. Also the research can be extended to
diseases like diabetes mellitus, obesity, inflammatory bone dis-
eases such as periodontitis and rheumatoid arthritis to know its
implications. A majority of individual studies have shown the
influence of factors on sulfiredoxin expression, all of which have
been collectively summarized in this review. More targeted studies
on assessing these regulators can yield valuable information on
the mechanism of action of sulfiredoxin in various bodily func-
tions. Among the various factors influenced by this antioxidant,
this review points out that the tumour related factors have a
strong susceptibility to this enzyme. Future directions in research
should have a strong focus on assessing the role of this protein as a
diagnostic or prognostic marker and as a therapeutic agent in
various oxidative stress induced disorders.
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