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Abstract 
 Wearable sensors can measure movement in daily life, an outcome that is salient to patients, and have been 
critical to accelerating progress in rehabilitation research and practice. However, collecting and processing sensor data 
is burdensome, leaving many scientists with limited access to such data. To address these challenges, we present a 
harmonized, wearable sensor dataset that combines 2,885 recording days of sensor data from the upper and lower 
limbs from eight studies. The dataset includes 790 individuals ages 0 – 90, nearly equal sex proportions (53% male, 
47% female), and representation from a range of demographic backgrounds (69.4% White, 24.9% Black, 1.8% Asian) 
and clinical conditions (46% neurotypical, 31% stroke, 7% Parkinson’s disease, 6% orthopedic conditions, and others). 
The dataset is publicly available and accompanied by open source code and an app that allows for interaction with the 
data. This dataset will facilitate the use of sensor data to advance rehabilitation research and practice, improve the 
reproducibility and replicability of wearable sensor studies, and minimize costs and duplicated scientific efforts. 
 
Background & Summary 

The sophistication of wearable sensor technology is rapidly evolving, including drastic improvements in 
measurement precision, ease of use, and ability to capture multiple physiologic signals.1-3 Coinciding with these 
advancements is the increase in number of studies and range of use cases for these technologies in rehabilitation 
research and other realms of medicine.4 Wearable sensors have expanded outcome assessment from traditional 
laboratory/clinical settings to patients’ real-world environments, allowing outcomes most salient to patients to be 
captured in an ecologically valid context.5,6 Wearable sensor technology has been critical to a number of important 
scientific findings in rehabilitation research. For example, application of these technologies identified a critical practice 
gap that patient improvements on in-clinic assessments may not translate to improvements in daily life.5 Change in 
steps per day, a sensor-derived variable, served as the primary outcome for a large randomized controlled trial 
providing critical new insights on how to improve physical activity in individuals with chronic stroke.7 Longitudinal 
protocols have shed new light on how these technologies can be leveraged to predict onset and monitor disability 
progression in degenerative conditions.8-10 Thus, the profound impact that wearable technologies have had – and will 
continue to have – on rehabilitation research is clear.11,12  

Despite these advancements, wearable sensor technology remains primarily confined to specialized research 
laboratories due to two key barriers. The first includes the resources required to deploy, manage, and inspect data 
from these technologies.6 Financial resources are required to purchase sensors, associated software, and accessories. 
Trained personnel add to these costs and are needed to deploy, monitor, process, and perform inspections of data 
derived from wearable sensors. Adding to these challenges is the often-lengthy and computationally complex pipelines 
needed to process the large quantities of data recorded by wearable sensors.13,14 Conquering these barriers can exceed 
the bandwidth of research laboratories unfamiliar with the technology, leaving important research questions related 
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to the use of wearable sensors unaddressed and decelerating progress in both rehabilitation research and clinical 
practice.  

The second large barrier is the lack of available data to inform wearable sensor data collection protocols and 
processing procedures. When designing a study that uses wearable sensor technology as a data collection tool, 
researchers are often faced with questions, such as ‘how many recording days are needed?’, ‘how should the sensor 
variable(s) of interested be calculated?’, and, if deploying sensors in an atypical population, ‘how does the sensor 
variable(s) behave in a neurotypical cohort?’.15,16 These unknowns often result in researchers needing to collect pilot 
data to inform their data collection protocols or add a control arm to their study design. These additional steps can 
delay the onset of data collection, add significant costs and (often duplicated) effort, and ultimately contribute to the 
wide variability in wearable sensor data collection and processing protocols in rehabilitation research. 

These barriers could be addressed by providing the field with a large dataset of wearable sensor data collected 
from individuals who represent a variety of conditions, levels of disability, and demographic backgrounds and would 
ideally include a wide range of sensor variables and recording days. To be most useful to the field, the dataset would 
need to be findable, accessible, interoperable, and reusable (FAIR) and include open source code to allow others to 
replicate its data processing procedures and adapt for their own purposes, if necessary.17 We have taken the first steps 
towards this goal by harmonizing wearable sensor data collected across eight study protocols over the past 10+ years. 
In all eight studies, participants wore bilateral wrist sensors, bilateral wrist and bilateral ankle sensors, or a unilateral 
ankle sensor. Sensors were worn in daily life (i.e., outside the clinic/lab), with the exception of one study in which 
participants were residing in a skilled nursing facility. The harmonized dataset includes 790 participants ages 0 – 90 
years, with a variety of conditions, and 2,885 recording days. The dataset is accompanied by open-source code hosted 
on Zenodo18 as well as an R Shiny object to allow others to visualize and interact with the data 
(https://langlab.shinyapps.io/harmonized_data/).  We anticipate this harmonized dataset could be helpful in a variety 
of scenarios, including to: (1) help inform the design of wearable sensor data collection and processing protocols, (2) 
understand how a specific sensor variable behaves across populations, (3) develop new research questions or confirm 
the scientific merit of a proposed research question, and (4) minimize costs and duplicated efforts by allowing the field 
to address wearable sensor-related research questions using a large, pre-existing dataset. The purpose of this article 
is to describe the harmonized dataset, including information about each of the individual studies and the procedures 
used to harmonize the data. 
 
Methods 
 Figure 1 provides a schematic for how the eight studies (i.e., data sources) were harmonized into a single 
dataset. The harmonization process involved five main steps: (1) identifying the data sources to be harmonized, (2) 
preparing the data for harmonization, (3) developing a harmonized vocabulary, (4) mapping the source variables to 
the harmonized vocabulary, and (5) final inspection of the data and submission to a public repository. Each step is 
discussed in greater detail below under its respective subheading. The section “Step 1: Identify Data Sources” also 
describes the initial collection and processing procedures for the upper and lower limb accelerometry data for each 
study. 
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Step 1: Identify Data Sources. The first step was to determine which data sources to include in the harmonized dataset 
(Figure 1, “Identify Data Sources”). The overarching goal of the project was to harmonize accelerometry data collected 
by Washington University investigators and collaborators. We envisioned that users of the data would be primarily 
interested in answering scientific questions related to the use of accelerometry data and/or wearable sensors. Thus, 
the data sources that were harmonized all had to meet the following criteria: (1) include accelerometry data collected 
from the upper and/or lower limbs, (2) completed data collection, and (3) permit de-identified data to be shared. Eight 
data sources met this criterion and are listed in Figure 1 (“Identify Data Sources”). All studies were approved by 
Washington University Human Research Protection Office. All participants provided written informed consent. Table 
1 provides the number of participants and eligibility criteria for each study as well as a brief description of the 
accelerometry data collection procedures. 
 
 
Table 1. Summary of the Eight Studies Included in the Harmonized Dataset 

Study Eligibility Criteria Accelerometry Data 
Collection 

Bailey & Lang, 2013 
(n = 75)19 

Inclusion criteria: individuals who were at least 30 years of 
age and able to follow commands. 
Exclusion criteria: self-reported history of a neurological 
condition or physical impairment of the upper limb. 

Neurotypical individuals 
wore bilateral wrist and 
ankle sensors (ActiGraph 

GT3X+) once for 25 
hours. 

Waddell et al., 2017 
(n = 84)20 

Inclusion criteria: (1) ischemic or hemorrhagic stroke as 
determined by a stroke neurologist and consistent with 
neuroimaging; (2) time since stroke ≥6-months; (3) 
cognitive skills to actively participate, as indicated by 
scores of 0 to 1 on items 1b and 1c of the National 

Individuals with stroke 
wore bilateral wrist and 
ankle sensors (ActiGraph 
GT3X+) for 26 hours once 
per week over the course 

Figure 1. Schematic displaying how the data were harmonized. The first step involved identifying the data sources 
to be harmonized. The second step was to prepare the data. This step differed based on the type of data 
(demographic/clinical, upper limb accelerometry, lower limb accelerometry). The next steps involved developing 
a harmonized vocabulary and mapping the source variables to the harmonized vocabulary. The final step included 
inspecting the harmonized data and depositing it on a public repository. 
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Institutes of Health Stroke Scale (NIHSS); (4) unilateral 
upper limb weakness, as indicated by a score of 1 to 3 on 
item 5 (arm item) on the NIHSS; and (5) mild-to-moderate 
functional motor capacity of the paretic UL, indicated by a 
score of 10 to 48 on the Action Research Arm Test.  
Exclusion criteria: (1) participant unavailable for 2-month 
follow-up; (2) inability to follow-2-step commands; (3) 
psychiatric diagnoses; (4) current participation in other UL 
stroke treatments (e.g., Botox); (5) other neurological 
diagnoses; (6) participants living further than 1 hour away 
and were unwilling to travel for assessment and treatment 
sessions; and (7) pregnancy. 

of the intervention 
period (which varied 

based on group 
assignment). 

Hoyt et al., 2019 
(n = 176)21 

This study included children ages 0 – 17 years who were 
developing typically with no significant medical history 
affecting motor development. 

Typically-developing 
children wore bilateral 

wrist sensors (ActiGraph 
GT3X+) for four days 
within one month. 

Bland et al., 2021 
(n = 92)22 

Inclusion criteria: individuals admitted to a skilled nursing 
facility who were 65 years of age or older, admitted from 
an acute hospital, and requiring at least 2 weeks of 
physical therapy (PT) and occupational therapy (OT).  
Exclusion criteria: language, visual, or hearing barriers to 
participation; medical illness that prevented study 
participation; moderate to severe cognitive impairment 
(noted in chart review or by a Short Blessed Test score of 
>13); progressive neurological condition such that 
recovery of function was not feasible; patient was unable 
to ambulate independently without the use of an assistive 
device prior to hospitalization; and diagnosis of psychotic 
disorder. 

Individuals with a variety 
of conditions wore 

bilateral wrist and ankle 
sensors (ActiGraph 
GT3X+) once for 24 

hours. 

Lang et al., 2021 
(n = 68)23 

Inclusion criteria: (1) within 2 weeks of a first-ever 
ischemic or hemorrhagic stroke, confirmed with 
neuroimaging; (2) presence of unilateral upper limb motor 
deficits within the first 24–48 hours post-stroke, as 
indicated by a National Institutes of Health Stroke Scale 
(NIHSS) Arm Item score of 1–4 or documented manual 
muscle test grade of < 5 anywhere on the paretic UL; (3) 
able to follow a 2-step command, as measured by a NIHSS 
Command Item score of zero; and (4) anticipated return to 
independent or community living, as indicated by the 
acute stroke team. 
Exclusion criteria: (1) history of previous stroke, 
neurological condition, or psychiatric diagnoses other than 
depression or anxiety; (2) presence of other comorbid 
conditions that may limit recovery (e.g., end-stage renal 
disease and stage IV cancer); (3) lived more than 90 
minutes from study location; and (4) currently pregnant by 
self-report 

Individuals with stroke 
wore bilateral wrist 

sensors (ActiGraph GT9X 
Link) for 24 hours at 2, 4, 

6, 8, 12, 16, 20, and 24 
weeks after stroke onset. 

Lang et al., 2022 
(n = 156)5 

Inclusion criteria: (1) neurologist diagnosis of stroke or 
idiopathic Parkinson’s disease (Hoehn-Yahr score 2-3), but 
not both diagnoses in the same individual; (2) referral for 
outpatient physical or occupational therapy; (3) 
anticipated to receive rehabilitation services for at least 1 
month; (4) documented therapy goal(s) to improve upper 
limb function or walking mobility; (5) able to follow 2-step 

Participants with stroke 
wore either bilateral 

wrist sensors (ActiGraph 
GT9X Link) for three days 
or a single step monitor 

(Modus Health 
StepWatch Activity 
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commands and participate in testing; and (6) for persons 
with Parkinson’s disease, stable dose of Parkinson’s 
disease medication more than 2 weeks prior to enrollment 
and no medication changes anticipated during the time of 
therapy services.  
Exclusion criteria: (1) other neurological or psychiatric 
conditions, including deep brain stimulator implants; (2) 
other orthopedic conditions that limit upper limb capacity 
or mobility (e.g., amputation, severe arthritis, and 
significant pain); (3) other comorbid conditions such that 
the physician or therapy documentation indicates minimal 
chance for improvement in function (e.g., end-stage 
cancer diagnosis); (4) upper limb or walking capacity that 
is already near normal (as indicated by Action Research 
Arm Test scores ≥52 or self-selected gait speeds ≥1.2 m/s). 

Monitor) on the less 
affected leg for seven 
days. Participants with 

Parkinson’s disease wore 
a single step activity 

monitor (Modus Health 
StepWatch Activity 

Monitor) on the less 
affected leg for seven 

days. Participants were 
assessed within 1 week 

of starting therapy 
services and monthly (± 
10 days) thereafter for 
the duration of therapy 

services. 

Konrad et al., 2022 
(n = 54)24 

This study included children ages 3-10 years with and 
without autism spectrum disorder. Typically-developing 
children were free from any neurodevelopmental 
conditions. Children with autism spectrum disorder who 
were nonverbal were excluded. Children were excluded 
from both groups if parents reported the presence of 
orthopedic or neurologic conditions that would alter their 
habitual movements. 

Participants wore 
bilateral wrist sensors 

(ActiGraph GT3X+) for 12 
hours on any two days. 

Konrad et al., 2024 
(n = 85)25 

This study included children 6-12 years old across the 
continuum of atypical and typical development. Children 
could be typically developing or have diagnoses of 
Developmental Coordination Disorder, as well as autism 
spectrum disorder, or Attention-Deficit/Hyperactivity 
Disorder (ADHD). Participants were excluded if their 
primary language was not English or they had other 
activity limiting conditions or injuries. 

Participants wore 
bilateral wrist sensors 
(ActiGraph GT3X+ or 

ActiGraph GT9X Link) for 
two days. 

 
Accelerometry Data Collection Methods 
This section describes how upper and lower limb accelerometry data were originally collected for each study. 
 

Upper Limb Accelerometry 
All or a subset of participants in each of the eight studies were instructed to wear bilateral wrist 

accelerometers to measure upper limb movement. Wear times varied based on the study protocol (Table 1, 
“Accelerometry Data Collection”). However, the same overall methodology was applied. This methodology is 
described in detail in Lang et al, J Vis Exp 201714 and summarized in this section. 
 Participants wore two ActiGraph GT3X+ or ActiGraph GT9X Link triaxial accelerometers (ActiGraph Corp, 
Pensacola, Florida), one on each wrist (Figure 2A). The same device model was used on both wrists. In the case of 
longitudinal studies, the same device model was used at all time points.  A member of the research team met with the 
participant to instruct them on how to wear the accelerometers according to the study protocol. Participants were 
instructed to go about their usual activities and to remove the sensors during swimming activities. Participated were 
asked to complete a wearing log to indicate times in which the sensors were worn and removed (if necessary). 
Participants were provided the option to return the accelerometers either in person or a pre-paid mail envelope. The 
devices recorded accelerations along three axes and were programmed to record data at a frequency of 30 Hz. Once 
the accelerometers were returned to the lab, data were downloaded and visually inspected using ActiLife software 
(version 6 ActiGraph Corp, Pensacola, Florida). Data were then exported from ActiLife for further processing. The set 
of variables computed from the raw accelerometry data varied slightly based on the study protocol. Data were stored 
securely and in separate locations on Washington University’s secure Box server. 
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Lower Limb Accelerometry 

Four studies deployed wearable sensors worn at one or both ankle(s) to measure step counts.5,19,20,22 In Lang 
et al., 20225, individuals with Parkinson’s disease and a subset of individuals with stroke were instructed to wear the 
Modus StepWatch Activity Monitor (Modus Health LLC) on their less affected ankle for seven days (Figure 2C).26-28 The 
device was calibrated for each participant according to the manufacturer’s instructions. The device utilizes a 
proprietary algorithm to measure step counts, which were extracted from the Modus StepWatch software and used 
to compute the average number of steps taken based on the number of recording days. 
 In three studies19,20,22, participants wore two ActiGraph GT3X+ accelerometers (ActiGraph Corp, Pensacola, 
Florida), one on each ankle, with wear times dictated based on the study protocol (Figure 2B). Once the accelerometers 
were returned to the lab, the data were processed in ActiLife software (version 6, ActiGraph Corp, Pensacola, Florida) 
using its proprietary algorithms to compute step counts.29  
 
Step 2: Data Preparation. Three types of data were harmonized: demographic/clinical, upper limb accelerometry, and 
lower limb accelerometry. These three types of data underwent different processes to prepare them for 
harmonization. All data sources were retrieved from Washington University’s secure Box and/or REDCap (Research 
Electronic Data Capture) platforms.30,31 Demographic/clinical data from each data source had previously been 
inspected and cleaned as part of its respective study protocol prior to analysis and dissemination. Here, these data 
underwent a second layer of inspection to verify that all values appeared reasonable and all relevant 
demographic/clinical variables were present (e.g., age, sex, race, and ethnicity). This was done one study at a time 
using both manual procedures as well as the software program, R (R Core Team, 2013, version 4.2.1). 
Demographic/clinical data across data sources were then merged together in Step 4 below. 

Upper limb accelerometry data were reprocessed using custom-written R code (R Core Team, 2013, version 
4.2.1). Reprocessing was done to ensure that all data were subject to the same processing pipeline and that the same 
set of variables were computed for all data sources. This process entailed extracting two data files from each wrist 
sensor from ActiLife software (version 6.11.9, ActiGraph Corp, Pensacola, Florida): a raw 30 Hz file (in gravitational 
units) and a down-sampled 1 Hz data file (in ActiGraph activity counts). The 30 Hz data were band-pass filtered from 
0.2-12 Hz to remove acceleration components incompatible with human activity. Data in the 1 Hz file were first filtered 
using ActiGraph’s proprietary filtering algorithm, which uses a maximum gain of 0.759 Hz and goes down to -6db at 
0.212 Hz at 2.148 Hz and then down-sampled from 30 Hz to 1-second epochs for each axis by summing the 30 samples 
within each second.32 Both the 1 Hz and 30 Hz files were trimmed to only include times in which the participant wore 
the sensors outside the clinic/lab (i.e., in daily life), which varied across studies. The exception was Bland et al., 202122 
in which participants were residing in a skilled nursing facility. Accelerations in each axis were combined into a single 
vector magnitude using the formula �𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2.  A vector magnitude threshold of ≥ 2 activity counts was used to 
determine if the upper limb was active for each 1-second epoch.33,34 For each data source, 26 variables that reflect 
movement of the upper limbs in daily life were computed, most from the 1 Hz data with some variables computed 

Figure 2. Wearable sensor placements for included studies. A) Participants in all studies wore ActiGraph GT3X+ 
or ActiGraph GT9X Link sensors on each wrist (picture shows Link sensors). B) Participants in three studies (Bailey 
et al., 2013, Waddell et al., 2017, and Bland et al., 2021) also wore bilateral ankle sensors (ActiGraph GT3X+). C) In 
one study (Lang et al., 2022), individuals with Parkinson’s disease and a subset of individuals with stroke wore a 
Modus StepWatch Activity Monitor (Modus Health LLC) on their less affected ankle. 
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from the 30 Hz data (Table 2). We intentionally computed a wide range of variables for two main reasons. The first is 
that it is currently unknown which sensor-derived upper limb variable(s) or constructs of movement are most 
important to measure, and the second is that the relevance of specific variables will likely vary across research 
questions, clinical populations, and scientific fields.6,21,24,35,36 Computing a wide range of variables would therefore 
maximize the usefulness of this harmonized dataset for future research endeavors. The R code used to process the 
upper limb accelerometry variables is available on https://github.com/keithlohse/HarmonizedAccelData and archived 
on Zenodo.18 Data were reprocessed one study at a time and then merged together in Step 4 below.  

 
Table 2. Upper Limb Accelerometry Variables 

Variable Name Variable Description Data 
Source 

recording_time The number of minutes of sensor recording time each day 1 Hz 

total_mvt_time37 Time (in hours) that either the left, right, or both upper limbs are 
moving 1 Hz 

l_time34 Time (in hours) that the left upper limb is moving 1 Hz 

l_only_time19 Time (in hours) that the left upper limb is moving, while the right upper 
limb is still. 1 Hz 

r_time34 Time (in hours) that the right upper limb is moving 1 Hz 

r_only_time19 Time (in hours) that the right upper limb is moving, while the left upper 
limb is still 1 Hz 

simultaneous_time37 Time (in hours) that both upper limbs are moving 1 Hz 
l_magnitude38 Median of the accelerations of the left upper limb, in activity counts 1 Hz 
r_magnitude38 Median of the accelerations of the right upper limb, in activity counts 1 Hz 

bilateral_magnitude38 Magnitude of accelerations of movement summed across both upper 
limbs, in activity counts 1 Hz 

l_magnitude_sd38 Standard deviation of the magnitude of accelerations across the left 
upper limb, in activity counts 1 Hz 

r_magnitude_sd38 Standard deviation of the magnitude of accelerations across the right 
upper limb, in activity counts 1 Hz 

l_peak_magnitude38 The highest magnitude of accelerations of the left upper limb, in 
activity counts 1 Hz 

r_peak_magnitude38 The highest magnitude of accelerations of the right upper limb, in 
activity counts 1 Hz 

use_ratio33 Ratio of hours of non-dominant/affected upper limb movement, 
relative to hours of dominant/unaffected upper limb movement 1 Hz 

variation_ratio38 Ratio of the standard deviation of the non-dominant/affected upper 
limb relative to the dominant/unaffected upper limb 1 Hz 

simple_magnitude_ratio38 Ratio of the magnitude of accelerations of the non-dominant/affected 
upper limb relative to the dominant/unaffected upper limb 1 Hz 

l_entropy39 
A measure of the time series variability from the accelerations of the 
left upper limb during the hour of maximum activity. Higher values 

indicate a more random signal. 
1 Hz 

r_entropy39 
A measure of the time series variability from the accelerations of the 
right upper limb during the hour of maximum activity. Higher values 

indicate a more random signal. 
1 Hz 

l_jerk_ave40 The average jerk of the left upper limb, in gravitational units/second. 
Higher values indicate less smooth movement. 30 Hz 

r_jerk_ave40 The average jerk of the right upper limb, in gravitational units/second. 
Higher values indicate less smooth movement. 30 Hz 

jerk_aym40 
The ratio of the average jerk magnitude between the non-

dominant/affected upper limb and the dominant/unaffected upper 
limb. 

30 Hz 

l_mean_freq41 The weighted mean of the component frequencies from the 
acceleration time series from the left upper limb. 30 Hz 
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r_mean_freq41 The weighted mean of the component frequencies from the 
acceleration time series from the right upper limb. 30 Hz 

l_sd_freq41 The weighted standard deviation of the component frequencies from 
the acceleration time series from the left upper limb. 30 Hz 

r_sd_freq41 The weighted standard deviation of the component frequencies from 
the acceleration time series from the right upper limb. 30 Hz 

 
In three studies19,20,22, raw data from the lower limb accelerometers were processed in ActiLife software 

(version 6.11.9, ActiGraph Corp, Pensacola, Florida) using its proprietary step count algorithm.29 Ten-second epoch 
.agd files (ActiLife’s native file format) were uploaded to ActiLife software and step counts for each calendar day of 
data collection were extracted. In Lang et al., 20225, the Modus StepWatch Activity Monitor (Modus Health LLC) and 
its proprietary software were used to measure and compute step counts. 26-28 The primary variable computed from 
the lower limb accelerometry data was average steps per day, which was calculated by summing the number of steps 
taken over the recording period and dividing this sum by the number of recording days. Table 3 describes the relevant 
variables associated with the lower limb accelerometry data. Step data were extracted one study at a time and then 
merged together in Step 4 below. 

 
Table 3. Lower Limb Accelerometry Variables 

Variable Description 
SensorLocation Indicator for limb placement of the sensor 

AverageStepsPerDay42 This variable is computed by summing the total number of steps taken over the 
recording period and dividing this sum by the number of recording days 

(RecordingDays) 
RecordingDays16 The number of recording days in which the participant wore the sensor; used in the 

calculation of AverageStepsPerDay 
Sensor The model of sensor used to collect the data 

 
 
Step 3: Develop a Harmonized Vocabulary. There were similarities and differences in how variables common across 
data sources were named and coded. The purpose of this step was to establish a consistent variable naming and coding 
convention across data sources. Where possible, we utilized common data elements found in the National Institutes 
for Health Common Data Element Repository (https://cde.nlm.nih.gov/home). When a common data element was not 
available for a specific variable, it was named according to the convention used in the most recent study protocol. For 
example, the variable designating the participant’s sex differed in name and coding scheme across data sources. We 
utilized the National Institute of Neurological Disorders and Stroke Common Data Element for this variable 
(BirthSexAssignTyp, C58676) to ensure this variable would have the same name and coding scheme across data 
sources in which a value of “1” would indicate “Male” and a value of “2” would indicate “Female” for all data sources. 
 
Step 4: Map Source Variables to the Harmonized Vocabulary. The purpose of this step was to convert variable names 
and codes of the source data to the harmonized convention. The data dictionary for each study was extracted and 
merged into a single Excel file with a separate tab for each study. For each study and variable, the source variable 
name and code were mapped to the harmonized variable name and code. This process was done one study at a time, 
such that the end result was an Excel file with eight tabs that listed the source variable name and code and the 
harmonized variable name and code for each variable in the study. An example of this process is shown in Table 4. 
 
Table 4. Example of the Mapping Process 

Data Source 
Source 

Variable 
Name 

Source Variable 
Description 

Source 
Variable 

Code 

Common Data 
Element ID 

Harmonized Variable 
Name 

Harmonized 
Variable 

Code 
Lang et al., 

202123 Sex The participant’s 
self-reported sex 

1 Female 
2 Male C58676 BirthSexAssignTyp 1 Male 

2 Female 
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Once this process was complete, the Excel file was used as a reference to implement the variable mapping in 
R (R Core Team, 2013, version 4.2.1). This was done individually for each study and data type (demographic/clinical, 
upper limb accelerometry, lower limb accelerometry). For each study, the original data file was loaded into R and the 
source variable names and codes were converted to the harmonized variable names and codes. Once this conversion 
was complete, the data were saved and exported as a new file to preserve the original data file for quality inspection 
in Step 5 below. After completing this process for all data sources and types, the data sources were merged together 
to create a master harmonized data file that had consistent variable names and coding schemes across studies. The 
end result of this process was three separate harmonized csv files, one for each type of data (demographic/clinical, 
upper limb accelerometry, lower limb accelerometry). Each data file is organized in long format as studies varied in 
the number of days and time points in which accelerometry data were collected.  
 
Step 5: Final Inspection and Dissemination. All three data files underwent a final layer of inspection prior to submitting 
the data to a public repository. This inspection process included uploading each data file to R (R Core Team, 2013, 
version 4.2.1) and computing descriptive statistics, such as variable means, standard deviations, minimum and 
maximum values, to ensure all values appeared reasonable. Plots of variables were generated to visually inspect the 
data. Table 5 provides descriptive statistics of the harmonized sample. 
 
Table 5. Demographic and Clinical Characteristics of Harmonized Sample 

Total N 790 
Total Number of Accelerometry Recording Days 2885 

Age (years) 42.7 ± 30.1 (range 0 – 90) 
Sex 53% male, 47% female 

Race 69.4% White, 24.9% Black, 1.8% Asian, 0.1% American 
Indian or Alaska Native, 1.1% Multi Race, 2.7% Unknown 

Conditions 46% Neurotypical, 31% Stroke, 7% Parkinson’s disease, 6% 
Orthopedic, 3% autism spectrum disorder, 7% other 

medical conditions 
   

After all data were inspected, the final step was to deposit the data on a public repository. The Eunice Kennedy 
Shriver National Institute of Child Health and Human Development (NICHD) Data and Specimen Hub (DASH) repository 
was chosen as most studies included in the harmonized dataset were funded by NICHD. Prior to submission to DASH, 
the dataset was stripped of all 18 HIPAA identifiers according to the Safe Harbor method.43 
 
Data Records 

The full harmonized dataset is publicly available on the NICHD DASH repository as two separate studies: 
Harmonized Upper and Lower Limb Accelerometry Data_Part1 (doi: https://dash.nichd.nih.gov/study/426315)44 and 
Harmonized Upper and Lower Limb Accelerometry Data_Part2 (doi: https://dash.nichd.nih.gov/study/426433)45. Data 
were required to be submitted to NICHD DASH as two separate studies due to differences in data use limitations, in 
which use of data from Part1 is limited to research on neurological conditions and/or movement disorders and use of 
data from Part2 has no additional limitations. Harmonized Upper and Lower Limb Accelerometry Data_Part 144 
includes the studies Lang et al., 202123, Lang et al., 20225, Waddell et al., 201720, Bland et al., 202122, Bailey & Lang, 
201319, and Konrad et al., 202425. Harmonized Upper and Lower Limb Accelerometry Data_Part245 includes the 
remaining two studies Hoyt et al., 201921 and Konrad et al., 202224. The Part1 and Part2 studies are linked in DASH, 
making it easy for users interested in the full harmonized dataset to locate and view both studies. Data are organized 
as separate csv files based on the type of data: demographic/clinical data, upper limb accelerometry data, and lower 
limb accelerometry data. The data are accompanied by a codebook, copies of data collection instruments, and study 
protocol to maximize the usability of the data. The upper and lower limb accelerometry data files contain processed, 
summary variables (see Tables 2 and 3). Raw data files from several of the included studies were previously made 
available on the SimTK repository (https://simtk.org/projects/referentaccdata). The remainder of the raw data files 
will be made publicly available on DASH in the near future. Users who are interested in obtaining these raw data files 
may contact Catherine Lang (langc@wustl.edu) during this interim period. 
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Technical Validation 
 All data were inspected upon initial collection according to each study protocol. Two to three research team 
members inspected the data again both before and after harmonization. Summary statistics of all variables were 
computed, including means, standard deviations, minimum and maximum values, and frequency statistics to verify 
that all values appeared reasonable. Data were also visualized using histograms, scatter plots, and bar graphs to 
inspect distributions and check for implausible values. The original values of the clinical and demographic data from 
each data source were compared with the harmonized dataset to verify that the mapping process was successful. For 
each study, we also computed descriptive statistics for the demographic (e.g., age, sex, race, ethnicity) and clinical 
variables (e.g., time since onset of condition) and compared these values to those reported in the primary publication 
associated with each data source. For example, in Bland et al., 202122, the mean and standard deviation of the age of 
the sample reported in Table 1 are 79.5 ± 8.3 years. The mean age and standard deviation for this study in the 
harmonized dataset were computed and found to be the same values. This provided evidence that the harmonization 
process was effective at merging the data while preserving the original values. The reprocessed upper limb 
accelerometry data were inspected by 2-3 research team members and compared to original values, when available. 
These values were also the same or very similar. All research team members viewed the data and provided feedback 
prior to submitting it to the NICHD DASH repository. 

 
Usage Notes 

The harmonized data can be accessed under the NICHD DASH User Agreement, which requires users to agree to 
use the data for scientific research and not for commercial purposes. Use of data from Part144 is also limited to research 
on neurological conditions and/or movement disorders. Users of these data should properly acknowledge the 
contributions of Dr. Catherine Lang, her team, and Washington University in all written, visual, or oral public 
disclosures concerning the recipient’s use of the data by citing this article and the data used (Part144, Part245, or 
both44,45). 

Although data were subject to extensive quality control procedures, errors can still occur. Users of the data that 
encounter errors or wish to provide feedback can do so by contacting Catherine Lang at langc@wustl.edu or (314) 
286-1945. Any changes or updates to the data will be released under a new version in the NICHD DASH repository. 

We have also developed an R Shiny app to allow others to visualize and interact with the dataset: 
https://langlab.shinyapps.io/harmonized_data/. This tool may be helpful for a variety of scenarios, including 
generating new scientific questions, determining which accelerometry variables may be most relevant for the user’s 
scientific question, and for helping interested persons make informed decisions about whether to request access to 
the full dataset on NICHD DASH. The R Shiny app development is ongoing. 

Ultimately, we hope that this harmonized dataset will accelerate rehabilitation research by allowing the field to 
address important scientific questions using a large pre-existing dataset of wearable sensor data, improve the 
reproducibility and replicability of wearable sensor studies in rehabilitation, and minimize costs and duplicated 
scientific efforts along the way. An example of this is the first publication associated with these data that generated 
referent upper limb accelerometry data in typically-developing children.46 Investigators using wearable sensors to 
measure upper limb activity in children with movement impairments could use these referent data to compare their 
outcomes to those reported in this typically-developing cohort, saving costs and resources associated with recruiting 
a control group. 

Code Availability 
 Upper limb accelerometry data were processed using custom-written R code (version 4.2.1, R Core Team, 
2013). Eight code scripts (one for each study) are available at https://github.com/keithlohse/HarmonizedAccelData 
and archived on Zenodo.18 All code scripts calculated the upper limb sensor variables the same way; however, 
variations in the number of recording days and in-lab versus out-of-lab time for each study protocol resulted in some 
differences in processing procedures across studies. Executing these code scripts requires two data files from each 
wrist sensor (four files in total) from ActiLife software (ActiGraph Corp, Pensacola, Florida): a raw 30 Hz file (in 
gravitational units) and a down-sampled 1 Hz data file (in ActiGraph activity counts). The code outputs the sensor 
variables listed in Table 2 for each recording day. 
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