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Abstract 

In three experiments, we sought to understand when and why people use an algorithm decision aid. Distinct from 
recent approaches, we explicitly enumerate the algorithm’s accuracy while also providing summary feedback and 
training that allowed participants to assess their own skills. Our results highlight that such direct performance com-
parisons between the algorithm and the individual encourages a strategy of selective reliance on the decision aid; 
individuals ignored the algorithm when the task was easier and relied on the algorithm when the task was harder. 
Our systematic investigation of summary feedback, training experience, and strategy hint manipulations shows that 
further opportunities to learn about the algorithm encourage not only increased reliance on the algorithm but also 
engagement in experimentation and verification of its recommendations. Together, our findings emphasize the 
decision-maker’s capacity to learn about the algorithm providing insights for how we can improve the use of decision 
aids.
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Introduction
Decision aids are increasingly in demand. Often imple-
mented as computer algorithms, developments in data 
availability and computational capabilities have expanded 
the reach of these tools into much of everyday life. From 
the mundane, such as deciding which TV show to binge 
next, to the momentous, such as recommending sur-
gery to a patient, algorithms synthesize vast amounts 
of information to provide users with on-demand 
recommendations.1

The focus of this paper is to understand what guides 
individuals to rely upon a recommendation rather than 
making their own decision. Decision aids, while pow-
erful, might not be the panacea to every problem. The 
uncertain surgeon who seeks out a medical decision aid 
by day might later ignore the algorithm behind Netflix’s 
show recommendations by night.

In this paper, three experiments show that individu-
als exhibit an acute selectivity in when they rely upon a 
recommendation. Across our experiments, we instanti-
ate an imperfect but helpful algorithm into a perceptual 
decision-making task. We show that the information 
individuals learn about the accuracy of an algorithm is 
crucial to when individuals rely on a recommendation. 
Understanding one’s relative performance compared to 
the algorithm’s accuracy equips the decision-maker with 
the knowledge of who (or what) is better suited to solv-
ing the problem at hand. Taken together, we undertake a 
systematic comparison of feedback, training, and strate-
gic hints to understand how learning about the algorithm 
affects the way people use recommendations.

Comparing algorithm performance
There is a notable distinction between seeking advice 
from another person compared to seeking an algo-
rithm’s recommendation. For a person, the decision-
maker can put themselves in another’s shoes. The 
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1  We use the terms algorithm and decision aid interchangeably to refer to 
computational tools that provide decision-makers with a recommendation.
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advisor may share the same reasoning process and 
step the person through the complexities of a situa-
tion (Prahl & Van Swol, 2017). By contrast, the steps an 
algorithm takes to produce a recommendation may be 
opaque or at the least unfamiliar to the ordinary user 
(Yeomans et  al., 2019). To ameliorate this gap, algo-
rithms are typically accompanied by descriptions that 
help convey why its recommendations can be trusted, 
for instance, by describing the mechanics of its statisti-
cal underpinnings. Such information can help decision-
makers calibrate their expectations about how useful a 
recommendation might be.

A simple way to communicate a recommendation’s 
usefulness is to provide information about the algo-
rithm’s accuracy. Accuracy highlights any performance 
benefits of relying on the recommendation and offers a 
benchmark against which individuals can judge their 
own performance (Parasuraman et  al., 2000). Typically, 
accuracy is conveyed through (a) verbal descriptions that 
summarize performance, such as describing the algo-
rithm as an 87% accurate medical diagnostician (e.g. in 
Longoni et  al., 2019), or (b) feedback accumulated over 
multiple recommendations, such as providing informa-
tion about what the algorithm recommended compared 
to the correct response (e.g. Dietvorst et  al., 2015). In 
either format, accuracy information establishes a simple 
explanation for why a recommendation is or is not used; 
namely, that the preferred system (algorithm or personal 
judgement) is superior in performance.

Perhaps most interesting are instances where superior 
recommenders are shunned even in the presence of accu-
racy information promoting their virtues (e.g. Dietvorst 
et al, 2015; Mohoney & Houpt, 2019; Barlett & McCarley, 
2017, 2019). A good example comes from a set of experi-
ments involving feedback and a helpful decision rule 
(Arkes et al., 1986). Participants examined student report 
cards and based upon three grades were asked to indicate 
the honours-roll status of each student (i.e. responding 
honours/not honours after each report card). Addition-
ally, they were provided with a simple decision rule to aid 
them. The rule was 70% accurate: indicate honours for 
report cards with two or more A’s, and no honours for 
one or fewer.

Various instruction manipulations made clear the dif-
ficulty of surpassing this performance benchmark. For 
example, the debias condition was explicitly instructed 
that “most people can’t judge at a rate better than 70% 
correct … [those] who try actually perform a lot worse” 
(Arkes et  al., 1986, p. 97). However, despite the heavy-
handed instructions and ongoing feedback throughout 
the task, most individuals deviated from exclusively using 
the decision rule and scored lower than had they strictly 
complied. Surprisingly, this rule deviation was more 

prominent when feedback was present than when it was 
absent.

These rather curious results suggest that many indi-
viduals believed they could outperform the rule. Such 
behaviour may have been driven by scepticism about the 
validity of the rule, participants’ belief that their prior 
knowledge of college grades was superior to a simple 
rule, insufficient training in the task, or perhaps simply 
the desire to take on the challenge implied by the experi-
menter (e.g. “I am superior to most people so I will be 
able to do better”). Whatever the precise motivation, 
these kinds of results highlight the importance of being 
able to accurately assess one’s own level of (unaided) per-
formance on a task when deciding whether to seek and 
follow an external recommendation (Arkes et  al., 1986; 
Sieck & Arkes, 2005).

A matter of skill
Algorithmic decision aids hold a great deal of promise 
for highly skilled professions (e.g. sentencing decisions by 
judges; Kleinberg et al., 2018). Particularly in time-poor 
environments, algorithms can be helpful in outsourcing 
the peripheral features of a task and allowing the expert 
to focus on the more demanding details. Radiography is 
one such profession where visual search algorithms assist 
expert judgement in the detection of screening anoma-
lies. Radiologists can outsource ambiguous cases to 
visual search algorithms that in turn recommend which 
anomalies require additional expert scrutiny.

Expertise is precisely what equips individuals to judge 
the utility of any decision aid tool. Expertise can also, 
however, be an impediment to using decision aids. Rela-
tive to lay populations, more knowledgeable experts 
typically reject recommendations from both algorith-
mic and human advisors (Logg et al., 2019; Yaniv, 2004; 
Arkes et  al., 1986). Within the medical field, high lev-
els of expertise typically beget overconfidence, where 
overestimating one’s own capabilities can lead to grave 
judgement errors (Berner & Graber, 2008; Croskerry & 
Norman, 2008; Sieck & Arkes, 2005).

Examining how people evaluate their skills relative to 
the algorithm can help determine when one should con-
sult a decision aid. Our experiments incorporate manipu-
lations that vary the complexity of training and veridical 
feedback to give people multiple opportunities to reas-
sess their performance. Having multiple opportunities 
to re-evaluate their performance may lead individuals 
to adapt their reliance on a decision aid over time. For 
example, an individual may decrease their reliance if 
their skills gradually improve beyond the accuracy of the 
algorithm. However, if the algorithm consistently out-
performs the individual, that individual may learn to be 
increasingly reliant on the algorithm’s suggestion.
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Single-shot choice experiments have found that indi-
viduals adjust their preference for a decision aid based 
on information about its accuracy. For instance, while 
participants initially preferred a human physician to an 
equivalent-performing algorithm in a medical scenario, 
Bigman and Gray (2018) found a preference switch when 
participants were subsequently told the algorithm would 
outperform the physician. Individuals are also capable of 
disregarding unhelpful decision aids such as when they 
are told the recommendations are generated by a coin-
flip (i.e. chance-level performance in a binary choice 
task; Douneva et  al., 2019). Our experiments sought to 
combine and extend these findings in a within-subject 
investigation of how performance information alongside 
assessments of one’s own skill shapes when people con-
sult an algorithm.

Overview of experiments
Across three experiments, we investigated how people 
relied on a decision aid that was situationally helpful. Fig-
ure 1 displays and describes the way in which we imple-
mented the decision aid (see figure caption for details). 
In the main task, individuals made binary choice judge-
ments that could be aided by an algorithm. If participants 
were uncertain, they could consult an algorithm that was 
set to a known accuracy level of 70%. This meant that on 
most, but crucially not all, occasions the algorithm would 
provide a correct recommendation (e.g. an arrow pointed 

in the recommended direction for the dot motion task, 
see Fig. 1). Importantly, participants were explicitly told 
of the algorithm’s accuracy level and the potential for 
an incorrect recommendation (i.e. 30% of the time the 
arrow points in the opposite direction to the motion of 
the dots).

We specifically chose the algorithm’s accuracy level to 
bisect the expected performance across two levels of task 
difficulty (explained further in Experiment 1a and 1b). 
For the easier stimuli, most individuals learnt the task 
to near perfection, and the vast majority surpassed the 
accuracy of the algorithm (i.e. median participant accu-
racy ~ 95% correct). By contrast, the harder versions of 
the stimuli continually proved to be difficult, even with 
increasing levels of training and feedback introduced in 
later experiments. The algorithm systematically outper-
formed all but a single individual for the harder version 
of the task (median participants’ accuracy ~ 52% correct).

Our primary aim was to examine how people subse-
quently adjusted their use of the 70%-accurate algorithm 
to these difficulty levels. A noteworthy implication of 
fixing the algorithm’s accuracy across stimulus difficulty 
is that the task includes situations where what is dif-
ficult for an algorithm may not be difficult for a human 
observer (i.e. easier trials where the algorithm is 70% cor-
rect). While we acknowledge this is not always the case, 
such situations can arise if the algorithm uses a different 
process compared to a human observer. For example, in 
a task distinguishing huskie dogs from wolves, a human 
may recognize the facial subtleties of each animal while 
an image classifier might learn to recognize snow in the 
background of images of wolves (Ribeiro et  al., 2016). 
Indeed, online CAPTCHA tests exist because classifier 
algorithms have difficulty recognizing simple objects that 
humans can easily identify. Our intent in including such 
situations is that we can directly examine whether indi-
viduals understand such limitations of the algorithm.

An additional benefit to this experimental setup is that 
it discouraged the exclusive reliance on either source of 
responses. Should an individual display an inherent aver-
sion to the algorithm, their performance for the harder 
images would be at chance levels. Similarly, an individ-
ual that outsourced the entirety of the task to the deci-
sion aid would make a substantial number of simple and 
avoidable errors on the easier images. The best overall 
approach was to selectively seek the algorithm’s recom-
mendation for the harder stimuli but disregard its recom-
mendation for the easier stimuli.

Examining a strategy of selectively using the algorithm 
distinguishes our experimental settings from many past 
studies where the best response is always to use the 
algorithm instead of one’s own judgement (Arkes et  al., 
1986; Dietvorst et  al., 2015; Logg et  al., 2019). While it 

Fig. 1  Examples of dot motion stimuli with the algorithm. In the 
task, a proportion of dots move along the 90°–270° axis coherently 
and participants judge the direction of dot movement along this axis 
as either left-motion or right-motion (shown in the orange arrows). 
Distractor dots move in straight lines but at different axes (shown in 
grey arrows). Note that the orange and grey arrows appear here only 
for illustrative purposes; they were never present for any participants 
in any experiment. Panel A shows the algorithm’s recommendation 
(left green arrow) above the stimulus. In Experiment 1a and 1b 
the recommendation appeared above the stimulus automatically. 
In Experiments 2 and 3 the algorithm appeared on screen as 
a green box (Panel C) unless the participant made a request 
for a recommendation. If requested, the algorithm loaded the 
recommendation during a one-second delay displaying a “loading 
circle” that revolved around the box (Panel B). All motion in the 
stimulus stopped during this loading time and then resumed once 
the recommendation was revealed (as in Panel A)
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is possible, via sufficient experience and feedback, that 
participants can learn that the best response strategy 
is always to rely on the algorithm (e.g. Sieck & Arkes, 
2005), there is no guarantee that such a policy will be 
implemented. Repeated experience may instead inspire a 
variety of hypotheses regarding what behaviour is appro-
priate, such as wondering “does the experimenter always 
expect the same response or should I intervene across 
different stimuli?” (Brehmer, 1980), and, in turn, lead to 
maladaptive experimentation and suboptimal responding 
(Szollosi et al., 2019).

Our intent was to remove this experimental layering 
by including situations in which the best response was 
to avoid the decision aid (e.g. on an easier trial, partici-
pants may judge their own performance to be superior to 
a 70%-correct algorithm). These avoid trials provide the 
additional space for participants to exhibit their under-
standing of the task. By adjusting one’s reliance on an 
algorithm, our data allow for richer characterizations of 
people’s decision-aid behaviours beyond a dichotomy of 
algorithm users and avoiders.

Experiment 1a and 1b: automatic 
recommendations
We begin with situations where recommendations are 
provided automatically and without cost to the deci-
sion-maker. Such automatic recommendations resemble 
alert systems that monitor data and only interrupt the 
decision-maker when a criterion is met (e.g. emergency 
ward alerts when patient vitals fall below critical thresh-
olds). In Experiment 1a participants learnt to categorize 
mammogram images as cancerous or non-cancerous and 
in Experiment 1b, a separate group of participants per-
formed the dot motion judgement task outlined in Fig. 1. 
In both experiments, participants were provided with 
recommendations from an algorithm described as being 
70% accurate. Our key question was whether adherence 
to this recommendation differed as a function of the dif-
ficulty of the to-be-classified stimulus. We hypothesized 
that individuals would avoid relying on the decision 
aid for easier images and reserve its use for the harder 
images.

Method
Participants
Experiment 1a and Experiment 1b were identical in 
design with only stimuli differences (see below). Experi-
ment 1a was conducted with 55 psychology undergrad-
uates (Mage = 19.1, SD = 1.16, female = 34) at UNSW, 
Sydney. Experiment 1b involved 32 participants drawn 
from the same pool (Mage = 19.1, SD = 1.16, female = 16). 
Participants received course credit for participation and 
were awarded a proportional payment out of $5.00 AUD 

based upon their performance in the task (M1a = $3.44, 
SD1a = 0.21, M1b = $3.73, SD1b = 0.22). Sample size was 
determined on the basis of past similar experiments of 
training in categorization (Giguère, & Love, 2013; n = 50) 
and dot motion with similarly large numbers of within-
subject trials (e.g. Pilly & Seitz, 2009; n = 12).

Materials
Stimuli  Experiment 1a and 1b used different stimuli. 
Experiment 1a involved categorizing mammogram images 
as either cancerous or normal. We obtained anonymized 
images from the Digital Database for Screening Mam-
mography (DDSM) that is freely available online (Heath 
et al., 2001).

To understand our results better using stimuli over 
which we had more experimental control, Experiment 1b 
used random dot arrays. These arrays were adapted from 
the native random dot motion plugin for JSPsych (de 
Leeuw, 2015; example in Fig. 1). In the array, 300 Gy dots 
move across the screen in various straight lines with a 
proportion of the dots coherently moving along the 90°–
270° axis. The task requires participants to determine 
the direction of movement along this axis as either left-
motion or right-motion (shown in the orange arrows in 
Fig. 1). Distractor dots moved in straight lines but along 
different axes (shown in grey arrows). The difficulty of the 
task was manipulated through the proportion of coher-
ently moving dots. For example, a higher coherence level 
indicates a larger proportion of dots moving along the 
90°–270° axis.

Prior to each experiment, we conducted pilot test-
ing to determine the difficulty of the stimuli. In general, 
difficulty was determined based on the performance 
of pilot participants in two additional separate experi-
ments (N = 107 for mammogram pilot, N = 34 for dot 
motion pilot). In these pilot experiments, participants 
were presented with the perceptual task and asked to 
categorize the stimuli to their best ability. Average lev-
els of performance were determined for each individual 
image in the case of mammograms (hence the larger 
sample size) and each coherence level for the dot motion 
stimuli. In brief, stimuli for which performance was rela-
tively high (i.e. ~ 80% correct for mammograms, ~ 90% 
correct for dot motion) were labelled “easier”, whereas 
stimuli for which performance was near chance levels 
(i.e. ~ 55% correct for both stimuli types) were labelled 
“harder”. For Experiment 1a, we retained 267 mammo-
gram images from an initial sample of 471 images using 
the above performance criterion. For Experiment 1b and 
all subsequent experiments, we selected coherence levels 
of 0.25, 0.2, 0.02, and 0.01 where the former two levels 
were labelled “easier” and the latter two “harder”. The full 
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details of these pilot experiments are presented in Addi-
tional file 1.

Decision aid algorithm  The algorithm was instanti-
ated as a probabilistic cue that was positioned above the 
stimulus. In Experiment 1a, the algorithm’s recommen-
dation was a red circle that signalled cancer-category 
membership. In Experiment 1b, the recommendation 
was a left-pointing arrow that signalled leftwards motion. 
This means the algorithm signals only a single outcome 
(cancer/left). This design feature was originally inspired 
by mammogram images where a decision-maker may pri-
oritize identification of cancer positive outcomes rather 
than non-cancerous outcomes. While this asymmetry in 
the outcomes does not translate to random dot stimuli, 
we retained the single-outcome cue in order to facilitate 
comparisons between the experiments.

For trials when the recommendation appeared, its 
onset was simultaneous with the onset of the stimulus. 
Participants were told that when the recommendation 
appeared, the algorithm would signal the correct cat-
egory on 70% of occasions. This performance constraint 
means that stimulus categories were unbalanced such 
that 70% of the cued images were cancer/left stimuli and 
30% were normal/right stimuli. We refer to the algo-
rithm’s recommendation as the cue.

The test stage was separated into cued blocks, when 
the algorithm appeared, and control blocks. In the cued 
blocks, the cue appeared on half of the images and for an 
equal number of easier/harder images. Presenting the cue 
for half the stimuli meant that the absence of the cue did 
not always indicate the image was a normal/right stimuli 
although it was more probable due to the unbalanced 
proportions of stimuli. We return to the interpretation of 
non-cued images in the “Discussion” section. Each par-
ticipant received a random subset of images for which 
the cue would appear. In the control blocks, participants 
were reminded the cue would never appear before the 
block began. We included the control block to isolate the 
influence of the cue on responses (see Fig. 1).

Decision aid algorithm description  In the instructions 
and as a reminder at the start of each cued block par-
ticipants were told, “The algorithm is there to help you—
whenever you see the cue, there is a 70% chance that the 
image (dots in the panel) was a cancer image (moving to 
the left). Conversely, there is a 30% chance that the cue is 
indicating the incorrect response and the image (dots in 
the panel) is a normal image (moving to the right).” (Italics 
show instructions for Exp. 1a, instructions for Exp. 1b in 
parentheses). Participants were reminded that it was up to 
them to decide if they wished to use the cue or rely upon 
their own judgement.

Design
The experiments used a within-subject design where 
block type (cued and control block) alternated through-
out the experiment. The first block was randomized 
between-subjects and collapsed in the analyses.

Training and test blocks  Both experiments were divided 
into an initial training stage followed by a longer test stage 
without feedback. In Experiment 1a, the number of trials 
in each stage was constrained by the number of unique 
mammograms from the norming procedure. Experi-
ment 1b did not have these constraints as the random dot 
motion stimuli were computer generated. Consequently, 
the training stage of Experiment 1a consisted of 44 easier 
mammogram images (i.e. 22 easier cancer and 22 easier 
normal images). The training stage in Experiment 1b con-
sisted of 80 easier images (40 left-motion and 40 right-
motion). As a brief aside, our decision to train participants 
on easier images and then test them on a combination of 
harder and easier images follows from work on the impact 
of idealized training in category learning (Giguere & Love, 
2013; Hornsby & Love, 2014).2

Each test block of images contained 80 images made up 
of the 2 × 2 category by difficulty matrix. Specifically, in 
Experiment 1a each block consisted of 20 easier cancer, 
20 easier normal, 20 harder cancer, and 20 harder nor-
mal mammograms. There were four test blocks in total 
(for progression, see Fig. 2). Experiment 1b also consisted 
of the same 80-image matrix with left-motion or right-
motion categories and a total of six test blocks.

Control block Cued block Control block Cued block

Fig. 2  Test block progression in Experiment 1a and Experiment 1b. 
Difficulty of the test stimuli was randomized within each block of 
trials. White proportion denotes the proportion of trials when the 
arrow/cancer cue appeared. In the control block, the cue never 
appeared. In the cued block, the cue appeared on a random half of 
the block. Though the figure may appear to show cue-absent trials 
appeared in the first half of the block, the actual order of cued and 
cue-absent trials was randomized within the block

2  A comparison of idealized training with other forms of training was an early 
focus of our work but has less direct relevance to our current hypotheses. See 
Additional file 1 for additional details.
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Procedure
Participants were introduced to the categorization task 
and given examples of each stimulus category prior to 
starting their training. They were told that their task 
was to categorize their respective stimuli as either can‑
cer (left-motion) or normal (right-motion). Participants 
entered their responses on a keyboard with the cancer 
(left-motion) response mapped to the “c” key and nor‑
mal (right-motion) responses mapped to the “n” key. The 
instructions explained that in the training stage, they 
would receive feedback following each image informing 
them of the correct category. Feedback appeared below 
the stimulus as either green text for correct responses 
or red text for incorrect responses. Individuals entered 
responses to proceed to the next trial. A fixation cross 
was displayed for 1.5 s that separated the start of the fol-
lowing trial. In training, responses slower than 5 s were 
given feedback to speed up.

Following training,3 a new set of instructions then 
described the test stage and the algorithm (cue). In both 
experiments, participants were told the cue would appear 
above the stimulus and could help them by signalling 
the probable correct response. The algorithm descrip-
tion statement (see “Materials” section) was presented. 
Instructions then explained that the test stage would be 
separated into the two block types: cued blocks, where 
the cue would appear on a random half of the trials, and 
control blocks, where participants would complete the 
task on their own (see Fig. 2). A short quiz was adminis-
tered prior to starting the test stage to ensure participant 
understanding of the instructions. Block type alternated 
throughout the task. Between each block a reminder 
screen stated either the cue’s chance of being correct (e.g. 
70% chance of cancer) or a reminder that the upcoming 
control block would never display the cue. Once com-
plete, participants were paid based upon their overall 
proportion of correct responses.

Results
For this and following experiments, we report Bonferroni 
corrected p-values for analyses involving multiple com-
parisons and remove responses with extreme response 
times (slower than 10  s, 0.04% of trials; or faster than 
0.18 s, 0.2% of trials). Recall that the test stage alternated 
between the control blocks and the cued blocks where 
the algorithm recommended one response (cancer in 
Exp. 1a, left-motion in Exp. 1b). In Fig. 3, we separately 
present these trial types in each experiment.

Beginning with the easier trials (top row of Fig.  3), 
the proportion of correct responses was high across 
both experiments (M1a = 0.89, SD1a = 0.08, M1b = 0.92, 
SD1b = 0.08). Nearly all individuals, except for a single 
participant in each experiment, surpassed the accuracy of 
the cue. To gauge the influence of the cue, we calculated 
difference scores in proportion correct between the cued 
trials and the control trials. In both experiments, the cue 
produced a minor numerical improvement (mammo-
gram images, Mdiff = 0.02; dot motion Mdiff = 0.03). This 
high level of performance suggests that on the 30% of tri-
als when the cue was misleading, individuals were able to 
overrule its recommendations.

The lower panels of Fig. 3 present performance in the 
harder trials. Overall performance was worse for the 
harder stimuli than the easier stimuli as indicated by a 
main effect of difficulty (F (1, 80) = 1182.20, p < 0.001, 
ηp

2 = 0.93). Difference scores between cued and con-
trol blocks showed larger improvements for the mam-
mogram images in Exp. 1a (Mdiff = 0.13, SDdiff = 0.07) 
as compared to the dot motion stimuli in Exp. 1b 
(Mdiff = 0.04, SDdiff = 0.07). This difference was sup-
ported by a two-way ANOVA with a significant 
difficulty (hard vs easy) by experiment (1a vs 1b) inter-
action (F(1, 80) = 21.68, p < 0.001; ηp

2 = 0.21). Despite 
this improvement, most participants performed worse 
relative to the accuracy of the algorithm in the cued tri-
als (algorithm’s accuracy = 0.70; M1a = 0.59, SD = 0.08, 
t(49) = − 9.13, p < 0.001; M1b = 0.60, SD = 0.07, 
t(31) = − 8.59, p < 0.001). This suggests that on occa-
sion, participants also disagreed with the cue when 
it appeared. Together, our results show that partici-
pants selectively relied on the cue for the harder trials 
but could have improved their performance had  they 
agreed with the algorithm’s recommendation more 
often.

Discussion experiment 1a and 1b
Across both experiments, we found that individuals 
relied upon the algorithm’s recommendation for the 
harder stimuli and ignored the cue for easier stimuli 
when it was potentially misleading. For the harder 
images, participants improved their performance when 
the cue appeared by agreeing with the cancer (left-
motion) recommendation. Curiously, participants also 
overruled the cue for the harder images on a minority 
of cued trials, presumably, to correct for the knowledge 
that there would be misleading recommendations. As 
an aside, we examined whether the overruling patterns 
resembled probability matching (e.g. responding “can-
cer” for 70% of the cued-images and “not-cancer” for 
the remaining 30%—see Additional file  1 for details). 
Although seemingly plausible in the aggregate, 

3  As a manipulation check, after the training stage a slider-response question 
asked participants to imagine they were to see a further 100 images and esti-
mate how many images they would categorize correctly. We report these esti-
mates in Additional file 1.
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probability matching did not appear in the individual-
level data.

While these initial results were encouraging, certain 
features of the cue in Experiment 1a and 1b limited our 
understanding of how participants recruited the rec-
ommendation. The first feature was that the cue always 
prompted a single response (cancer, left-motion). One 
problem this creates is determining whether partici-
pants inferred anything from the absence of the cue. It 
is possible participants interpreted this absence to sig-
nal the opposite of the cued response (normal or right-
motion). Introducing a recommendation that can signal 
both responses would ameliorate this concern. Second, 

the fact that the cue appeared unpredictably obscured 
whether participants actually needed the recommenda-
tion for a particular stimulus. In the next experiment, we 
addressed both features by handing individuals control 
over when they sought out a recommendation.

An open question is whether people would over-
rule a recommendation that was sought out rather than 
automatically provided. Akin to the idea of sunk costs, 
overruling the algorithm may be unappealing given the 
effort to acquire the recommendation in the first place, 
and especially if the participants were already uncer-
tain (Arkes & Blumer, 1985). To answer this question, 
we designed Experiment 2 with a recommendation 
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requesting feature to examine when participants would 
seek out the algorithm’s response. We expected more 
requests for the algorithm’s recommendation during the 
harder trials than the easier trials. Indeed, participants 
in Experiment 1a and 1b showed an acute proficiency 
at the easier version of the task giving us little reason to 
believe they needed the recommendations at all. To nar-
row our focus onto decision aids themselves, rather than 
any stimuli-related effects (i.e. a response bias for mam-
mogram judgements in favour of false alarms to missed 
diagnoses), our subsequent experiments used dot motion 
stimuli to understand how participants use a recommen-
dation when they voluntarily seek it out.

Experiment 2: requesting the recommendation
Experiment 2 incorporated two changes to the algorithm. 
The first was that the algorithm provided recommen-
dations about both outcomes (left- and right-motion). 
The second change implemented the recommendation 
request feature. In Experiment 2, participants had the 
option to request the recommendation on any given 
trial. One benefit to this request response is that it dis-
tinguishes instances when participants did not need the 
algorithm from instances when they requested but over-
ruled its recommendation.

Alongside these changes, we manipulated block-feed-
back and training experience. Block-feedback provided a 
summary of participant performance separately for each 
difficulty level. We anticipated that performance feed-
back would prompt performance comparisons with the 
algorithm and highlight the improvement that comes 
with selectively requesting the algorithm for the harder 
images.

Our second manipulation involved training experience. 
In the previous experiments, participants did not have 
any training experience with the harder stimuli. In the 
absence of any error correction during testing, partici-
pants may have believed themselves to have discovered 
a sufficiently workable rule for the harder stimuli and 
may not have perceived a need to improve their strategy. 
Introducing training experience with the harder stimuli 
alongside feedback opportunities should ameliorate any 
such illusions about their performance.

Method
Participants
Experiment 2 involved 168 psychology undergradu-
ates (Mage = 19.8, SD = 2.82, female = 109) at UNSW, 
Sydney. Six participants were excluded (one for failing 
the instruction check 14 times, five for completing less 
than half the experiment). The data for a further six par-
ticipants who did not finish, but completed most of the 

experiment, were retained for a total of 162 participants. 
Participants received course credit for participation and 
were awarded a small payment up to a maximum of $5.00 
AUD that was proportional to their performance in the 
task (M = $3.88, SD = $0.22).

Materials
Stimuli  Experiment 2 used the same random dot motion 
stimuli from Experiment 1b. We retained the same coher-
ence levels with 0.01 and 0.02 constituting the harder 
stimuli and 0.20 & 0.25 constituting the easier stimuli.

Algorithm  In the training instructions, we introduced 
the computer algorithm as a 100px-by-100px green box 
positioned above the stimulus (see example in Fig.  1C). 
The green box remained on screen until the algorithm 
was requested or a left/right response was entered. Par-
ticipants could request the algorithm by pressing the “g” 
key during any trial. The cost of requesting the algorithm 
was a one-second loading delay. Once requested, a white 
revolving loading bar rotated within the box (see Fig. 1B). 
After one second, the green box and loading bar disap-
peared to reveal a green-coloured arrow pointing either 
leftward or rightward. The recommendation was inde-
pendently generated on each trial by randomly drawing 
a number between one and ten with a 70% probability of 
displaying the actual correct direction.

Algorithm description  Prior to the start of the test stage, 
we described the algorithm mechanics in more detail. 
Instructions stated, “The algorithm is there to help you—
whenever you see an image, the algorithm will calculate a 
direction for that very same image”. Just as in the previous 
experiment we explicitly noted, “There is a 70% chance 
that [the algorithm] calculates the correct direction. Con-
versely, there is a 30% chance that it calculates the wrong 
direction”. Regarding stimulus difficulty, we explained that 
despite the perceptual difficulty the participant may expe-
rience, the algorithm was still able to calculate a direction. 
We specifically stated, “For both easier and harder images, 
the algorithm has a 70% chance of calculating the correct 
direction”.

Block of  trials  Each block consisted of 80 random dot 
motion arrays distributed across the difficulty by direc-
tion matrix (easier/harder by left-/right-motion). The test 
stage comprised of six blocks in total and participants 
were informed of this length.

Design
The experiment used a 2 (training) × 2 (feedback) 
between-subjects design (nmin = 40). The two levels of the 
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training factor were easy-only (as in Experiment 1a and 
1b) and easy-hard training. The easy-only training con-
dition underwent a block of easier training stimuli (80 
images) followed by summary feedback. The easy-hard 
training condition underwent a block of easier training 
with summary feedback, followed by an additional block 
of harder images with summary feedback (160 images 
total). In the results, we examine whether this additional 
training block led to improvements in motion detection 
performance.

The training factor was crossed with the feedback fac-
tor. The two levels of feedback were block-feedback and 
no-block-feedback. At the end of a block of images, the 
block-feedback conditions received a summary screen 
that stated the (a) proportion correct for easier images, 
(b) proportion correct for harder images, and (c) overall 
number of requests for the algorithm in that block. After 
clicking next, a second screen presented a table with their 
past performance for easier and harder images in each 
previous block, including from training.

The no-block-feedback conditions skipped these sum-
mary pages and proceeded to a standard “take a break” 
screen between each block of trials.

Procedure
Participants were told their task was to categorize the 
motion of each stimulus as left- or right-motion. Instruc-
tions prior to the training stage explained that an algo-
rithm would be present in training though participants 
could not interact with it at this point. In training, 
responses slower than 5 s were given feedback to speed 
up.

Participants proceeded through their respective train-
ing procedures, receiving trial-by-trial feedback following 
each stimulus. Following a block of training trials, par-
ticipants also viewed summary feedback for that block. 
After completing the training stage, further instructions 
explained the functionality of the algorithm and the sub-
sequent test stage. Participants were briefed about the 
incentive structure and told there would be six test blocks 
where the algorithm was available upon request by press-
ing the “g” key. In the test stage, there was no time limit 
for an individual trial. Once the test stage was completed, 
participants were paid proportional to their overall per-
formance up to a maximum of $5.00 AUD.4

Results
We structure the results in the following manner: we first 
examine participant performance in training and test fol-
lowed by examining participant algorithm requests.

Performance
Performance in the training blocks is shown in Panel A 
of Fig.  4. Performance for the easier stimuli was near-
ceiling in both training conditions (Measy-hard = 0.94 vs. 
Measy-only = 0.93, SE = 0.01). By comparison, performance 
for the harder training block was substantially lower and 
near-chance (Measy-hard = 0.53, SE = 0.01). Notably, only a 
single participant performed as well as the algorithm for 
these harder trials. For all other participants, we were 
interested if their relatively low performance in training 
would lead them to rely on the algorithm during the test 
stage.

Panel B of Fig. 4 plots performance in the subsequent 
test stage. Similar to the results in training, stimulus diffi-
culty had a large effect on performance (F (1, 158) = 4219. 
08, p < 0.001, ηp

2 = 0.96). Across all conditions, partici-
pants performed better for the easier stimuli (top right, 
Panel B; M = 0.95, SE = 0.01) as compared to the harder 
stimuli (bottom right, Panel B; M = 0.61, SE = 0.01). 
Interestingly, despite the easy-hard training conditions 
undergoing an additional training block, levels of perfor-
mance were similar to the easy-only training conditions 
that only underwent the easier training block. This sug-
gests that the additional training trials did not improve 
the detection of motion. Rather, overall improvement in 
test performance relative to training seems to originate 
from the degree of algorithm requests.

Algorithm requests
Panel A of Fig.  5 shows the proportion of requests for 
the algorithm’s recommendation. Across conditions, par-
ticipants overwhelmingly requested the algorithm when 
faced with harder stimuli (F(1, 158) = 242.56, p < 0.001, 
ηp

2 = 0.61). Most participants made few requests, if any 
at all, for the easier stimuli (median = 7 requests/240 
easier trials). This main effect of difficulty was quali-
fied by a training-by-ease interaction (F(1, 158) = 8.61, 
p = 0.004, ηp

2 = 0.05). The interaction speaks to the easy-
hard training group requesting the algorithm more than 
the easy-only training conditions for the harder stimuli 
(Measy-hard = 0.40, se = 0.03 vs. Measy-only = 0.30, se = 0.03) 
but not the easier stimuli (Measy-hard = 0.08, se = 0.01 vs. 
Measy-only = 0.08, se = 0.02). In other words, training expe-
rience increased the subsequent reliance on the algo-
rithm for the appropriate, harder, stimuli.

With regard to feedback, we failed to find any main 
effects (F (1, 158) = 0.25, p = 0.62) but, curiously, found 
a feedback by training interaction (F(1, 158) = 5.89, 

4  As a manipulation check, at the end of the test stage participants were asked 
to imagine receiving one more image and to state the probability of the algo-
rithm providing the correct response.
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p = 0.016; ηp
2 = 0.04). Specifically, we see that for the 

easy-hard training conditions, requests for the algorithm 
were numerically higher with block-feedback (first-
from-the-left, or red, bar in Fig.  5) than without block-
feedback (second, or green, bar in Fig. 5A; averaged over 
difficulty = 27% vs. 21%, t(320) = 1.43, p = 0.15). How-
ever, for the easy-only training groups, the reverse is 
true; requests were significantly higher without block-
feedback (third, or orange, in Fig.  5A) compared to the 
block-feedback condition (fourth, or yellow, in Fig. 5; 15% 
vs. 24%, t(320) = 2.16, p = 0.03). This result is intriguing 

because the easy-only training groups did not have any 
exposure to the harder stimuli before test. While we 
return to this result in the “Discussion” section, a tenta-
tive interpretation may be that summary block-feedback 
may have encouraged easy-only participants to track 
their own skill improvement at the harder stimuli rather 
than emphasize the superiority of the algorithm.

To better understand the relationship between requests 
and performance, we separated algorithm-assisted test 
trials from participant’s own decisions in Panel B of Fig. 5. 
Across all conditions, the algorithm’s recommendation 
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aided performance for the harder trials (lower panel; 
Mown = 0.59 vs. Massist = 0.67) but decreased performance 
for the easier trials (Mown = 0.95 to Massist = 0.83). This 
trial type by difficulty interaction (F(1, 130) = 103.78, 
p < 0.001, ηp

2 = 0.44) verified that, indeed, the imperfect 
algorithm was helpful when participants recruited its 
recommendation for the harder trials. Despite a slight 
impairment in performance when requested for the eas-
ier trials, the overall low number of requests when the 
trial was easier shows that participants understood they 
did not need it.

Discussion Experiment 2
In Experiment 2, we examined how block-feedback 
and training affected how people relied on an algo-
rithm’s recommendation. Overall, requests for the 
algorithm were mostly reserved for the harder stim-
uli, suggesting that participants distinguished when 

the recommendation was useful from when it could 
be misleading. The improvement in performance on 
algorithm-assisted trials also suggests that participants 
accepted the recommendation when they asked for it 
and agreed with its suggestion. We will return to dis-
cuss algorithm agreement in the “General discussion” 
section.

Optimistically, these results suggest that further 
improvements in performance were possible with 
requesting the algorithm on more, if not all, harder 
instances. That is, if participants exclusively relied upon 
the recommendation for the harder stimuli, they could 
match the superior performance level of the algorithm. 
However, even in the condition where we gave the most 
guidance, by providing block-feedback and training expe-
rience, participants fell short of fully capitalizing on this 
strategy. Why might this be the case?
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One motivational explanation is that some partici-
pants may have wanted additional practice at the diffi-
cult stimuli. Participants likely noticed that some stimuli 
were considerably more difficult in the task, particu-
larly for the conditions that received easy-hard train-
ing. Despite the additional effort involved, however, 
participants may still have believed they could improve 
their abilities with additional practice. If there were such 
motivated individuals in the experiment, then the algo-
rithm may have been treated as a fallback response and 
only used in cases when participants were completely 
uncertain. Instead, these individuals may have persisted 
with the perceptual discrimination elements of the task 
for far longer under the belief that deferring to the rec-
ommendation would rob them of the chance to improve 
their skills.

This motivational account may also speak to the lack 
of strong feedback effects. Recall that our motivation for 
block-feedback was to encourage participants to compare 
their performance to that of the algorithm. However, an 
alternative way to use the summary feedback was to track 
one’s own improvement over time. Following each block, 
participants may have been more interested in comparing 
their performance levels to previous blocks rather than to 
the algorithm. Particularly for the easy-only training con-
ditions that had yet to encounter a harder stimulus, sum-
mary feedback between blocks was their only metric to 
gauge their performance and error-correct their response 
strategy. Considered together, a speculative interpreta-
tion of the lack of feedback effects may be that it reflected 
different methods to gauge one’s performance; through 
block-feedback when it was available (forgoing the use 
of the algorithm), and through requesting the algorithm 
when feedback was absent.

In the next experiment, we sought to explicitly encour-
age performance comparisons with the algorithm and 
strengthen the feedback manipulation.

Experiment 3: strategy availability
In Experiment 3, our goal was to guide participants 
towards extensively and exclusively relying on the algo-
rithm for the harder stimuli. We drew inspiration from 
the probability maximization literature and implemented 
two main changes to encourage algorithm requests as the 
primary response for harder stimuli.

Our primary manipulation was providing a strategy 
hint in the instructions. The hint explicitly identified that 
exclusively relying on the algorithm was the best strat-
egy for the harder stimuli because it would guarantee 
performance of 70%, akin to probability maximization 
(Koehler & James, 2010; Newell et al., 2013). If the reason 
we observed underutilization of the algorithm was that 
participants did not know about or did not feel licensed 

to defer their responses entirely to the algorithm, this 
explicit hint should assuage any such concerns.

Second, we strengthened the block-feedback to addi-
tionally include the algorithm’s performance in each 
block (Shanks et al., 2002). This addition highlighted the 
fact that the algorithm underperforms on the easier stim-
uli but outperforms participants for the harder stimuli. 
We included this additional line to guide comparisons 
between the participant’s performance and what would 
happen if they exclusively relied on the algorithm, rather 
than past performance in previous blocks.

Method
Participants
Experiment 3 was conducted with 67 UNSW under-
graduates (Mage = 19, SD = 1.42, Nfemale = 46). Two par-
ticipants were excluded for completing less than half the 
experiment. We retained the data for seven participants, 
who completed all but a small number of trials in the last 
block, leaving a final N of 65. Participants were awarded 
course credit for participation and a performance bonus 
of either $0.00, $2.00, or $5.00 AUD, dependent upon 
their performance (respective N’s = 4, 11, and 50).

Design
The experiment used a between-subjects design with 
two conditions. The hint condition received a strategy 
hint and a performance calculation in the block-feedback 
summary page, detailed further in the “Materials” section 
(screenshot Additional file 1: Fig. 6). Prior to start of the 
test stage, participants in the hint condition received the 
following instruction page:

“In the previous experiment, we found that most 
people performed well for the easier images. How‑
ever, not one person performed higher than 65% cor‑
rect for the harder images. There is a strategy that 
will allow anyone to perform better than 65% and 
finish the task more quickly. If you use the algorithm 
selectively for the harder images, you could get 70% 
of the harder images correct.”

The no-hint condition skipped this instruction page 
and proceeded to the test stage.

Materials
Algorithm and algorithm description  The algorithm was 
identical to the one used in Experiment 2. The algorithm 
description remained the same with only an additional 
instruction page explaining sampling variability. This page 
was added to explain why the algorithm’s performance was 
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not exactly 70% in every block but rather would approxi-
mate 70% in the long run. We used a coin-toss analogy 
to illustrate the difference between actual sampling out-
comes and the underlying generative process.

Block‑feedback  In the task, all participants received 
block-feedback. Recall that during the task, feedback 
summary screens stated (a) the participant’s overall per-
formance, (b) the number of requests for the algorithm 
in that block, and (c) a table presenting the performance 
in past blocks. The table allowed participants to track 
their progress towards the incentivization goals (screen-
shot Additional file 1: Figs. 7 and 8).

We made two minor additions to the above; the first 
was that we also presented the algorithm’s performance 
in addition to the participant’s performance. That is, a 
line stated that “The algorithm got [~]70% of the easier 

images and [~]70% of the harder images correct” to mir-
ror the participant’s block-feedback (“You got X% of the 
easier images and Y% of the harder images correct”). The 
second change was that the hint condition also received 
an additional statement that calculated the difference 
between the participant and algorithm’s performance. 
The line read, “If you had followed the optimal strategy of 
selecting the algorithm’s response on every harder image, 
your harder image performance could have been [70%—
X] % better/worse”. This line also reminded participants 
of the maximization strategy.

Training  All participants underwent easy-hard training. 
In Experiment 2, this training manipulation produced the 
highest proportion of algorithm requests. In conjunction 
with the strengthened block-feedback in this experiment, 
we reasoned that easy-hard training would prompt par-
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ticipants to recognize the difficulty of the harder stimuli 
and defer to the algorithm.

During training, participants received trial-level feed-
back but could not access the algorithm’s recommenda-
tion. That is, after each response in training, participants 
were told if their response for that stimulus was correct/
incorrect. Once the training block concluded, partici-
pants were additionally told their overall performance 
as well as the algorithm’s performance (~ 70% in every 
block). Note that in the test stages, trial-level feedback 
was not provided after each stimulus and instead only 
summary block-feedback was provided at the end of each 
block.

Stimuli  The same random dot stimuli were used from 
the previous experiments.

Incentive structure  Experiment 3 introduced a change 
to the incentive structure. Prior to the start of the test 
stage, the instruction page stated that a base bonus of 
$2.00 AUD would be awarded if participants maintained 
an average of at least 80% for the easier images across all 
six blocks. This 80% threshold was chosen to exclude any 
participant that was blindly following every recommenda-
tion, even for the easier stimuli.

If participants qualified for this base bonus, they could 
earn an additional $3.00 AUD if they performed above 
65% in two or more blocks of the harder images. This 
threshold was chosen because participants in previous 
experiments could not surpass a 65%-correct threshold 
without requesting the algorithm on a substantial pro-
portion of the test trials.

Together, changing to these discrete thresholds, from 
the proportional incentive schemes in previous experi-
ments, emphasized clearer targets for performance with 
the intent of selectively motivating algorithm requests 
for the harder stimuli (Fantino & Esfandiari, 2002; Gao & 
Corter, 2015).

Procedure
The task procedure was identical to Experiment 2.

Results
We begin by examining performance in the training stage 
before the hint conditions diverged. Consistent with 
the previous experiment, most participants performed 
well in the easier training block (M = 0.91, se = 0.01) 
but struggled in the harder training block (M = 0.52, 
se = 0.01). We added a novel feature into the training 
feedback that additionally stated the algorithm’s perfor-
mance in each training block (M = 0.70). We were inter-
ested as to whether this feedback encouraged algorithm 
requests and, in turn, improved test performance.

Figure  6 presents test performance in Panel A. Simi-
lar to the training results (not shown), we found a main 
effect of difficulty, where both conditions performed bet-
ter for the easier trials (Mhint = 0.92 and Mno-hint = 0.95, 
se = 0.01) than the harder trials (Mhint = 0.65 and 
Mno-hint = 0.63, se = 0.01; F(1, 63) = 1086.11, p < 0.001, 
ηp

2 = 0.95). For the easier trials, the vast majority of par-
ticipants (61/65) outperformed the minimum incentive 
criteria (shown in the top panel Fig. 6 by horizontal inter-
cept at 80%). However, we did not find evidence of any 
differences in performance between the strategy hint and 
no-hint conditions (F(1, 63) = 0.198, p = 0.65).

One overall observation for the harder images is that, 
on average, test performance was higher compared to 
training performance (Mtest = 0.64 vs. Mtrain = 0.52). To 
better understand this improvement, we plotted the pro-
portion of trials with requests for the algorithm in Panel 
B of Fig. 6. There were overwhelmingly more requests on 
the harder trials (Mhint = 56% and Mno-hint = 47%) com-
pared to the easier trials (Mhint = 17% and Mno-hint = 11%; 
F(1, 63) = 137.74, p < 0.001, ηp

2 = 0.69). Participants who 
made more requests for the algorithm on harder trials 
also made more correct responses indicating they also 
agreed with the algorithm’s recommendation (panel A of 
Fig. 7; r = 0.75, t(63) = 9.09, p < 0.001). However, there is 
little suggestion that requesting behaviour differed across 
the hint conditions (F(1, 63) = 1.78, p = 0.19) or inter-
acted with stimulus difficulty (F(1, 63) = 0.21, p = 0.65).

The absence of a strong hint effect in the aggregate-
level data led us to examine performance at the block 
level. We were motivated to examine whether the hint 
conditions differed in obtaining the block-based incen-
tive bonus (Fig. 7, panel B). Presumably, the hint condi-
tion possessed an initial advantage because the strategy 
hint explicitly outlined how to meet incentive threshold 
from the first block onwards.

Recall that the criterion for the additional bonus was 
at least two high-achievement blocks (i.e. two blocks of 
harder images > 65% correct). The same number of partic-
ipants in each condition met this two-block threshold by 
the end of the experiment (nhint = 25/33, nno-hint = 25/32, 
dark shaded bars in Fig. 7, panel B). However, it is inter-
esting to note that the hint condition achieved the high-
performance criteria in more blocks overall (Mhint = 4.2 
vs. Mno-hint = 3.3, t(48) = 2.82, p = 0.006).

If we consider a higher criterion for the incen-
tive bonus, for instance three or four blocks, there is a 
numerical advantage in favour of the hint condition (n 
participants meeting three-block criteria; nhint = 22/33 
vs. nno-hint = 17/32 and four-block criteria; nhint = 19/33 
vs. nno-hint = 9/32). Indeed, these comparisons are post 
hoc and thus should be treated with appropriate caution. 
In general, they point towards the idea that participants 
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with the strategy hint more consistently met and sur-
passed the incentive threshold. In the “Discussion” sec-
tion below, we consider how the strategy hint may have 
reduced the degree of early exploration of the algorithm 
within the task.

Discussion Experiment 3
Experiment 3 incorporated a number of changes that 
encouraged participants to selectively and extensively use 
the algorithm. While the main hint manipulation hint did 
not produce any differences in aggregate-level proportion 
correct or algorithm requests, we found suggestive evi-
dence that at the block level, the hint condition met the 
higher-performance threshold in more blocks than the 
no-hint condition.

While we are cautious of overinterpreting this finding, a 
preliminary interpretation may be that the no-hint condi-
tion engaged in more task exploration in the initial blocks 
than those in the hint condition. The absence of the hint 
may have led to greater persistence in testing hypotheses 
about the usefulness of the cue (e.g. by attempting to sec-
ond-guess the recommendations). Such experimentation 
would have left those in the no-hint condition with fewer 
blocks of trials in which to apply a maximization-like 

strategy. Indeed, an analysis of algorithm requests across 
blocks revealed a significant increasing trend in harder-
algorithm requests over the experiment while easier-
algorithm requests remained stable (stimulus difficulty by 
block interaction; Greenhouse-Geiser corrected, F(3.06, 
155.96) = 4.72, p = 0.003, ηp

2 = 0.09). Although this trend 
did not differ by hint condition (F(1, 51) = 1.86, p = 0.18), 
it is broadly consistent with the idea that participants 
learnt that the algorithm was selectively helpful and grad-
ually converged towards relying on its recommendations.

General discussion
Our experiments aimed to understand better why peo-
ple use and do not use algorithms. Experiment 1a and 
1b demonstrated that people selectively relied upon the 
algorithm when provided with automatic recommenda-
tions. Across two additional experiments, participants 
who requested the algorithm showed an apt ability to 
adapt their reliance on the algorithm to suit the situa-
tional demands of the task. That is, given feedback about 
their own abilities and accuracy information about the 
algorithm, most individuals reserved their algorithm 
requests for the harder stimuli and ignored or overruled 
the algorithm’s recommendation for the easier stimuli. 
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This work goes beyond previous investigations of deci-
sion-aid reliance by providing individuals with knowl-
edge of the algorithm’s accuracy a priori, opportunities 
to learn about the algorithm and then subsequently test 
their own judgements against the algorithm’s known 
level of performance (cf. Arkes et al., 1987). In everyday 
life, algorithms are espoused for their superior process-
ing capabilities and consequently, decision accuracy 
compared to human judges. While this superiority may 
be true, convincing users of their merits may necessitate 
opportunities to verify and independently test the deci-
sion aid’s recommendations against one’s own judge-
ment. Our experiments provided such opportunities 
alongside a comparison of experimental factors to under-
stand the situations in which people would rely upon a 
decision aid.

Learning and verifying the algorithm’s performance
In all our experiments, we explicitly stated that the algo-
rithm was helpful but imperfect. At face value, the algo-
rithm could surpass any individual’s ability for the harder 
perceptual task, while also making obvious errors for 
the easier stimuli. Each experimental manipulation was 
intended to highlight this feature while guiding the par-
ticipant towards comparing their relative performance 
against that of the algorithm. However, it might be rea-
sonable for participants to be initially sceptical of our 
algorithm. In lieu of any experiences with requesting or 
viewing the algorithm’s recommendations, participants 
had little evidence to believe that the algorithm would 
be situationally useful, or even necessary to complete the 
task.

Viewed in this light, it is interesting to consider what 
methods participants had to learn and verify the accu-
racy of the algorithm. One simple verification method 
was to request a recommendation on an easier trial. 
One of our most consistent findings was that partici-
pant performance on the easier trials was near perfect 
and remained so across multiple blocks. In other words, 
participants could be reasonably confident that, for the 
easier stimuli, they knew the correct response. If request-
ing was driven by performance comparisons alone, then 
the time cost of waiting for the recommendation coupled 
with the algorithm’s errors would make any requesting 
seemingly wasteful. In spite of this, we observed a non-
negligible number of algorithm requests for the easier 
stimuli in Experiments 2 and even more so in Experiment 
3 when our manipulations strengthened the performance 
comparisons. These behaviours suggest participants may 
have been strategically requesting these recommenda-
tions to learn about the algorithm rather than needing 
assistance in the perceptual task. With repetition, partici-
pants could verify the algorithm’s accuracy against their 

own experiences without solely relying on the experi-
menter’s word.

Furthermore, participants were not bound to use the 
recommendation. Overruling the recommendation 
was always possible should one feel the algorithm made 
a mistake. Indeed, data from Experiment 2 and 3 show 
that participants could aptly determine when to disagree 
with a recommendation and when to defer to it in lieu of 
a better response. To illustrate, we plotted data for algo-
rithm agreement in Fig. 8 which measures the proportion 
of responses when participants agreed with the recom-
mended direction.

Different patterns of algorithm agreement emerge 
across stimulus difficulty. For the easier images, agree-
ment was near-unanimous when the recommendation 
was correct (top panel Fig.  8, left bars; median agree-
ment ~ 100%), and lower when the recommendation was 
incorrect (top panel, right bars). In short, participants 
could identify the correct response for the easier stim-
uli and agreed with the algorithm when it was correct. 
When the algorithm made a mistake, participants disa‑
greed with the misleading recommendation.

For the harder images, there was a high-degree of algo-
rithm agreement across recommendation correctness 
(min. mean agreement = 83%; lower panels of Fig. 8). This 
suggests that many individuals deferred to the algorithm’s 
recommendation when they requested the algorithm on 
a harder trial, consistent with the results showing par-
ticipants had difficulty with the harder images. These 
data suggest our manipulations encouraged some partici-
pants to adopt a request-and-agree heuristic on harder 
trials. An interesting nuance is that block-feedback may 
be central to using such a heuristic. Conditions that did 
not receive block-feedback seemed more inclined to disa-
gree with the algorithm overall, and potentially more so 
when the recommendation was incorrect. Broadly speak-
ing, the high degree of agreement across conditions indi-
cates participants learnt when the algorithm was helpful. 
While they were willing to overrule the algorithm for 
easier images, the high overall agreement on harder trials 
combined with the aforementioned increasing requests 
over blocks (see Additional file  1: Fig. S11 for visuali-
zation) shows participants learnt to selectively rely its 
recommendations.

The verification method may have been most help-
ful for participants in the early stages of the experiment 
when they lacked any experiences with the recommen-
dations. However, because of the probabilistic nature of 
the recommendations, it is likely the algorithm made at 
least some, and possibly many mistakes, for a subset of 
participants. One question that arises is whether early 
poor experiences of the recommendations would shape 
people’s subsequent beliefs about its usefulness. Early 
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misleading recommendations may lead people to lose 
confidence in the algorithm’s recommendation capacities 
and avoid using its recommendations in the future (Diet-
vorst et al., 2015).

To examine how our participants reconciled their early 
experiences with the algorithm, we examined data for 
easier requests in the initial test block. Figure 9 plots the 
proportion of algorithm mistakes as a function of sub-
sequent algorithm requests over the rest of the experi-
ment. We restricted the data to the first 20 trials where 

participants made at least one algorithm request for an 
easier trial (N = 73; nExp.2 = 41, nExp 3 = 32). Our inten-
tion was to capture the initial learning experiences with 
the algorithm and show the distribution of early algo-
rithm recommendations, ranging from accurate to wildly 
errant. We plotted this against the individual’s subse-
quent reliance on the algorithm for harder stimuli when 
they may have needed the additional assistance.

From Fig.  9, we can examine whether individu-
als who experienced more algorithm mistakes would 
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subsequently exhibit the strongest avoidance of the algo-
rithm (shown graphically by the dotted diagonal line). 
However, this avoidance pattern poorly fits the data. Even 
for participants that exclusively saw the algorithm make 
mistakes (i.e. values of 1 on the x-axis), the nonzero and 
wide distribution of subsequent requests suggests that 
people continued to rely on the algorithm when they 
needed the help. One explanation for this ongoing reli-
ance is that participants expected the recommendations 
to be imperfect because the performance information 
made clear that mistakes were possible.

The expectation for algorithm perfection has been a 
converging point in recent work examining how people 
forecast with an algorithm. Dietvorst and Bharti (2020) 
found decision-makers weight perfect prediction more 
than overall accuracy when choosing between algorithm-
based forecasters. Concurrently, Logg et al. (2019) found 
that people preferred algorithmic to human forecasts 
(their own or another person’s) even prior to accruing any 
experience within the task. This suggests people may ini-
tially show algorithm appreciation by importing generally 
positive beliefs about algorithm performance into experi-
ments. Where the forecasting task involves learning and 
combining multiple variables into a single judgement, 
individuals may be wise in deferring such complexities 

to a purpose-designed statistical algorithm. However, 
when people’s experience of the algorithm unexpectedly 
reveals that it is an imperfect tool, individuals may sub-
sequently abandon the recommender in what has been 
termed algorithm aversion (Dietvorst et al., 2015, Poursa-
bzi-Sangdeh et al., 2021).

Our experiments contribute to these two accounts by 
showing how performance information helps set appro-
priate expectations of the algorithm’s capabilities. Analo-
gous to the difficulty faced in multi-variable forecasting 
tasks, our participants learnt to appreciate the superior 
accuracy of the algorithm when faced with the difficult 
stimuli. When the algorithm made verifiable mistakes for 
the easier stimuli, the performance information conveyed 
the expectation that mistakes were possible. Together, we 
argue it was the performance information that allowed 
our participants to sidestep the aversion/appreciation 
dichotomy and demonstrate flexibility in when they 
relied upon the algorithm.

Why not always rely on the algorithm?
Across our experiments, few participants completely 
deferred to the algorithm. This was the case even in our 
most guided condition where we explicitly stated that 
always using the algorithm’s recommendation was the 
best strategy. However, it is worth remembering that par-
ticipants, like the decision-makers we intend for them to 
model, were likely attending to goals other than simply 
maximizing their rewards. We have previously discussed 
skill improvement as an intrinsic motivator to persist at 
the difficult perceptual task. Anecdotally, a number of 
participants reported a desire to compete against the 
algorithm. These individuals preferred to rely upon their 
own abilities and viewed using the recommendations as 
a crutch. Such a competitive goal would likely suppress 
the reliance on any decision aid regardless of how help-
ful its recommendations may have been. Supporting this 
notion are previous findings where users still overrule 
and ignore decision aids described to be over 90% accu-
rate (Bartlett & McCarley, 2019; Wiegmann, 2002; Yam-
ani & McCarley, 2018).

The time cost for each recommendation may have also 
discouraged complete deference to the algorithm. Our 
motivation for the algorithm’s loading time was to cap-
ture the opportunity cost of taking immediate action 
in favour of seeking more information.5 While for an 
individual trial, the cost was relatively small at only one 
second, the cumulative costs of always relying on the 
algorithm may have been prohibitive or at the least, 
unpalatable.
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5  Separate piloting with an additional monetary cost suppressed but did not 
eliminate algorithm requests. See Additional file 1 for summary.
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It is likely that rather than immediately deferring to the 
algorithm, participants requested a recommendation to 
avoid spending too long on any given trial. Even with lit-
tle experience at the task initially, participants may have 
noticed that some stimuli demanded considerably more 
effort, and consequently more time to evaluate. If percep-
tual discrimination was deemed overly effortful, falling 
back on the algorithm’s recommendation was more likely 
to yield a correct response than an intuitive but time-
consuming guess.

Broader implications
Decision aids come in various forms, ranging from broad 
databases searches to highly specific decision trees. Pre-
sumably, the utility of a recommendation from these dif-
ferent types of decision aids must also vary; emergency 
checklists and protocols must be followed whereas a 
scoping database search could provide several sugges-
tions, only some of which are helpful. To capture this 
breadth, our experiments incorporated an algorithm 
with a fixed but imperfect accuracy. However, fixing 
the accuracy to 70% across stimulus difficulty may have 
been a suspicious feature of our decision aid, suggesting 
an inherent flaw in its design. For some participants, the 
consistent imperfection may have been puzzling and led 
them to avoid the recommendations all together.

Nevertheless, this constraint on accuracy permitted 
our experiments to examine a specific question as to 
how decision-makers adapted their reliance on this deci-
sion aid. This question about reliance lies at the heart of 
applied decision-making. Pilots, firefighters, and doctors 
need to make judgement calls in uncertain environments. 
A prespecified algorithm may help cut through the 
uncertainty but, at its core, the skilled individual needs 
to weigh any recommendation against their understand-
ing of the problem. How individuals acquire knowledge 
about the algorithm and any limitations are precisely 
the kinds of questions suited to laboratory-based inves-
tigation where we can examine the underlying capacities 
that guide behaviours across different environments and 
decision aids. Even in situations where decision-aids are 
highly accurate, learning when to trust its recommenda-
tions persists as a separate challenge (Dzindolet et  al., 
2003).

A noteworthy comparison exists in the medical 
field where decision aids offer a tantalizing promise of 
improved efficiency and patient care. There is a general 
sentiment within the medical field that decision aids are 
useful (e.g. Graham et al., 2003; Ridderikhoff & van Herk, 

1999). Yet social, environmental, and behavioural trade-
offs exist such that widespread uptake is met with mixed 
enthusiasm (Longoni et  al., 2019). For example, doc-
tors that use decision aids are seen by patients to be less 
skilled compared to their unaided or even human-aided 
counterparts (Arkes et al., 2007; Shaffer et al., 2013).

To gauge the application of decision aids in prac-
tice, Ridderikhoff and van Herk (1999)6 created realistic 
patient role-plays with an encyclopaedic decision aid 
for diagnosis problems. The computerized decision aid 
generated the correct diagnosis in 96% of cases from the 
very input entered by the participant physicians. How-
ever, even when the correct diagnosis topped the recom-
mendation list, most doctors rarely changed their own 
conclusions and sought information that verified their 
original hypotheses.

Confirmatory information seeking is not unique to 
medical decision aids but rather persists as a problem 
of how individuals consider alternative explanations. 
Concerns such as perceptions of skill and time pressures 
may play against decision-makers who seek out and use 
external sources of information when they are available. 
Our experiments simplified this broader decision con-
text to retain a focus on the accuracy of the decision aids. 
Benchmarking the algorithm as the best decision-maker 
may be useful for identifying when people may be better 
off outsourcing their cognitive efforts. More specifically 
encouraging algorithm usage, however, will need to move 
beyond benchmarks, to understand the competing moti-
vations that affect an expert’s decision to seek additional 
information.

Conclusion
The current interest in decision aid algorithms shares 
a historical thread to the psychological literature on 
clinical and statistical prediction by Meehl (1954). 
Although far more sophisticated than in his time, algo-
rithms present a familiar problem for decision-makers 
as to when it is best to rely upon a statistical tool over 
one’s own judgement. We explored motivational rea-
sons for why completely deferring to the algorithm was 
met with resistance but overall, our studies of perfor-
mance information and decision aids showed that peo-
ple will rely on the algorithm if they were convinced of 
its merits. The more informed participants were about 
the algorithm through feedback and training, the more 
they relied on the algorithm’s recommendations. Our 
data therefore provide grounds for optimism that deci-
sion-makers can adapt to a world in which algorithms 
play an increasingly larger role in daily life. Considered 

6  We thank Hal Arkes for bringing this perplexing result to our attention.
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together, the experiments paint the decision-maker’s 
capacity to learn and reason about the algorithm as the 
cornerstone of how people choose to use decision aids.
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