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Immune perturbation network identifies an EMT
subtype with chromosomal instability and tumor
immune-desert microenvironment

Hui Xu,1,12 Xinyu Fu,2,12 Ben Liu,3,12 Siyuan Weng,1,12 Chunguang Guo,4 Libo Quan,5 Long Liu,6 Libo Wang,6

Zhe Xing,7 Quan Cheng,8 Peng Luo,9 Kexin Chen,3,* Zaoqu Liu,10,11,* and Xinwei Han1,13,*

SUMMARY

Most gastric cancer (GC) subtypes are identified through transcriptional profiling overlooking dynamic
changes and interactions in gene expression. Based on the background network of global immune genes,
we constructed sample-specific edge-perturbation matrices and identified four molecular network sub-
types of GC (MNG). MNG-1 displayed the best prognosis and vigorous cell cycle activity. MNG-2 was en-
riched by immune-hot phenotype with the potential for immunotherapy response. MNG-3 and MNG-4
were identified with epithelial-mesenchymal transition (EMT) peculiarity and worse prognosis, termed
EMT subtypes. MNG-3 was characterized by low mutational burden and stromal cells and considered
a replica of previous subtypes associated with poor prognosis. Notably, MNG-4 was considered a previ-
ously undefined subtype with a dismal prognosis, characterized by chromosomal instability and immune-
desert microenvironment. This subtype tended to metastasize and was resistant to respond to immuno-
therapy. Pharmacogenomics analysis showed three therapeutic agents (NVP-BEZ235, LY2606368, and
rutin) were potential interventions for MNG-4.

INTRODUCTION

Gastric cancer (GC) is a highly prevalent and deadly cancer, ranking fifth in incidence and second in mortality.1 Unfortunately, most patients

are diagnosed at advanced stages due to its atypical early manifestations, resulting in a dismal prognosis.2 Despite significant progress in

treatment options such as surgery, chemotherapy, targeted therapy, and immunotherapy, the mortality rate remains alarmingly high.3 More-

over, clinical management is a significant challenge as patients with the same pathologic stage can have vastly different prognoses with the

same treatment method.4 This issue arises from conventional clinicopathological staging that overlooks clinical heterogeneity and molecular

biology, leading to overtreatment or undertreatment.5

With the continuous innovation of sequencing technology and bioinformatics, numerous molecular subtypes of GC have been identified

and investigated, such as ‘‘Singapore-Duke’’ subtypes derived from the differences in gene expression patterns,6 The Cancer Genome Atlas

(TCGA) subtypes based on multi-omics,7 Asian Cancer Research Group (ACRG) subtypes closely related to clinical outcomes,8 as well as

mesenchymal phenotype (MP) and epithelial phenotype (EP) proposed by Sang et al.9 These significant efforts have expanded our under-

standing of basic GC biology and the heterogeneity inherent to this disease. Despite clear disclosure of driver mutations like TP53, kirsten

rats arcomaviral oncogene homolog (KRAS), and HER-2 inmultiplemolecular subtypes, clinical efforts to target these alterations have yielded

different results, hampered by complex co-alteration patterns in molecular profiles and genomic heterogeneity within patients.10 Notewor-

thily, gene expression is a dynamic process subject to temporal and spatial disturbances, rendering molecular subtypes constructed solely

based on gene expression profiles impractical in clinical practice.11,12 To overcome this limitation, the gene network, which considers both
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gene nodes and interactions, can provide stable gene expression states and result in molecular subtypes exhibiting strong robustness and

repeatability.13,14

Like other solid tumors arising from epithelial cells, immune cells in the microenvironment surrounding GC cells play an unignored role in

tumor progression and development. GC has emerged as a paradigm for inflammation-driven cancers due to the critical impact of immune

infiltration creating and shaping the tumor immunemicroenvironment (TIME) that promotes GC progression.15–17 Although clinical studies of

immunotherapy for GC are in full swing, non-response and adverse reactions to this therapy are common in clinical practice.18 However,

several previously published major molecular subtypes lacking exploration of immunotherapy and limited availability of common immuno-

therapeutic markers lead to the challenge for individual precision of this therapy.10 Therefore, developing immune gene network-driven GC

molecular subtypes helps explore tumor heterogeneity further and provides potential immunotherapy implications.

In this study, we successfully constructed a stable gene network based on the interaction of the immune genes and identified four network-

basedmolecular subtypes. Subsequently, we adequately assessed the robustness of the molecular subtypes in four public cohorts and an in-

house cohort. Meanwhile, the underlying biological characteristics, genomic alterations, and immune abundance in different subtypes were

explored, and the optimal treatments were formulated. Overall, gene network-based molecular subtypes have potent classification capabil-

ities, promoting the stratified management and precise treatment of GC patients in clinical practice.

RESULTS

Construction of the immune gene interaction network subtypes

The study flowchart is shown in Figure S1. Based on the ImmPort Portal and search tool for recurring instances of neighbouring genes

(STRING) database, 1,793 immune genes and 15,347 gene pairs were generated (Table S2). Subsequently, we screened each gene pair based

on the established edge-perturbation pipeline. Our findings support the earlier hypothesis that immune genes are more perturbed in tumor

samples than in normal samples (p = 1.4e-5, Figures 1A and 1B). Additionally, the constructed background network closely approximates the

distribution of a scale-free biological network (Figure 1C). The edge-perturbationmatrix was createdbased on 6,559 edge-perturbations from

348 GC samples. These gene pairs were used as features of unsupervised clustering for subsequent analysis.

With the optimal number of k selected according to the cumulative distribution function curve (Figure 1D), consensus clustering identified

four subtypes sourced from the molecular network of GC (MNG) in the TCGA cohort. To further investigate the differences in survival prog-

nosis among the four subtypes, we evaluated the four subtypes from overall survival (OS), disease-specific survival (DSS), relapse-free survival

(RFS), and progression-free survival (PFS), respectively. As illustrated in Figures 1E–1H, survival curves showed that the prognosis of patients

with the four subtypes showed significant and consistent differences (OS: p = 4e-04; DSS: p = 0.0351; RFS: p = 0.0219; PFS: p = 8e-04). From

subtype MNG-1 to MNG-4, the prognosis was progressively depressed, especially MNG-4 with the poorest prognosis.

Validation of the subtypes and association with previous GC classifications

Differential expression analysis showed that the top 1,000 overexpressedgenes in each subtypewere candidate signature genes. Furthermul-

tiple comparison testing identified 238 genes as subtype specific (Table S3), which the nearest template prediction (NTP) algorithm utilized to

identify patient-belonging subtypes in four public datasets. SubMap subsequently validated the accuracy of the assignation of subtypes from

the perspective of gene expression profile similarity (Figure S2A). In addition, the prognostic analysis of OS in GSE15459 (p = 0.0106) and

GSE26253 (p = 0.0473) was also consistent with the discovery cohort (Figures 2A and 2B), but that in GSE84433 (P = 4e-04) and GSE84437

(P = 3e-04) was partially compatible (Figures S2B and S2C). Therefore, we included the Tianjin cohort for further validation. Similar to the

previous results, characteristic genes were significantly highly expressed in the corresponding identified subtype (Figure 2C), and the expres-

sion profiles of the same subtype were significantly similar between the discovery and Tianjin cohorts (Figure S2D). MNG-4 showed the most

dismal prognosis of bothOS (p = 0.0052) and RFS (p = 0.0014), whileMNG-1 performed the best prognosis (Figures 2D and 2E). In conclusion,

the results proved the robustness of the MNG classifier and the accordance of the prognosis among subtypes.

Due to American Joint Committee on Cancer (AJCC)/Union for International Cancer Control (UICC) staging system being widely used as

the primary reference in determining the clinical treatment for GC, we compared the composition and proportion of each stage between

different subtypes. From MNG-1 to MNG-4, the proportion of Stage IV gradually increased, consistent with the gradual deterioration of

the prognosis (Figures 2F and S2E). The Cox regression analysis also displayed that the MNG-1 subtype is a favorable factor for prognosis

while MNG-4 is an unfavorable one, further confirming the prognostic value of MNG subtypes (Figures 2G and 2H). Furthermore, samples

from TCGA datasets were assigned into previous subtypes based on the TCGA network study, ACRG study, gastrointestinal tract adenocar-

cinomas (GIACs) study, histologic Lauren subtype, and Sang et al.7–9,19 We observed significant correlations betweenMNG classification and

previous classifications, revealing a molecular convergence (Figure S2F). Chromosomal instability (CIN) samples accounted for the highest

proportion of the MNG-4 subtype in both TCGA and GIACs studies, while genome stable (GS) tended to cluster in the MNG-3 subtype.

Notably, MP, epithelial-mesenchymal transition (EMT), and Diffuse subtypes, which respond to poor prognosis, are mainly clustered in the

MNG-3 subtype, implying that MNG-4 may be an undefined but different poor prognostic subtype compared with the previous subtypes.

Subtype-specific functional phenotypes of MNG subtypes

Gene set variation analysis (GSVA) is a gene set expression-based analysis method used to score the enrichment of a given gene set in a sam-

ple, performed to convert the gene expression matrix to the pathway score matrix in this study. We performed the differential analysis of
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Figure 1. The identification of four gastric cancer (GC) molecular subtypes

(A) The differential comparison of perturbation value between the tumor and normal samples.

(B) The scatterplot for the log2-transformed mean of the interaction perturbations in the 3,000 randomly selected edges in normal (green points) and GC (red

points) tissues.

(C) The constructed background network fitted the scale-free biological network distribution.

(D) The cumulative distribution function (CDF) curve helped to determine the optimal number of clusters for the Consensus Cluster. The red dot indicated by the

arrow is the location of the optimal number of clusters.

(E–H) Kaplan-Meier survival analysis of MNG subtypes based on overall survival (OS), disease-specific survival (DSS), relapse-free survival (RFS), and progression-

free survival (PFS) in the TCGA cohort.
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functional scores and selected pathways with significant differences to characterize each subtype, these pathways also being proved to be

enriched via gene set enrichment analysis (GSEA) (Figure 3A). Pathways that tend to be enriched in the MNG-1 subtype are cell cycle-related

and represented by E2F targets, DNA replication, and mitotic sister chromatid segregation (Figures 3A and S3A). Notably, protective path-

ways like the G2M checkpoint are also enriched inMNG-1 isoforms. TheMNG-2 subtype wasmainly enriched with immune pathways, such as

antigen binding, T cell receptor complex, and immune response activation (Figures 3A and S3B). TheMNG-4 andMNG-3 subtypes with poor

prognoses were enriched with the tumor-promoting associated pathways, such as EMT and extracellular matrix (ECM) receptor interaction

Figure 2. Validation of the subtypes in five independent cohorts and prognosis exploration

(A and B) Kaplan-Meier (KM) survival analysis of MNG subtypes based on overall survival (OS) in GSE15459 (A) and GSE26253 (B).

(C) The subtype-specific gene expression heatmap of the MNG subtypes in the Tianjin cohort.

(D and E) KM OS (D) curves and relapse-free survival (F) according to MNG subtypes in the Tianjin cohort.

(F) The proportion of AJCC Stage for each MNG subtype in the TCGA cohort.

(G and H) Univariate Cox regression analysis of MNG classification and other clinical traits in TCGA (G) and Tianjin (H) cohorts. *p < 0.05, **p < 0.01, and

***p < 0.001. See also Figure S2.
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Figure 3. Biological function exploration for each subtype

(A) Heatmap of enriched functional pathway scores for each MNG subtype derived from gene set variation analysis.

(B) The Mfuzz algorithm identified ten gene clusters in MNG-2/3/4 subtypes.

(C and D) Metascape functional analysis of feature genes from Cluster 6 (C) and Cluster 8 (D). See also Figure S3.
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(Figures 3A, S3C, and S3D). However, immune pathways also enriched in the MNG-3 subtype with lower normalized enrichment scores

(Figures 3A and S3C).

For exploring the potential evolution of biological function amongMNG-2, MNG-3, andMNG-4, the soft clusteringmethod implemented

in the Mfuzz package was conducted to identify ten gene clusters. Cluster 6 and 8 displayed the continuously changed expression pattern

fromMNG-2 to MNG-4 (Figure 3B). As expected, Cluster 6 was correlated with the extracellular matrix component, and Cluster 8 was related

to immune response, which implied that the MNG-3 subtype perhaps keeps the functional status between MNG-2 and MNG-4 (Figures 3C

and 3D). Comparing the two poor prognosis subtypes, MNG-4 displayed higher activities in the cell cycle, extracellular matrix disassembly,

angiogenesis, and hypoxia pathways, while its immune-related pathway activities were significantly lower than those of MNG-3 (Figure S3E).

Significant genome variation was exhibited in MNG-1 and MNG-4

The overall level of genomic variation in four subtypes was indicated in the heatmap, including high-frequency mutated genes, copy number

gain, and copy number loss (Figures 4A and 4B).We found significant differences in genomic variation among the four subtypes. As illustrated

in detail, theMNG-1 subtype almost showed the highestmutation frequencies, especially TTN, TP53,MUC16, LRP1B, etc. In addition,MNG-4

also has a relatively higher mutation frequency of TP53, which is considered a key feature in CIN subtypes, and the lowest PIK3CA mutation

(Figure 4A).7 To compare themutational load of the four subtypesmore clearly, we calculated the tumormutation burden (TMB), single-nucle-

otide polymorphism (SNP), and insertion and deletion (INDEL) for each patient. The results showed that MNG-1 still has the highest mutation

level, followed by MNG-2 and MNG-4, while MNG-3 had the most barren mutation (Figure 4C). Subsequently, we further analyzed the copy

number variant (CNV) levels of four subtypes, including the fraction of genome alteration, the fraction of genome gained, and the fraction of

Figure 4. The genomic landscape of four subtypes

(A) Mutation frequency of the top 20 high-frequency gene mutations between four subtypes in the TCGA cohort.

(B) The heatmap includes the high-frequency chromosome copy number alterations in the GC samples.

(C) The amount of TMB, SNP, and INDEL between four subtypes.

(D) The CNV landscape between four subtypes at the focal level, including fraction genome altered (FGA), fraction genome gain (FGG), and fraction genome

loss (FGL).

(E) The CNV landscape between four subtypes at the arm level. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. Data represent Q1 - 1.5*IQR to Q3 +

1.5*IQR (Q1: 25th percentile; Q3: 75th percentile; IQR: interquartile range).
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genome lost. Unlike MNG-2 and MNG-3, MNG-1 and MNG-4 performed higher CNVs, particularly in the MNG-4 subtype (Figure 4D). Note-

worthily, the variation trends of the four subtypes in focal and arm positions were similar to CNVs (Figure 4E).

The microenvironment drives the heterogeneity among subtypes

Based on the results of GSEA and GSVA, we discovered that MNG-2 and MNG-3 were closely related to the immune pathways. The

expression of 28 immune cells was further calculated via the single-sample GSEA (ssGSEA) algorithm to assess the abundance of immune

infiltration in different subgroups. As shown in Figure S4A, the infiltration abundance was significantly more prominent in MNG-2, espe-

cially in activated CD4+ T cell and activated CD8+ T cell, verified by the immune score (Figure 5A). In contrast, the MNG-3 showed the

highest stromal score and abundance of stromal cells, including endothelial cells and fibroblasts (Figure 5A). Subsequently, Figures S4B

and S4C depict the differences in the expression of immune checkpoints (ICPs). The results revealed that the expression of ICPs was

significantly higher in MNG-2, including the B7-CD28 superfamily, tumor necrosis factor (TNF) superfamily, and co-stimulatory ICPs,

particularly CD274, CTLA4, and PDCD1 currently used in clinical practice, which suggested that the immune checkpoint inhibitors

(ICIs) may be more effective in MNG-2 (Figure 5A). Additionally, MNG-2 also obtained higher scores in tumor inflammatory signature (Fig-

ure S4D) and antigen presentation score (Figure 5B), suggesting potentially better response and effect in immune activation and antigen

presentation. Notably, MNG-2 and MNG-3 presented lower tumor purity and highly abundant infiltration of immune or stromal cells,

which indicated that the tumor microenvironment may play a critical role in the two subtypes (Figure 5C). However, MNG-1 and

MNG-4 appear barren regarding either infiltration of immune cells and immunomodulatory factors or immune scoring of the tumor micro-

environment (Figure 5A). In particular, the MNG-4 subtype, in which various immune components regulating anti-tumor immunity showed

low levels, may be an immune-desert microenvironment (Figure 5D).

Potential immunotherapy response for MNG-2

According to the immune landscape results, MNG-2 displayed higher immune cell infiltration and abundant ICPs, demonstrating that immu-

notherapy may be more applicable in this subtype. To further investigate the potential for immunotherapy response, we decoded the eight

steps of the cancer immune cycle (CIC) immunogram to characterize anti-tumor immune processes. As illustrated in Figure 5D, CIC was a

dynamic sequential process with seven steps, in which MNG-2 was prominent except for the absence of immune inhibition-related factors.

Therefore, we performed the SubMap analysis between the discovery cohort and six independent cohorts with drug response information to

identify the potential responder by similar expression profile pattern. As expected, the gene expression profiles of the MNG-2 subtype were

significantly analogical with the immunotherapy respondermeaning immunotherapy, such as anti-PD-1, anti-PD-L1, anti-CTLA4, and chimeric

antigen receptor T-cell immunotherapy (CAR-T), is potentially beneficial to the MNG-2 patient (Figure 5E).

Potentially sensitive chemotherapy agents for MNG-4

Due to the undesirable prognosis in MNG-4 subtypes patients, we expected to findmore effective drugs to improve the prognosis. Based on

gene expression and drug sensitivity data from the Cancer Therapeutics Response Portal (CTRP) and profiling relative inhibition simulta-

neously in mixtures (PRISM) databases, we utilized area under the dose-response curve (AUC) values predicted by models to assess the

drug sensitivity of GC patients. To validate the reliability of the method, we compared the AUC between low-KHDRBS3-expression and

high-KHDRBS3-expression groups. The result showed that the low-KHDRBS3 group has a lower AUC value consistent with the previous study

that low KHDRBS3 indicated high susceptibility for 5-fluorouracil (5-FU) (Figure 5F).20 Then NVP-BEZ235, LY2606368, and rutin were recog-

nized as better-sensitive drugs in MNG-4 patients by the differential comparison between the MNG-4 subtype and others (Figure 5G).

DISCUSSION

Due to the high tumor heterogeneity and invasiveness of GC, the AJCC staging system alone for clinical supervision and treatment decision-

making no longer satisfies the demand for patient benefit.21With the development of immunology andmolecular biology, PD-1/PD-L1-based

ICPs havemanifested resounding success inmultiple solid tumors.22 Although short-term survival has improved in partial GCpatients with the

management of immunotherapy-based combination therapy,23 persistent reports of adverse immunotherapy reactions imply the disparate

immunotherapy tolerance among GC patients.24 Researchers have developed various GC molecular subtypes to change the status quo, but

the clinical outcome is unsatisfactory. For the most part, the reason for this limited clinical transformation is that the transcriptional

Figure 5. The immune landscape and therapy exploration of MNG subtypes

(A) The infiltration abundance of activated CD4+ T cell, activated CD8+ T cell, endothelial cells, and fibroblasts was evaluated by the ssGSEA algorithm. The

relative expression of CD274, CTLA4, and PDCD1 was evaluated in the TCGA cohort. The ESTIMATE algorithm evaluated the immune score and stromal score.

(B) The difference in APM score between four subtypes.

(C) The ESTIMATE algorithm in the TCGA cohort evaluated the tumor purity.

(D) Differences in the eight steps of the CIC immunogram in the four subtypes.

(E) SubMap algorithm evaluated the expression similarity and the immunotherapy responses between TCGA-STAD and GSE136961 (Anti-PD-1), GSE145996

(Anti-PD-1), GSE115821 (Anti-PD-1 & anti-CTLA-4), GSE126044 (Anti-PD-1 & anti-PD-L1), GSE91061 (Anti-PD-1 & anti-CTLA-4), and GSE100797 (CAR-T).

(F) Comparing AUC values of 5-FU between low and high KHDRBS3 expression group.

(G) Comparison of sensitivity to NVP-BEZ235, LY2606368, and rutin in four subtypes. nsmeans p > 0.05, *p < 0.05, **p < 0.01, and ***p < 0.001. See also Figure S4.
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classification based on gene expression is unstable and is highly susceptible to different sequencing platforms and temporal or spatial vari-

ation. Therefore, we constructed a GC molecular typing based on the immune gene interaction network, which capitally provides different

insights for the refined management of GC patients.

In this study, we successfully classifiedGC patients into four subtypes based on immune gene networks. Notably, patients with theMNG-1

to MNG-4 subtype showed a progressive trend of deterioration. This unique prognostic value could help identify clinically high-risk patients

and implement personalized interventions. However, favorable behavior in the TCGA cohort alone does not sufficiently account for the

robustness of edge-perturbation typing. The reproducibility and stability ofmolecular subtypes are the prerequisites for clinical application.25

Consequently, we further validated the edge-perturbation subtypes in 1,414 samples from four independent cohorts, showing a similar prog-

nostic trend in all validation sets. It was worth emphasizing that theMNG-4 subtype similarly showed themost dismal prognosis in our collec-

tion of 90 GC samples. Thismulti-center, large-scale cohort validation lays a solid foundation for the future clinical application of edge-pertur-

bation subtypes. In the comparative analysis of MNG subtypes with published GC subtypes, the CIN-like features of MNG-4 were not only

manifested in the overlap of samples but also further confirmedby higher TP53mutations and lowest PIK3CAmutations, as well as the highest

frequency of copy number variations in genomic analysis. Accordingly, MNG-3 exhibits prevalent genetic hypomutation, consistent with the

characteristics of theGS subtype. AlthoughMNG-4 andMNG-3 have a relatively poorer prognosis and even amore pronounced trend for the

former, the published subtypes associated with poor prognosis gather on MNG-3 and few onMNG-4, suggesting that MNG-4 may be a pre-

viously unrecognized subtype of poor prognosis.

As we know, significant prognostic differences in patients are generally caused by underlying biological mechanisms. Based on the

functional enrichment analysis results, we discovered that the MNG-1 subtype is mainly associated with cell cycle pathways such as

E2F targets, DNA replication, and mitotic sister chromatid segregation. However, activation of the G2M checkpoint pathway may be a

favorable factor for good prognosis in the MNG-1 subtype. The MNG-2 subtype was primarily featured as an immune-hot subtype

with a high abundance of immune-related pathways. We also recognized that the MNG-3 and MNG-4 subtypes exhibited powerful migra-

tory and invasive features, especially epithelial-mesenchymal transition, a marker pathway of poor prognosis subtype in various tumors.

Although MNG-3 and MNG-4 may be termed with EMT subtype, extracellular matrix remodeling characterized by angiogenesis and hyp-

oxia, as well as the immune-desert microenvironment, in MNG-4 may provide potential interpretability for the metastatic propensity of

this subtype.26,27

Immunotherapy, one of the foremost tumor treatments, has been granted a broad application prospect.28 With the widespread clinical

application of immunotherapy, how to accurately identify patients benefiting from immunotherapy has become an urgent problem to be

solved. High immune cell infiltration and adequate activation of the anti-tumor immune program in MNG-2 further characterize its im-

mune-hot subtype. Abundant immune cell infiltration, tumor antigen formation, and high expression of ICPs are the cornerstone of the

response to ICPs (PD-1, PD-L1, CTLA-4, etc.) in tumor patients.29 On top of that, we inferred that patients with the MNG-2 subtype have a

higher immunotherapeutic benefit and validated it in six immunotherapy cohorts. Thus, edge-perturbation typing is confirmed as a vigoroso

tool for immunotherapy decision-making in GC patients.

Despite the ability to accurately identify high-risk GC patients by edge-perturbation subtypes, establishing individualized treatment

schemes for patients is the focus of clinical tasks. As an immune-desert state, patients with the MNG-4 subtype benefit minor from main-

stream immunotherapy. Therefore, we used multiple drug sensitivity databases to compare drug sensitivity between subtypes. NVP-

BEZ235, LY2606368, and rutin were the most sensitive in the MNG-4 subtype but less effective in the other three. Previous studies

have shown that LY2606368, the checkpoint kinase 1 inhibitor, induced DNA damage, significantly inhibited cancer proliferation, and

induced apoptosis in GC cells.30 Rutin is a flavonoid that has the potential to reverse 5-FU resistance in human GC cells and its growth

inhibitory effect on drug-resistant GC cells.31 NVP-BEZ235 is the dual phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin

(mTOR) inhibitor. Dual approaches are promising as targeting multiple downstream effectors may delay or prevent treatment resistance.32

Although the NVP-BEZ235 was explored in GC cell lines, there is a limitation in that it responded to the specific cell lines.33 This may result

from the different gene expression profiles of distinct GC cell lines. Therefore, establishing edge-perturbation subtypes will also contribute

to the precision treatment of clinical patients.

In summary, we identified four subtypes from the molecular heterogeneity of GC through a stable gene interaction network and vali-

dated subtypes in seven independent cohorts. Disparate subtypes differed in survival, prognosis, biological functions, genomic alterations,

immune landscape, and potential therapeutic agents. RNA profile of GC samples from our internal cohort further demonstrated the clinical

universality of edge-perturbation subtypes. In particular, MNG-4 was considered a previously undefined subtype with a dismal prognosis,

characterized by EMT, chromosomal instability, and immune-desert microenvironment. This subtype tended to metastasize and was resis-

tant to immunotherapy, so potential therapeutic agents for this subtype predicted for patients of this subtype may help improve the prog-

nosis of GC.

Limitations of study

Although the multi-center and large-scale cohort validation proves that our established edge-perturbation subtype has powerful clinical

applicability, there are still some shortcomings. First, immunotherapy cohorts for GC patients are relatively lacking. Secondly, the samples

included in the analysis were retrospective data and lacked prospective studies.
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RESOURCE AVAILABILITY

Lead contact

Further information and request for resources should be directed and will be fulfilled by the lead contact, Xinwei Han (fcchanxw@zzu.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Public data used in this work can be acquired from the TCGA (https://portal.gdc.cancer.gov/), GEO (https://www.ncbi.nlm.nih.gov/geo/),

and the UCSC-Xena (https://xenabrowser.net/datapages/) database.

d The code used in this study mainly relies on existing R packages, which are described in the STAR methods.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Sources and collection of study data

A total of 1762 GC samples from five independent cohorts were collected in the study, including TCGA-STAD (n = 348), GSE15459 (n = 192),

GSE26253 (n = 432), GSE84433 (n = 357), GSE84437 (n = 433), from the Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) portal

and Gene Expression Omnibus database (GEO, https://www.ncbi.nlm.nih.gov/geo/). Transcriptome data obtained by microarray analysis of

90 GC samples from Tianjin Medical University Cancer Institute and Hospital were included. Details of baseline information about six public

datasets and an in-house cohort were summarized in Table S1. In addition, expression profiles of 174 normal gastric tissues were retrieved

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Relevant transcriptomic data, clinical data, and

somatic mutation data of TCGA-STAD cohort

The TCGA data portal https://portal.gdc.cancer.gov/

Transcriptomic data of normal gastric tissues The UCSC Xena database https://xenabrowser.net/datapages/

Transcriptomic data Gene Expression Omnibus database GSE15459

Transcriptomic data Gene Expression Omnibus database GSE26253

Transcriptomic data Gene Expression Omnibus database GSE84433

Transcriptomic data Gene Expression Omnibus database GSE84437

Gene expression data of cell lines The Cancer Cell Line Encyclopedia database https://sites.broadinstitute.org/ccle/

Drug sensitivity data The cancer therapeutics response portal https://portals.broadinstitute.org/ctrp.v2.1/

Drug sensitivity data The PRISM lab https://www.theprismlab.org/

Immune genes The ImmPort Portal https://www.immport.org

Software and algorithms

R (version 4.1.2) the R Core Team and the R Foundation for

Statistical Computing

https://www.r-project.org/

ConsensusClusterPlus R Bioconductor RRID:SCR_016954

limma R Bioconductor RRID:SCR_010943

CMScaller GitHub https://github.com/peterawe/CMScaller

clusterProfiler R Bioconductor RRID:SCR_016884

maftools R Bioconductor N/A

pRRophetic GitHub https://github.com/paulgeeleher/pRRophetic

Other

In-house cohort Song et al. https://doi.org/10.1158/1078-0432.CCR-13-1844
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from the UCSC-Xena database (https://xenabrowser.net/datapages/). RNA-sequencing data were processed to transcripts per million (TPM)

format and normalized by log2 transformation. Somatic mutation and copy number variation data were also downloaded from the TCGA

database. For further exploration of immunotherapy responses, six cohorts from GEO with complete immunotherapy information were

recruited, including GSE100797 (CAR-T), GSE115821 (Anti-PD-1 & anti-CTLA-4), GSE126044 (Anti-PD-1 & anti-PD-L1), GSE136961 (Anti-

PD-1), GSE145996 (Anti-PD-1), and GSE91061 (Anti-PD-1 & anti-CTLA-4). Gene expression data of cell lines were obtained from the Cancer

Cell Line Encyclopedia (CCLE, https://sites.broadinstitute.org/ccle/), and drug sensitivity data were downloaded from the cancer therapeu-

tics response portal (CTRP, https://portals.broadinstitute.org/ctrp.v2.1/) and the profiling relative inhibition simultaneously in mixtures

(PRISM, https://www.theprismlab.org/).

Processing of transcriptome data in the Tianjin cohort.

In this study, the Tianjin cohort (n = 90) was included as an internal validation cohort, which comprised 90 GC patient samples from Tianjin

Medical University Cancer Hospital.34 GC samples were processed as follows: (1) TRIzol Reagent (Invitrogen) and ethanol precipitation were

used to extract and purify the RNA. (2) Nano-Drop-8000 was used to detect the concentration and quality of RNA. (3) After analysis and pro-

cessing of Affymetrix GeneChip HT HG-U133+PM 96-array plates, the microarray was scanned by The GeneTitan Instrument (Affymetrix) to

obtain expression profile data. The Institutional Review Board of Tianjin Medical University approved the study, and all patients provided

informed consent.

Establishment of edge-perturbation matrix

To identify molecular subtypes of GCwith gene interaction information, we developed an edge-perturbationmatrix based on immune genes

in a cohort of gastric cancer patients. The construction process of this matrix is detailed below.

1) Obtain edges of immune gene interaction. A total of 1793 immune genes were identified from the ImmPort Portal (https://www.

immport.org). Subsequently, all immune genes were input into the STRINGdatabase. For screening genes with biological interactions,

the connection strength was set to 0.7, and 15,347 edges of gene interaction were obtained as the background network.

2) Construct the edges of gene interactions.Genes were ranked based on the average expression level in all normal samples fromGTEx.

Notably, the rank difference between genes was used to reflect their degree of interaction. The edges of gene interactions were calcu-

lated according to the formula:

EGi-Gj = RGi-RGj

Gi represented the ith gene, RGi represented the rank of Gi, and EGi-Gj represented the edge-perturbation value of Gene i and Gene j.

Additionally, rank differences after ordering the average expression of genes based on 174 normal samples were calculated to

generate edge benchmarks.

3) Generate the GC edge-perturbation matrix. The edges of gene interactions in each tumor sample subtracting the benchmark gener-

ated the edge-perturbation matrix for further analysis.

Identification of network-based molecular subtypes

The ConsensusClusterPlus package was used to identify molecular subtypes based on the edge-perturbation matrix. The

ConsensusClusterPlus function was configured with the following criteria: the maximum number of clusters set to 10, 100 iterations, pItem

set to 0.8, and utilizing the Partitioning AroundMedoid (PAM) clustering algorithmwith Euclidean distance. The number of candidate clusters

k ranged from two to ten, and the optimal k value was determined based on the cumulative distribution function (CDF).35

Subtype validation in independent cohorts

Differential expression analysis between subtypes was performed using the limma package in the discovery cohort to determine the charac-

teristic genes for individual subtypes. Furthermore, subtype-specific genes were identified using Tukey’s range multiple testing with Holm’s

correction. Based on the feature genes of each subtype, we predicted the typing of samples via the nearest template prediction (NTP) algo-

rithm of the CMScaller package.36 The samples with FDR <0.2 are considered to assign an MNG subtype successfully. The concordance of

transcriptional profiles for each subtype across cohorts was verified by the SubclassMapping (SubMap) algorithm,37 and Bonferroni corrected

p < 0.05 was considered statistically significant.

Functional enrichment analysis

To ascertain the specific biological functions of the fourGC subtypes, gene set variation analysis (GSVA) was adopted.38,39 The gene sets were

downloaded from the molecular signatures database (MsigDB), including c5.go.v7.5.1.symbols.gmt, c2.cp.kegg.v7.5.1.symbols.gmt, and

h.all.v7.5.1.symbols.gmt. Gene set enrichment analysis (GSEA) was implemented by the clusterProfiler package. The differential analysis in

four subtypeswas executed, and the geneswere ranked in descending order according to log2FoldChange (log2FC). Normalized enrichment

score (NES) represented the enrichment score of gene sets in subtypes, and p < 0.05 was considered statistically significant. Subsequently,

GSVA converted the gene expressionmatrix into the variance scorematrix, and subtype-characterized pathways were identified by analysis of

differences between groups with adjusted p < 0.05. In addition, Metascape was used to functionally characterize the signature gene clusters

resulting from the soft clustering method (Mfuzz).25,40,41
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Genomic variation analysis

Somatic mutations and copy number variants (CNVs) characteristics were utilized to compare differences in the genomics of the four sub-

types.42,43 Firstly, we calculated gene mutation frequencies via the maftools package, and the top 20 were singled out as high-frequency

mutated genes. To further compare the difference in mutation burden among different subtypes, the tumor mutation burden (TMB) was

calculated, which includes single nucleotide polymorphisms (SNP) and insertion and deletion (INDEL). The CNVs of each patient in the

TCGA cohort were deciphered via the GISTIC 2.0 algorithm. Additionally, the box diagram further depicted the CNVs of different subtypes

in focal- and arm-levels.44

Immunophenotyping exploration among subtypes

To assess the immune infiltration microenvironment, we decoded the infiltration abundance of 28 immune cells in GC patients by the single

sample gene set enrichment analysis (ssGSEA) algorithm.45 Subsequently, the expression of immune molecules among different subtypes

was compared inmore detail, including the B7-CD28 superfamily, TNF superfamily, immune co-stimulatory, and immune co-inhibitory check-

points.46 The cancer immune cycle (CIC),47 also known as the anti-tumor immunity process, consists of seven steps, including cancer cell an-

tigens, cancer antigen presentation, priming and activation of effector T cells, T cell migration to cancer tissue, infiltration of immune cells into

tumors, recognition of cancer cells by the T cell, and killing of cancer cells. As a previous study reported,48 different GC subtypes were

impaired at eight stages of CIC immunogram and exhibited distinct endogenous immune escape mechanisms. Notably, to better assess

the ability of patients to respond to immunotherapy, three approaches were undertaken: (1) Tumor inflammatory signature (TIS) score,

composed of 18 immune-inflammatory genes, was conducive to predicting clinical response to PD-1 blockade.49 (2) The antigen processing

and presenting machinery scores (APS) were calculated based on 16 antigen-presenting genes, which unfold the efficiency of antigen pro-

cessing and delivery.50 (3) In six immunotherapy cohorts, the Submap was adopted to compare the expression profiles between immuno-

therapy responders and each subtype for predicting the potential responder of immunotherapy, such as anti-PD-1 and anti-CTLA-4.

Prediction of potential drugs for patients with poor prognosis

We obtained massive gene expression and drug-sensitive information from the CTRP and PRISM databases. As previously reported,51 the

ridge regression model implemented in the pRRophetic package was used for predicting drug response, and the prediction accuracy was

performed by 10-fold cross-validation. The drug with the smaller AUC was considered more sensitive for the GC patient. The potential sus-

ceptibility drugs for the subtype with the poorest prognosis were determined by the differential comparison in AUC values.

QUANTIFICATION AND STATISTICAL ANALYSIS

All data analysis and visualization were performed in R software (version 4.1.2). Kaplan-Meier survival and Cox regression analysis were con-

ducted by the survival package. Comparisons of categorical variables were performed by the chi-square test or Fisher exact test, and com-

parisons of continuous variables were performed by theWilcoxon rank-sum test or the t-test. p < 0.05 was considered statistically significant,

and all statistical tests were on two sides.
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