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Abstract: In cancer pharmacology, a drug candidate’s therapeutic potential is typically expressed as
its ability to suppress cell growth. Different methods in assessing the cell phenotype and calculating
the drug effect have been established. However, inconsistencies in drug response outcomes have been
reported, and it is still unclear whether and to what extent the choice of data post-processing methods
is responsible for that. Studies that systematically examine these questions are rare. Here, we compare
three established calculation methods on a collection of nine in vitro models of glioblastoma, exposed
to a library of 231 clinical drugs. The therapeutic potential of the drugs is determined on the growth
curves, using growth inhibition 50% (GI50) and point-of-departure (PoD) as the criteria. An effect
is detected on 36% of the drugs when relying on GI50 and on 27% when using PoD. For the area
under the curve (AUC), a threshold of 9.5 or 10 could be set to discriminate between the drugs with
and without an effect. GI50, PoD, and AUC are highly correlated. The ranking of substances by
different criteria varies somewhat, but the group of the top 20 substances according to one criterion
typically includes 17–19 top candidates according to another. In addition to generating preclinical
values with high clinical potential, we present off-target appreciation of top substance predictions by
interrogating the drug response data of non-cancer cells in our calculation technology.

Keywords: glioblastoma; in vitro pharmacology; quantification; drug response; mathematical
modeling; off-target risk
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1. Introduction

Performing cell growth analysis in vitro using patient-derived disease models is the gold standard
for various academic and industry-driven cancer research projects. Historically, this approach has
led to the identification of most of the current block buster anticancer drugs [1]. Although successful,
with the recent rapid technological advances, inconsistencies when trying to replicate in vitro cancer
pharmacology approaches have been identified [2,3] with both technical [4] and biological [5] factors
being identified to contribute to the reproducibility hurdles.

Chemotherapy effects on cancer cells are measured using various methods depending on the
biological question [6,7]. In modern throughput campaigns, the use of bioenergetic quantification [8]
is established as a reliable sensitive method to report the anti-cell growth potential of drugs. Multiple
methods of expressing the effectiveness of a drug in in vitro experiments are common in practice.
Assuming a drug shows an effect, its potency will depend on the drug concentration. The dependency
between the concentration and the effect is commonly modeled by the Hill equation [9–11]. In its
simplest form, when it is used to model cell viability in a drug solution and when the viability is known
to span the range 0–1 (in percentage: 0–100%), it is a logistic function over the logarithm of the drug
concentration and is fully determined by two parameters, the slope and the x-offset. When the y-range
of the curve is different, e.g., because it is used to model the absolute number of surviving cells (or its
correlate, but in any case, a value that can be much larger than one) and never falls to zero (because
a fraction of cells survive even in the saturated solution), two additional parameters are required.
They determine the upper and the lower bound of the curve. There are multiple, equivalent ways of
writing this four-parameter equation. In this study, we use the following form, where its relationship
with the common logistic function is more apparent and whose parameters are readily interpretable:

n(logC) = A0 ·
(

b∞ +
1 − b∞

1 + e−β·(logC−logIC50)

)
(1)

Here, n(logC) is the total number of cells (or its correlate, like the measured intensity of a fluorescent
marker) for the specific drug concentration C, with logC = log(C). A0 is the upper bound of the curve,
the number of surviving cells in the absence of the drug. b∞ is the lower bound of the curve, as a
fraction of the total. It is normally a value between zero and one, but can be greater than one if the
drug actually stimulates cell growth. The parameter β is the usual slope parameter of the logistic curve
and logIC50 the logarithm of IC50, the drug concentration at which the curve falls halfway between its
upper and lower bound [12]. It is the inflection point of the curve, the point at which the curve is at its
steepest (Figure 1a). Fitting the Hill curve to the empirical cell survival data amounts to finding the
appropriate set of parameters.

The first parameter, A0, depends on the starting number of cells, the incubation time, and the
method used for their counting. It describes the experiment setup and is not related to the tested
substance. The remaining three parameters are indicative of the drug effectiveness. b∞ tells us what
is the maximum possible effect that can be achieved by the drug. logIC50 is the break-even point,
where the drug reaches half of its potential, and β describes how rapidly the effect increases with the
increasing drug concentration.

To summarize drug effectiveness in a single number and make it easier for comparison, researchers
have come up with derived measures. One common measure is GI50, a paramter defined by the
National Cancer Institute COMPAREmethod initiative [13]. It is the concentration at which the cell
growth is inhibited by 50%. When b∞ = 0, GI50 = IC50, but, in general, GI50 is larger. It is easy
to confuse GI50 and IC50 (or EC50, which is used as a synonym [12]). IC50 or EC50 is just a
parameter for mathematically defining the Hill curve, but it has no direct interpretation in terms of
cell growth. In [14], the authors explicitly warn: “Don’t overinterpret the EC50. It is simply the
concentration of agonist required to provoke a response halfway between the baseline and maximum
responses [...] it is not a direct measure of drug affinity.” To add to the confusion, some sources,
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like https://www.graphpad.com/support/faq/relative-vs-absolute-ic50/, use “relative IC50” to mean
IC50 and “absolute IC50” to refer to GI50.

Another measure is the area under the curve (AUC). It is the integral of the four-parameter Hill
equation and can be computed analytically. In practice, however, the computation involves some
decisions by the researcher. The integral under the whole Hill curve is infinite, because the curve has a
finite, non-zero value, over an infinite range of log-concentrations. In order to get finite AUC values,
the integration has to be limited to some reasonable range, e.g., one order of magnitude below and
above the lowest and highest drug concentrations, respectively.

Yet another possible effectiveness measure is the point-of-departure (PoD). The measure is
common in in vivo trials and describes the lowest dosage at which an effect can be observed.
Again, in order to apply it to the Hill curve, some decisions have to be made. As the Hill curve
is smooth, there is always some effect; it can be minuscule, but it is never exactly zero. It is simple to
define PoD as the concentration at which the viability falls to 95%, or 90%, or some other percentage.
If we settle for 50% viability, PoD becomes identical to GI50. Another possibility is to define PoD as the
concentration at which the effect can be observed with some pre-defined confidence, say 95%. As the
parameters of the Hill curve are determined from noisy, empirical data, the shape of the curve is
uncertain to a degree. This level of uncertainty is graphically shown as the confidence band around the
curve. It can be interpreted as an infinite collection of point-wise confidence intervals (CI) around the
curve, for every possible drug concentration. The point-of-departure in the above sense is the lowest
concentration for which the CI does not overlap with the CI at zero log-concentration (Figure 1b).
In this study, we use PoD with this latter meaning.
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Figure 1. (a) Graphical representation of the parameters of the Hill equation: A0: the curve upper
bound; b∞: the curve lower bound, as a fraction of A0; logIC50: the logarithm of the substance
concentration at the inflection point of the curve, IC50; β: the parameter controlling the slope of the
curve. Note that GI50 is not itself a parameter of the curve; it is the point at which the curve falls to
50% of its maximum value, A0. (b) Definition of the point-of-departure (PoD), based on the confidence
band of the curve. The existence of a drug effect can be established with 95% confidence at the lowest
concentration at which the Hill curve’s confidence interval (CI, red) does not overlap with the 95% CI
at logC = 0 (green).

https://www.graphpad.com/support/faq/relative-vs-absolute-ic50/
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Whether and how the choice of effectiveness measure influences research results are still not fully
understood. In order to shed some light on this, we tested a large number of substances for their
effectiveness on different cell lines and compared their rankings according to different measures.

3D in vitro systems of cancer are the current state-of-the-art to model the disease as they
more closely recapitulate the stem cell properties of malignant cancers as compared to classical
monolayer cultures [15–17]. 2D assays are the basis of most of the large consortial cancer in vitro
pharmacology projects [18,19]. For the present study, we used stem cell models of glioblastoma,
the most commonly occurring brain-born cancer. Standard clinical treatment currently includes a
combination of chemotherapy and radiotherapy, but the prognosis is still poor, with a median overall
survival of only 14.6 months [20].

The implementation of automated processes in work procedures is a standard dogma in
industry and in clinical labs, with the aim of achieving high accuracy, transparency, and effectivity.
The development of low-cost lab automation led to a wider distribution of printing or robotic devices
for substance testing projects in academic labs with limited resources [21], increasing the value of
preclinical deliverables [22]. Our project applied a wide collection of 3D in vitro systems of brain cancer
and exposed them to a collection of clinically approved drugs using an automation device. Anti-growth
effects were reported using the metabolic activity measurement CellTiterGlow R© assay. The presented
results are an interdisciplinary compendium of state-of-the-art disease modeling, state-of-the-art
laboratory procedures, and innovative statistical modeling to investigate a biotechnological and
socio-economical relevant challenge.

The study was conducted in accordance with the Declaration of Helsinki, and the protocol
was approved by the Ethics Committee of the Medical Faculty of the Heinrich-Heine University
(Study ID #5206).

2. Materials and Methods

2.1. Mathematical Background

Finding the parameters for which the Hill curve closely fits the empirical values is commonly
done by a least-squares method, which minimizes the sum of the squared differences between the data
and the curve. Least-squares imply a Gaussian distribution of the residuals, with a constant variance.
This assumption is increasingly violated as survival values approach zero. Since survival can never
be negative, the actual distribution of the residuals becomes increasingly asymmetric, right-skewed.
A theoretically founded way of coping with this would require a probabilistic model for the errors,
which can be quite complicated in practice. There are many factors contributing to the error, from the
precision in the drug dosage, to the homogeneity of the cell suspension, to the accuracy of fluorescence
measurement, to name just a few.

A heuristic alternative would be to perform the fitting on logarithmically transformed data,
with the corresponding logarithmic transformation of the Hill curve (the logarithm is a special case of
the more general Box–Cox transform, commonly used in statistics). The decreasing tail of the Hill curve
closely approximates a falling exponential function as the log-concentration goes towards infinity,
so taking the logarithm transforms it into a straight line. Least-squares fitting on such transformed
data and in that value range is basically a linear regression.

However, this approximation is not valid for large values, near the top, flat part of the Hill curve.
In that range, we would prefer to perform the fitting on the original, untransformed data. To have the
best of both worlds, the inverse softplus transform can be used. The inverse softplus function,

isp(x) = s · ln(ex/s − 1) (2)

has the convenient property of being close to linear for large x and close to logarithmic near x = 0
(Figure 2a). Applied to the Hill curve, it leaves large values mostly unchanged, but straightens its
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exponentially decreasing tail towards a straight line (Figure 2b). The transition between the two is
smooth, and the dominant behavior at the value x depends on the scaling factor s.
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Figure 2. The function used to transform the data and its effect on the Hill curve: (a) For low values,
close to zero, the inverse softplus function (solid, red) approximates the logarithm (dashed, green).
For high values, it approaches the identity line, y = x (dotted, blue). (b) Where the logistic (Hill)
function (dashed, red) has high values, the inverse softplus (solid, blue) leaves it almost unchanged.
At low values, where the logistic function becomes close to a falling exponential, the inverse softplus
transforms it to an almost straight line.

2.2. Cell Models and Experimental Setup

We used a collection of 9 stem cell models of glioblastoma (HSR-GBM1 [23]; JHH520 [24];
NCH421k, NCH644 [25,26]; BTSC-23, BTSC-233, BTSC-268, BTSC-349, BTSC-407 [27]), and exposed
them to a library of clinical drugs (231 substances, each in 9 different concentrations; 4.33 nM to 25 µM)
using a semi-automated screening platform. For each cell model, repetitive drug resistance tests were
performed: two biological (except for BTSC-23) and three technical replications. For each biological
replication, the mean of the technical replications was used. Undifferentiated and immortalized
human neural progenitor cells (ReNcell R©CX, Sigma-Aldrich, St Louis, MO, USA) and neural stem cells
(H9-Derived, Gibco) were used as healthy controls to evaluate the toxicity of the drugs. Additionally,
we also tested the inhibition efficiency using three different normal adult human dermal fibroblasts
(NHDF-Ad, Lonza, Basel, Switzerland). Effects on cell growth were assessed 72 h after substance
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exposure using the CellTiterGlow R© assay (Promega, Madison, WI, USA). All procedures were in
consent with the local ethical commission oversights.

2.3. Fitting the Curves

For each candidate substance, we fitted the four-parameter Hill curve. Since the starting cell
concentrations differed for different cell lines, we first needed to normalize the empirical cell numbers
so that the corresponding curves started from the same reference point. To that end, we fitted a curve
for each cell line, having its individual amplitude A0, but sharing the remaining three parameters with
the other cell lines. This ensured that the curves shared an identical shape, irrespective of the cell line,
and differed only in their height (Figure 3). The fitting was performed by the ordinary least-squares
procedure on the raw data.

100 101 102 103 104 105

Inhibitor concentration (nM)

0

1

2

3

4

5

6

Ce
lls

 (a
.u
.)

1e6

Figure 3. Different cell lines have different growth patterns, and after 72 h of incubation, their numbers
differ significantly at every drug concentration. Curves differing only in the amplitude parameter
A0 and sharing the remaining three parameters, b∞, logC, and β, were fitted to the empirical data.
The different amplitudes were later used for normalizing the curves.

We then normalized the empirical cell counts by dividing them by the modeled cell count at
zero log-concentration. This produced scaled cell counts, all starting around 1 at the lowest substance
concentration and behaving similarly as it increased.

We re-fitted a single four-parameter Hill curve through the normalized data. In order to ensure a
physically plausible, non-negative confidence band, we applied the least-squares procedure on the data
further transformed by the inverse softplus function. We chose the scaling factor s so that for x > 0.5,
the behavior is closer to linear and closer to logarithmic for x < 0.5. In other words, cell viabilities
above 50% were modeled by a function approximating the Hill equation itself and the viabilities
below 50% by a function approximating its logarithm. The confidence bands were computed using the
standard delta method on the transformed curves and transformed back using the softplus function:

sp(x) = s · ln(ex/s + 1) (3)

We relied on the computed 95% confidence bands to determine the point-of-departure (PoD),
as described in the Introduction.

All computations were performed in Python, Version 3.7.7, using the NumPy and SciPy libraries
and our own code.
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2.4. Quantifying the Drug Effect

The therapeutic potential of the drugs was evaluated on the fitted viability curves using GI50,
GI90, GI95, AUC, and PoD. If GI50, GI90, GI95, or PoD was not reached within the tested concentrations,
it was assigned the value “infinite”. To determine whether a drug had an effect, we relied on GI50 and,
independently, PoD having finite values. If the two criteria were not in agreement, we considered both
possibilities, according to each of them. As the AUC always has a finite value, it alone cannot be used
to determine whether a drug has an effect. However, in conjunction with GI50 or PoD, a threshold
could be established.

The high-level algorithm used for the computation is shown in Figure 4.
Version December 8, 2020 submitted to Cells 7 of 15

Figure 4. The workflow for calculating the effect measures for all drugs and cell lines.

Figure 5. (a) Correlation between AUC and GI50 (dots, solid line) and between AUC and PoD (crosses,
dashed line). The three measures can be used more-or-less interchangeably for detecting substance
effect. (b) Correlation between GI50 and PoD. When both values could be computed (i.e. neither was
infinite), they were very similar. Note, however, that PoD also depends on the experimental setup (see
Discussion below).

Figure 4. The workflow for calculating the effect measures for all drugs and cell lines.

3. Results

Using GI50 as the criterion, an effect was observed on 83 substances (36%). When PoD was used
as the criterion, an effect was observed on 63 substances (27%). GI90 and GI95 were much more lenient,
with GI90 claiming an effect on 150 substances (65%) and GI95 even on 166 drugs (72%).

When an effect was detected using GI50 as the criterion, the GI50 value and AUC were highly
correlated (R2 = 0.836, p < 10−23). Furthermore, when an effect was detected using PoD, the PoD and
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the AUC values were as well highly correlated (R2 = 0.927, p < 10−26; Figure 5a). Finally, when both
GI50 and PoD detected an effect, their respective values were highly correlated, as well (R2 = 0.949,
p < 10−29; Figure 5b).
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Figure 5. (a) Correlation between the AUC and GI50 (dots, solid line) and between the AUC and PoD
(crosses, dashed line). The three measures can be used more-or-less interchangeably for detecting
substance effect. (b) Correlation between GI50 and PoD. When both values could be computed
(i.e., neither was infinite), they were very similar. Note, however, that PoD also depends on the
experimental setup (see Discussion below).

Using GI50 as the criterion, AUC had a significantly higher value (t-test, p < 10−27) when no
effect could be observed than when GI50 had a finite value (mean = 11.15 vs. mean = 8.77; Figure 6a).
When PoD was taken as the criterion, the result was similar, only with slightly shifted AUC values
(mean = 10.92 vs. mean = 8.34, p < 10−26; Figure 6b). This suggests that a threshold on AUC can be
defined (for our set of drugs and tested concentrations: between 9.5 and 10), so that the AUC with a
value above it would also indicate the lack of an effect of the tested drug.

Ranking of the drugs by their effectiveness was not identical, but highly similar for GI50 and
PoD as criteria, at least for the top-ranking substances (Figure 6c). Among the top 20 drugs ranked
by GI50 were also 16 of the top 20 drugs ranked by PoD and 19 of the top 20 drugs ranked by
the AUC (Table 1). Interestingly, two drugs ranked 1 and 2 by GI50, itraconazole and bortezomib,
never reached a PoD. For bortezomib, it is obviously a regression issue: The drug is so effective that it
causes low cell viability even at low concentrations, for which we did not perform any measurements.
Consequently, the confidence interval at such low concentrations turned out to be very wide (Figure 7a).
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For itraconazole, the issue was the opposite: the drug is obviously ineffective (Figure 7b), and the
numerical fitting algorithm did not converge to a reasonable set of parameters.

Figure 6. (a) If a drug failed to reach GI50, the AUC had a significantly higher value. (b) The same
behavior, only with slightly lower AUC values, was observed when using PoD as the criterion for the
effect. (c) Correlation between the rankings by GI50 and by PoD. For the top 20 substances (lower left
corner in the figure), there is little difference between the two criteria.

Figure 7. Cont.
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Figure 7. (a) Bortezomib showed an effect very early, at concentrations for which there were no
measurements, so the confidence band was very wide. (b) Itraconazole did not have an effect, and the
numeric algorithm failed to fit a logistic curve to the empirical data.

Conversely, among the top 20 drugs ranked by PoD were 16 of the top 20 drugs ranked by GI50

and 16 of the top 20 drugs ranked by AUC (Table 2). Here, no effect was detected for vinflunine
tartrate (Rank 18) when using GI50 as the criterion. The drugs actually showed an effect at low
concentrations, but it leveled off above 50% viability, so that GI50 was never reached. Rigosertib
sodium (Rank 15 by PoD and 24 by GI50) showed a similar behavior, but leveled off shortly after falling
below 50% (Figure 8).

Figure 8. (a) Rigosertib sodium leveled off shortly after reaching GI50. (b) Vinflunine tartrate leveled
off before reaching GI50.
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Finally, the top 20 drugs ranked according to the AUC included 19 of the top 20 substances ranked
by GI50 and 16 of the top 20 ranked by PoD. For GI50, only fludarabine phosphate (which had an GI50

value and a PoD and, consequently, should be considered effective) was substituted by vincristine
sulfate, which is actually ineffective. In addition, in the PoD ranking, ponatinib (Ranked 21 by the
AUC), doxorubicin hydrochloride (23), rigosertib sodium (25), and the above-mentioned vinflunine
tartrate (63) were missing.

For practical purposes, the effect on cancer cells is not the only criterion for selecting substances.
At least as important is having low unwanted toxic effects on cells. We used the above-described
method to model the drug effect on five healthy cell cultures and calculated the drug toxicity as 1 − fs,
fs being the fraction of the surviving cells. The toxicity effects on healthy cells at the GI50 and PoD
concentrations are also given in Tables 1 and 2. The data for five substances (ixazomib (MLN9708),
copanlisib (BAY 80-6946), sapanisertib (INK 128), auranofin, and tanespimycin (17-AAG)) were missing
due to an infrastructure reason, because the healthy cells were tested with an incomplete drug library.
In terms of low toxicity, mid- and lower ranking substances, like romidepsin and fludarabine phosphate,
seem more promising. Itraconazole also showed low toxicity, but as noted above, it actually did not
have an effect on cancer cells, either. Our calculations revealed that GI50-based toxicity ranking of
substances is relatively similar to PoD-based assessment.

Table 1. Top 20 drugs and their toxicities, ranked by GI50.

Substance Rank (GI50) Tox@GI50 Rank (PoD) Tox@PoD Rank (AUC)

Itraconazole 1 0.000 64 inf 10
Bortezomib 2 0.411 63 inf 1
Actinomycin D 3 0.596 1 0.636 6
Dinaciclib 4 0.586 2 0.641 8
Staurosporine 5 0.472 4 0.654 2
Ganetespib 6 0.566 3 0.600 3
Romidepsin 7 0.000 12 0.005 7
MLN9708 8 inf 5 inf 4
Carfilzomib 9 0.930 6 0.930 5
Homoharringtonine 10 0.659 7 0.696 9
PF-04691502 11 0.345 8 0.329 14
BAY80-6946 12 inf 9 inf 13
INK128 13 inf 28 inf 12
Obatoclax 14 0.534 10 0.434 11
Panobinostat 15 0.658 11 0.639 16
Auranofin 16 inf 13 inf 15
17-AAG 17 inf 14 inf 17
Idarubicin hydrochloride 18 0.834 16 0.790 19
Fludarabine phosphate 19 0.000 22 0.000 24
Daunorubicin hydrochloride 20 0.710 17 0.675 20
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Table 2. Top 20 drugs and their toxicities, ranked by point-of-departure.

Substance Rank (PoD) Tox@PoD Rank (GI50) Tox@GI50 Rank (AUC)

Actinomycin D 1 0.636 3 0.596 6
Dinaciclib 2 0.641 4 0.586 8
Ganetespib 3 0.600 6 0.566 3
Staurosporine 4 0.654 5 0.472 2
MLN9708 5 inf 8 inf 4
Carfilzomib 6 0.930 9 0.930 5
Homoharringtonine 7 0.696 10 0.659 9
PF-04691502 8 0.329 11 0.345 14
BAY 80-6946 9 inf 12 inf 13
Obatoclax 10 0.434 14 0.534 11
Panobinostat 11 0.639 15 0.658 16
Romidepsin 12 0.005 7 0.000 7
Auranofin 13 inf 16 inf 15
17-AAG 14 inf 17 inf 17
Rigosertib sodium 15 0.477 24 0.477 25
Idarubicin hydrochloride 16 0.790 18 0.834 19
Daunorubicin hydrochloride 17 0.675 20 0.710 20
Vinflunine tartrate 18 0.404 97 inf 63
Doxorubicin hydrochloride 19 0.735 21 0.736 23
Ponatinib 20 0.854 23 0.894 21

4. Discussion

In the present study, we investigated three commonly used measures of effect on a wide range
of glioblastoma models, exposed to a large library of candidate drugs. We introduced a statistically
founded definition of point-of-departure (PoD) and adapted the curve fitting procedure to produce
physically plausible confidence bands. By choosing state-of-the-art technologies, we believe our data
are a solid fundament for the development of our computational measures. We do not attempt to
answer the question: “Which substance is the most suitable for treating a specific disease.” The reader
should be aware that in silico experiments alone presently cannot give a conclusive answer to
this question. Rather, our question is: “Which computational methods are suitable for identifying
promising drug candidates in early stages of substance selection.” We use glioblastoma—a tumor
type that is extremely hard to treat and presenting an urgent clinical need—as a model, but the
computational methods are generic and applicable to determining substance toxicity on all kinds of
cells. Our lab has established a quality control system in order to standardize our data generation and
acquisition procedures, aiming to elevate the relevance of our research for clinical application [22].
To this end, we were inspired by the Guidelines On Target Assessment for Innovative Therapeutics
(GOT-IT), which incorporate target-drug concentration range validation [28]. As far as determining
the right dosage when translating from in vitro to human application is concerned, allometric scaling,
pharmacokinetics/pharmacodynamics, and physiologically-based pharmacokinetic models can be
used [29].

All three of the investigated measures of effect produced reasonable results on our 3D glioblastoma
cell lines and the applied drug library. The results were not identical, but sufficiently similar. GI50 and
AUC were highly correlated, leading to almost identical selection of substances. The correlation
between GI50 and PoD was also high, but PoD sometimes led to a different selection. Substances that
showed an effect at the beginning, but whose effect never reached 50%, were detected by PoD, but not
by GI50. In addition, we observed that all criteria were somewhat susceptible to instabilities in the
numerical fitting algorithms. We therefore advise computing both GI50 and PoD and, in the case of a
large discrepancy (e.g., a non-effective drug by one criterion appearing among the top 20 according to
the other), manually resolving it.
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Despite producing similar results, one has to bear in mind that the three methods measure related,
but different aspects of drug effect: GI50 relies on a point-estimate of the effect; PoD is derived from its
confidence band; and AUC is the integral of the drug effect function. While one could—hypothetically
speaking—construct some arbitration or balancing algorithm to combine the three results, such a
method would lack a theoretical foundation. Another point worth noting is that the absolute values of
the three measures are not directly comparable, which is why we needed to use the rankings. While GI50

and AUC estimate the true properties of the tested drug itself, PoD quantifies our confidence of having
observed an effect in the concrete experimental setup. Using more data, e.g., by making multiple
measurements, is bound to narrow down the confidence band and, consequently, lower the PoD.

Applying our calculation strategies on control cells, we benchmarked our selected high potency
drugs for their adverse effect on non-cancer cells. Since many of the substance targeting molecular and
cellular signaling pathways are not exclusively active in cancer cells, it is expected that drug candidates
also affect our control counterparts. Looking at the concrete drug data of our study, we see that several
top performers possess strong effects on non-cancer models. Those drugs shall be considered with
caution for further consideration in follow-up studies. Mid-ranked therapy potency seem candidates
rather attractive, such as romidepsin and fludarabine phosphate. In the end, any list of drug effects
acquired on disease models only must be evaluated on an individual case basis. For that, the activation
level of the dedicated drug target in cancer cells compared to the non-cancer area may help to predict
susceptibility to the drugs and indicate off-target risk. This kind of research is actually a focus
of our group and has been recently published in the context of the notch pathway inhibitor [30]
or glutaminase 1 inhibitor [31]. However, the present study focuses on the computational method
development for evaluating functional omics—interrogating the parameters of drug effect severity
in cancer and non- cancer cells—to minimize the portfolio of different top substances for further
investigation, rather than putting the biological context in focus. Similar to the cited papers, follow-up
studies such as activation of the individual putative drug targets in relationship to the substance effect
need to be performed in order to validate the suggestions.

The physical conducting of one-to-one comparative tests on healthy development in vitro
models is favorable to predict toxicity, due to the power of real biologically acquired data. In this
context, recently emerging synthetic cancer cell modeling technology, based on the introduction
of cancer resembling genetic elements into healthy donor stem cells [32–35], offers a unique
opportunity: given the step-wise introduction of multi-factorial alterations, one is able to model
normal development, early stage malformation, and late stage disease progression in an isogenic,
homogeneous single-cell of origin background. This setup may be more stable to score molecular
associated, low adversity pharmacological perturbations as when relying on test matrices derived
from different donors, as was the case in this study.

Limitations

Our study focuses on the computational aspects rather than the clinical translational aspects of the
retrieved drug effect results. We are aware of the following limitations in this study: (1) cell models—even
the 3D stem cell centered approach, as in this project—insufficiently reflect tumor heterogeneity and
tumor microenvironment, both known to significantly influence the chemotherapy resistance of the
disease [36,37]; (2) any synergistic effect of the identified top drug candidates with radiation therapy or
temozolomide, the standard of care treatment regime for glioblastoma [20], was not assessed; (3) we used
a heuristic model for fitting the Hill curve to the observations; a theoretically founded error model would
have been preferable; (4) as our study is based on data obtained from in vitro experiments, the results
cannot be used for final drug selection. Instead, they should help the researcher to narrow down potential
candidates for further in vivo and clinical studies.
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5. Conclusions

We argue that relying on technological advancements in the field of disease modeling and the
interrogation of transparent and accurate, preferably automated, laboratory workflow procedures are
dominant influencers for determining relevant top substance candidates with high clinical relevance.
In comparison to that, our data reveal that data post-processing strategies have lower potency to
influence substance ranking, at least when using cell growth kinetics as phenotypic response readout.
Given the plethora of existing service providers in the field of in vitro substance testing on living cells
for the purposes of drug development or individualized medicine, our results may be relevant to
a wider field of biotechnology than just cancer research. Due to our calculated discrepancies of top
substance predictions in terms of their anti-cancer therapy potential and their off-target toxicology
risk, we strongly advocate the interrogation of phenotypic drug response data acquired on proper
non-disease control cell models in addition to cancer cell assays on order to deliver lab values
with higher clinical applicability. However, confirmatory studies need to be conducted in order
to validate this hypothesis. In addition, in vivo validation and combination therapy studies need to be
conducted to validate the clinical potential of personalized anti-cancer treatments. However, in vitro
screening approaches are the only realistic strategy to provide large-scale drug response analysis on
living material within a rational time span and affordable budget requirement for wider application.
Alternatively, tumor gene expression-based prediction of drug response emerges as a new avenue in
personalized chemotherapy resistance for brain cancer patients [34,38,39] and shall be considered in
the wake of AI technology developments. However, all computation-only-based measures remain
in silico without real biologic/functional response measurement, sometimes leaving questions about
their clinical relevance.
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