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Abstract: Some organosilicon compounds, including alkoxysilanes and siloxanes, proved effective
in stabilizing the dimensions of waterlogged archaeological wood during drying, which is essential
in the conservation process of ancient artifacts. However, it was difficult to determine a strong
correlation between the wood stabilizing effect and the properties of organosilicon compounds, such
as molecular weight and size, weight percent gain, and the presence of other potentially reactive
groups. Therefore, to better understand the mechanism behind the stabilization effectiveness, the
reactivity of organosilicons with wood polymers was studied using a 2D 1H–13C solution-state NMR
technique. The results showed an extensive modification of lignin through its demethoxylation and
decarbonylation and also the absence of the native cellulose anomeric peak in siloxane-treated wood.
The most substantial reactivity between wood polymers and organosilicon was observed with the
(3-mercaptopropyl)trimethoxysilane treatment, showing complete removal of lignin side chains,
the lowest syringyl/guaiacyl ratio, depolymerization of cellulose and xylan, and reactivity with
the C6 primary hydroxyls in cellulose. This may explain the outstanding stabilizing effectiveness
of this silane and supports the conclusion that extensive chemical interactions are essential in this
process. It also indicates the vital role of a mercapto group in wood stabilization by organosilicons.
This 2D NMR technique sheds new light on the chemical mechanisms involved in organosilicon
consolidation of wood and reveals what chemical characteristics are essential in developing future
conservation treatments.

Keywords: archaeological wood; silane; siloxane; wood consolidation; 2D NMR; chemical reactivity;
solution-state NMR; wood conservation; waterlogged wood

1. Introduction

The oldest known method for the conservation of waterlogged wooden artifacts dates
back to the mid-1800s, when hot solutions of alum salts (KAl(SO4)2·12H2O) were used
for this purpose for the first time [1,2]. More recent standard conservation procedures em-
ploy mainly polyethylene glycols of different molecular weights and various sugars [3–9].
However, since none of these methods has been entirely satisfying and some of them, such
as alum and PEG treatment, turned out to be even detrimental to wooden artifacts in the
long term [1,10–14], the search for more reliable solutions continues. One of the newly
tested methods for waterlogged wood conservation is the application of organosilicon
compounds, among which some (e.g., alkoxysilanes) can polymerize inside the wood
structure, forming a stabilizing 3D network [15–17].

Our foregoing research on organosilicons allowed us to identify several compounds ef-
fective in stabilizing waterlogged wood dimensions during drying, including
methyltrimethoxysilane, (3-mercaptopropyl)trimethoxysilane, (3-aminopropyl)triethoxysilane,
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1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane, or 1,3-bis-[(diethylamino)-3- (propoxy)
propan-2-ol]-1,1,3,3-tetramethyldisiloxane [15,16]. They differ significantly in molecular
weight, size, and chemical structure, which suggests different stabilizing mechanisms.
Surprisingly, among the tested organosilicons that turned out ineffective in wood stabi-
lization were some with a similar structure to those effective ones, differing only in the
presence/absence of a particular side group or the length of the side chain. That indicates
that not only the formation of a spatial network inside the wood tissue by polymerized
organosilicon compounds but also that their chemical reactivity with wood polymers may
contribute to their stabilizing efficiency.

There are several potential reactive sites in both wood polymers and organosilicon com-
pounds that enable the formation of covalent or hydrogen bonds between their molecules.
In wood polymers, they include primary (at C6) and secondary (at C2 and C3) hydroxyls
in cellulose [18,19], free hydroxyls present on all sugar units in hemicelluloses [20,21], and
phenolic α-O-4 and β-O-4 linkages, as well as aliphatic and phenolic hydroxyl groups
in lignin [22,23]. In turn, alkoxysilanes have highly reactive alkoxy groups that enable
their polymerization by reacting with other silane molecules or different chemicals [24].
Additionally, organosilicons can contain several different functional groups, such as mer-
capto, thiocyanate, amine, vinyl, epoxy, etc., that may facilitate interactions with wood
polymers [25,26].

Although it has already been confirmed that various silanes can react with cellulose [27–33],
lignin [33–38], and wood [39–43], and the results of our previous FT-IR analyses on water-
logged wood treated with organosilicons confirmed the formation of new chemical bonds
between them [15,43], the details of the interactions and potential preferences of silanes to
react with individual wood polymers remain not fully understood. Therefore, to unveil
the mechanism of waterlogged wood stabilization by organosilicon compounds, further
research is necessary that will help to better understand the wood–silane interactions,
especially in highly decayed wood where the usual cellulose/lignin ratio and the regular
chemical composition and structure of wood polymers are altered by degradation processes.

One of the methods that provide insights into changes in wood chemistry caused by
its modification is two-dimensional solution-state nuclear magnetic resonance (NMR) spec-
troscopy. The technique has been successfully employed to study the reactivity of wood
polymers with various chemicals and modification agents, including phenol-formaldehyde
adhesive [44], functionalized benzoic acids [45], polymeric methylene diphenyl diiso-
cyanate [46], or N-methylimidazole (NMI) and acetic anhydride [47]. It is also helpful in
qualitative and quantitative analyses of cell wall polymers in plant tissues [48], allows us
to study of interactions between them [49], and facilitates the identification of structural
changes in lignin, cellulose, and hemicelluloses caused by wood-decaying fungi [50,51] or
hydrothermal pretreatment and enzymatic hydrolysis [52].

In the present study, the two-dimensional solution-state nuclear magnetic resonance
(NMR) method was used to address four crucial questions: (1) whether any new chemical
bonds are formed between organosilicons applied as wood consolidants and the cell wall
polymers that remained in the degraded waterlogged wood; (2) which active sites in wood
polymers interact with particular groups present in organosilicon molecules; (3) whether
silanes have any preference to individual wood polymers; and, finally, (4) what makes
an organosilicon an effective stabilizer (from the perspective of the chemical structure
and reactivity). Understanding the interactions of organosilicons with wood polymers
and the resulting wood stabilization mechanism will enable the design of more effective
consolidants for waterlogged wood. It will also help develop new functional lignocellulosic
materials modified with organosilicon compounds for different industrial purposes.

2. Results
2.1. Effectiveness of Organosilicon Compounds in Waterlogged Wood Stabilization

Keeping the original dimensions of waterlogged wooden artifacts during drying
is a primary goal of successful conservation. Therefore, the effectiveness of conserva-
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tion agents applied as waterlogged wood consolidants is usually evaluated based on
parameters that measure dimensional wood stability, including shrinkage and anti-shrink
efficiency [15,53,54].

Table 1 presents the efficacy of selected organosilicons used to stabilize highly de-
graded waterlogged archeological elm. Alkoxysilanes and siloxanes are labeled with the A
and S letters, respectively, followed by the consecutive numbers (the full names of the chem-
icals are given in Section 4.1 Materials). The most effective wood-stabilizing treatment (with
anti-shrink efficiency (ASE) over 80%) was that with (3-mercaptopropyl)trimethoxysilane
(A3), 3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane (S2), 1,3-bis-[(diethylamino)-3-
(propoxy)propan-2-ol]-1,1,3,3-tetramethyldisiloxane (S3), 3-[3-(hydroxy)(polyethoxypropyl)]
1,1,1,3,5,5,5-heptamethyltrisiloxane (S7), and methyltrimethoxysilane (A1). Pretty good
stabilization with ASE over 70% was achieved using 1,3,5,7-tetrakis(1-(diethylamino)-3-
(propoxy)propane-2-ol)-1,3,5,7-tetramethylcyclotetrasiloxane (S5) and (3-thiocyanatopropyl)
trimethoxysilane NCS(CH2)3Si(OCH3)3 (A4). The other organosilicons used in the study
were less effective, with ASE values of about 50%, which is insufficient from the conserva-
tion perspective.

Table 1. The parameters measured/calculated for selected organosilicons or wood samples treated
with them: Sv, volumetric wood shrinkage; ASEv, anti-shrink efficiency of the individual organosili-
con compound; WPG, weight percent gain; MW, molecular weight of an organosilicon monomer; C,
untreated waterlogged wood used as a control; the full names of organosilicon compounds are given
in Section 4.1 Materials.

Organosilicon Applied Sv [%] ASEv [%] MW [g/mol] WPG [%]

C 55.1 ± 4.9 - - -
A1 9.7 ± 1.3 82.4 136.22 231.9 ± 6.8
A2 29.2 ± 7.3 47.0 277.82 328.8 ± 1.3
A3 0.7 ± 0.5 98.7 196.34 136.9 ± 9.4
A4 15.9 ± 3.5 71.1 221.35 212.5 ± 1.9
S1 24.9 ± 1.7 54.8 362.61 227.3 ± 0.5
S2 4.5 ± 1.4 91.8 248.51 236.2 ± 1.9
S3 4.5 ± 1.4 91.8 508.88 219.8 ± 5.9
S4 29.7 ± 2.5 46.1 482.80 234.1 ± 2.2
S5 15.0 ± 0.9 72.8 989.62 231.8 ± 1.3
S6 26.3 ± 1.1 52.3 1762.40 270.8 ± 2.1
S7 5.3 ± 2.5 90.4 588.95 227.3 ± 1.4

Considering the general molecular structure (alkoxysilanes and siloxanes), the molec-
ular weight, and the weight percent gain of the organosilicons applied (Table 1), it was
difficult to determine any simple correlation between these parameters and the wood
dimensional stabilization achieved with the treatment. Amongst the alkoxysilanes and
siloxanes, the most effective were agents contained molecules as small as 136 g mol−1 and
196 g mol−1 (A1 and A3), medium size of 248 g mol−1 (S2), or as large as 508 g mol−1 (S3)
and 588 g mol−1 (S7). Weight percent gain in the range of 212% to 236% was obtained for
both the most effective (S2, S3, S7, A1, S5, and A4) and less effective (S1 and S4) chemicals.
Interestingly, the best stabilizer (A3) was characterized by one of the smallest molecular
weights (196 g mol−1) and the lowest WPG (only 137% g mol−1), too.

Additionally, there was no direct correlation between the chemical structure and the
stabilizing effectiveness of the organosilicon compounds used in this study. All alkoxysi-
lanes (Figure 1) had a similar structure with the presence of three methoxyl groups. They
differed only in the fourth group, which varied from a simple methyl group in A1 through
a longer alkyl chain (propyl) terminated with a pyridinium chloride (A2), a thiol group
(A3), or a thiocyanate group (A4). However, their waterlogged wood-stabilizing efficiency
differed significantly (Table 1), which suggested the critical role of the fourth additional
chemical group bound to the silicon atom.
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Figure 1. Chemical structures of alkoxysilanes used for waterlogged wood conservation.

The structures of siloxanes used in the research were more varied (Figure 2). They
included disiloxanes with shorter (S1 and S2) and longer alkyl chains (S3, S4), with addi-
tional amino (S2, S3, S4) or epoxy (S1) groups, a trisiloxane with a long polyethoxypropyl
chain (S7), as well as more complex cyclic tetrasiloxanes (S5 and S6). Similarly to alkoxysi-
lanes, it was difficult to find a correlation between the structure and stabilizing effectiveness
of these chemicals because the best-performing ones (S2, S3, S7, and S5) differed in the
length of a side chain and the presence of reactive groups, while some of the less effective
ones had side chains of similar length and also contained a reactive group that could
interact with wood polymers (e.g., S1 vs. S3 or S4 vs. S3).
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The results presented above suggest that more than one mechanism must be involved
in the stabilizing effect of the organosilicon compounds on waterlogged wood. Hence the
idea to use the two-dimensional (2D) 1H–13C single-bond correlation NMR technique to
investigate the reactivity between organosilicons and wood polymers.
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2.2. NMR Spectra

Two-dimensional (2D) 1H–13C single-bond correlation NMR spectra were acquired
on the whole cell walls of alkoxysilane- and siloxane-treated archaeological elm wood.
Through this analysis, the native wood cell wall polymers were semi-quantifiable, and
the detailed chemistry between a treatment and the wood could be visualized, thus re-
vealing clues as to the mechanisms involved in how each treatment stabilizes the wood.
Figures 3–5 display partial 2D NMR spectra for all samples studied here. Figure 3 in-
cludes a chemical structure key to the color-coded contours that are referenced in each
spectrum. Figures 6 and 7 are bar charts showing the NMR integration values for the major
wood polymers present in each of the spectra relative to the lignin methoxyl group (for
alkoxysilane- and siloxane-treated wood, respectively). Not all of the spectra displayed the
presence of the major wood polymers due to the overwhelming intensities of the organosil-
icon contours. For example, the 2D NMR spectra of archaeological elm wood treated with
A2, S1, S6, and S7 showed intense organosilicon peaks that overlapped with the wood cell
wall polymer peaks, making the signals from wood visually obscured. The organosilicon
treatments may be grouped into two types: alkoxysilanes and siloxanes. The following will
describe the chemical characteristics found in the wood cell walls after each treatment.

2.2.1. Alkoxysilane-Treated Wood

Archaeological wood treated with alkoxysilanes included methyltrimethoxysilane
(A1), 1-[3-(trimethoxysilyl)propyl]pyridinium chloride (A2), (3-mercaptopropyl)
trimethoxysilane (A3), and (3-thiocyanatopropyl)trimethoxysilane (A4). The chemical
structures for these treatments are shown in Figure 3.

Treatment A1 was the simplest structure of all the organosilicons. From Figure 4, the
NMR spectrum showed quite similar characteristics to the control (C) degraded wood
(Figure 3). For example, all the main lignin linkages (β-O-4, β-5, and β-β), the syringyl
(S) and guaiacyl (G) units, and major polysaccharides cellulose (Glc) and xylan (Xyl) were
present. The oxidized aromatic units were evidenced by the presence of α-carbonyl versions
of syringyl and guaiacyl units, as depicted by S′ and G′. From the integration data shown
in Figure 6, the S/G ratio of A1 decreased by 31% compared to the control.

Treatment A2 was the only organosilicon based on a salt. In the spectrum shown in
Supplementary Figure S1, the major wood polymers were not able to be detected. The
only functional group detectable from wood was that of the lignin methoxyl, and even this
group was considered a weak signal. The high intensity of the treatment contours seemed
to overwhelm the weaker wood polymer signals.

Treatment A3 contained a mercaptopropyl group. The NMR spectrum shown in
Figure 4 displayed a dramatic degradation of the wood polymers. For example, the
spectrum was devoid of all the major lignin linkages, as well as the predominant lignin
aromatic units; the only aromatic units present were the α-carbonyl versions of syringyl
and guaiacyl units (S′ and G′). The contour peak for p-hydroxyphenyl units (H) was shown
to be enhanced, while the S and G contour peaks were depleted, showing evidence of
methoxyl removal. Similarly, the major polysaccharides were also heavily cleaved; the
α- and β-reducing end groups (αred and βred) of cellulose (Glc) and xylan (Xyl) showed
intense signals. Therefore, this treatment resulted in a high amount of wood degradation.
However, we also detected partial reactivity between the treatment and the Glc6 position,
showing new contours labeled R-Glc6 (yellow). These new contours showed evidence that
this treatment does react with cellulose. In the integration data, shown in Figure 6, the S/G
ratio of A3 decreased by 54% as compared to the control.

Treatment A4 contained a thiocyanatopropyl group. The NMR spectrum in Figure 4
displayed similar characteristics to spectra of the control degraded wood (Figure 3) and
treatment A1. All of the major lignin linkages were present, as well as the aromatic lignin
units (S and G). The α-carbonyl versions syringyl and guaiacyl units (S′ and G′) were
also present. Cellulose and xylan were also evident. From Figure 6, the S/G ratio of A4
decreased by 27% compared to the control.
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Figure 4. Partial 2D NMR spectra of alkoxysilane-treated wood showing the effects of the
treatment with methyltrimethoxysilane (A1), (3-mercaptopropyl)trimethoxysilane (A3), and (3-
thiocyanatopropyl)trimethoxysilane (A4). The colored contours and labels correspond to the chemical
structures shown in Figure 3.
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Figure 5. Partial 2D NMR spectra of siloxane-treated wood showing the effects of the treat-
ment with (1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane (S2), 1,3-bis-[(diethylamino)-3-
(propoxy)propan-2-ol]-1,1,3,3-tetramethyldisiloxane (S3), 1,3-bis-[(ethylenodiamino)-3-(propoxy)
propan-2-ol]-1,1,3,3-tetramethyldisiloxane (S4), 1,3,5,7-tetrakis(1-(diethylamino)-3-(propoxy)propan-
2-ol)-1,3,5,7-tetramethylcyclotetrasiloxane (S5). The colored contours and labels correspond to the
chemical structures shown in Figure 3.
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each spectrum of alkoxysilane-treated wood (A1, A3, and A4) with control degraded wood (C). The
numbers above the bars indicate the actual value of the integral. All integrations are relative to the
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2.2.2. Siloxane-Treated Wood

Archaeological wood treated with siloxanes included 1,3-bis(3-glycidyloxypropyl)-
1,1,3,3-tetramethyldisiloxane (S1), 1,3-Bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane
(S2), 1,3-bis-[(diethylamino)-3-(propoxy)propan-2-ol]-1,1,3,3-tetramethyldisiloxane (S3),
1,3-bis-[(ethylenodiamino)-3-(propoxy)propan-2-ol]-1,1,3,3-tetramethyldisiloxane (S4), 1,3,
5,7-tetrakis(1-(diethylamino)-3-(propoxy)propan-2-ol)-1,3,5,7-tetramethylcyclotetrasiloxane
(S5), 1,3,5,7-tetrakis(3-polyethoxypropyl)-1,3,5,7-tetramethyltetracyclosiloxane, methoxy
terminated (S6), and 3-[3-(hydroxy)(polyethoxypropyl)]1,1,1,3,5,5,5-heptamethyltrisiloxane
(S7). The chemical structures for these treatments are shown in Figure 2.

In all NMR spectra obtained for wood treated with siloxanes of the molecular weight
over 300 g mol−1 (S1, S3–7), the high-intensity peaks coming from the treatments that
overwhelmed the wood polymers signals were seen.

Treatments S1, S2, S3, and S4 all contained a tetramethyldisiloxane group. Treatments
S2, S3, and S4 showed similar characteristics in their NMR spectra (Figure 5). For example,
the major lignin linkages β-O-4 and β-5 were present as well as the S and G units. However,
the S′ and G′ units were absent, which suggests the reduction or removal of the α-carbonyl
functionality. From the integration data, shown in Figure 7, the S/G ratios for treatments
S2, S3, and S4 all showed a decrease of 7%, 47%, and 48%, respectively, compared to the
control. The polysaccharides also showed several different contour peaks as compared to
the control, suggesting reactivity between the treatment and the polysaccharides, especially
for treatments S3 and S4. Treatment S1 was devoid of major wood polymer peaks, most
likely due to the overwhelming peaks from the organosilicon treatment, but did show the
presence of polysaccharide peaks in the anomeric region and S units in the aromatic region
(Figure S1).

Treatments S5 and S6 both contained a tetramethyltetracyclosiloxane group. Interest-
ingly, treatment S5 displayed similar characteristics to treatments S3 and S4 in the NMR
spectra in that the major lignin linkages β-O-4 and β-5 were present, as well as the S and G
units, and the polysaccharide peaks looked similar in the anomeric region (Figure 5). On
the other hand, treatment S6 was devoid of major lignin polymer peaks, most likely due to
the overwhelming peaks from the organosilicon treatment, but did show polysaccharide
peaks in the anomeric region (Figure S1). From Figure 7, the S/G ratio for treatment S5
showed a decrease of 45% compared to the control

Treatment S7 contained a heptamethyltrisiloxane group. Similar to treatment S6
characteristics, this treatment was also mostly devoid of wood polymer peaks with the
exception of weak aromatic units (S and G) and polysaccharide peaks in the anomeric
region (Figure S1). The S/G ratio was not measurable, given the weak intensity of the
aromatic unit peaks.

3. Discussion

The NMR results obtained shed new light on the interactions between the wood
cell wall polymers and organosilicon compounds applied as consolidants to stabilize
waterlogged wood dimensions.

Our previous FT-IR studies [15,43] showed that hydrolysis and condensation of
alkoxysilane monomers occurred in the treated wood, leading to the formation of a stabiliz-
ing polymer network inside the wood structure. Moreover, it seemed that also new chemical
bonds between wood hydroxyls and alkoxysilanes were formed due to the treatment, in
particular when methyltrimethoxysilane (A1) and (3-mercaptopropyl)trimethoxysilane
(A3) were applied. The reduction of available hydroxyls on the cell walls was additionally
confirmed by dynamic water sorption experiments that showed the decrease in equilibrium
moisture content and the sorption hysteresis of treated archaeological wood compared to
untreated wood [55,56]. However, the new NMR data only showed the chemical modifica-
tion of C6 primary hydroxyls in cellulose in the wood sample treated with A3; no other
evidence of wood hydroxyls’ modification is visible.
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On the other hand, we observed demethoxylation of lignin S and G units, which was
also seen in our previous FT-IR spectra [43] and other studies on wood modification with
alkoxysilanes [57,58]. From the integration data in Figure 6, it was evident that the major
lignin linkages in all samples treated with alkoxysilanes were much—in some cases two
times—higher than that found in the control degraded wood samples, with the exception
of the β-β linkage. This result, in conjunction with the overwhelmingly consistent decrease
in the S/G ratios in the treated woods compared to the control, suggests that the lignin was
undergoing demethoxylation during alkoxysilane treatment; thus, alkoxysilanes have the
ability to oxidize these methoxyl groups on the aromatic ring of lignin.

The NMR results were, then, surprising, especially since several researchers observed
the reactivity of alkoxysilanes (via alkoxy groups) with wood hydroxyls [24,39,41,58].
However, some catalysts are usually applied to promote the reactivity of alkoxysilanes
with wood, which were not used in the case of our waterlogged wood treatments. This fact
may explain why we did not observe the modification of the wood hydroxyls in our NMR
spectra of A1, A2, and A4. It is worth mentioning here that the NMR spectra obtained
contained some unidentified peaks that arose from the alkoxysilanes applied. For example,
in the spectra shown in Figure 4 we do see peaks from the trimethoxy groups around
3.0–3.5/45–50 ppm; most of the other peaks from alkoxysilanes did not interfere with
wood polymer peaks. However, we cannot currently assign any other peaks related to new
plausible chemical bonds between the silanes and lignin/polysaccharides units in A1, A2,
and A4. Further research on this phenomenon is planned.

For alkoxysilane treatment A3 ((3-mercaptopropyl)trimethoxysilane), we were able to
tentatively assign the new peaks of reacted cellulose C6 hydroxyls, labeled as R-Glc6, at
3.73/63.1 ppm and 3.93/63.1 ppm (Figure 4). Treatment A3 also showed complete removal
of lignin side chains, the lowest S/G ratio (0.52), and depolymerization of cellulose and
xylan as evidenced by the presence of their intensified α- and β-reducing end groups at
4.97/92.8, 4.93/93.0 and 4.34/97.5, 4.28/98.3 ppm, respectively. This strong reactivity of the
most effective wood stabilizer with all wood polymers indicates that chemical interactions
are essential in stabilizing waterlogged wood dimensions during drying. It also points
to the conclusion about a vital role the mercapto group plays in these interactions and
wood stabilization. Even though the observed reactivity may hinder the reversibility of the
treatment with this silane, which is required by conservation ethics, the SEM images of the
treated wood showed that the silane locates in/on the cell wall [15], leaving the lumina
empty for further re-treatment, which potentially does not exclude the chemical from the
conservation practice.

Interestingly, in the case of siloxane treatment, we could mainly observe lignin modi-
fication employing demethoxylation of S and G units and removal (decarboxylation) of
the α-carbonyl versions of syringyl and guaiacyl units (S′ and G′). From the integration
data in Figure 7, as with what we observed for the alkoxysilane treatments, the major
lignin linkages in all of the samples treated with siloxanes were much higher than those
found in control degraded wood samples, with the exception of the β-β linkage. This result
suggests that the lignin can undergo demethoxylation during organosilicon treatment,
regardless of treatment type. From our previous FT-IR research [43], we learned that the
methoxyl groups in lignin might contribute to the interaction with 1,3-bis-[(diethylamino)-
3-(propoxy)propan-2-ol]-1,1,3,3-tetramethyldisiloxane (S3). Perhaps all siloxanes applied
in this study react with lignin similarly. However, considering their diverse effectiveness as
wood consolidants, this reactivity seems not to play a crucial role in the stabilizing mechanism.

When it comes to decarbonylation, the literature data indicate that siloxanes, including
tetramethyldisiloxane, can reduce α,β-unsaturated carbonyl derivatives [59,60]. A tetram-
ethyldisiloxane unit is present in all siloxanes used in our research. However, it contains
methyl groups attached to the silicon atom instead of hydrogen, which is necessary for the
reductive activity. Therefore, it is difficult to say if the treatment conditions or the solvent
used for NMR analysis (DMSO) could cause demethylation of the silicon atom and foster
the reductive properties of siloxanes; this question requires further study to be answered.
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Another aspect that was evident from the NMR analysis of siloxane-treated wood was
the absence of the native cellulose anomeric peak normally observed at 4.25/103.7 ppm.
Cellulose was clearly present in all of the alkoxysilane-treated wood samples; so, this
indicates that the siloxane treatments are able to modify cellulose heavily. Several new
anomeric peaks were observed in the siloxane spectra of S3, S4, and S5 (Figure 5) and S1,
S6, and S7 (Figure S1), but were not currently assigned here. Further research is needed to
assign these new anomeric peaks. Since the effectiveness of the applied siloxanes varied,
it is difficult to explicitly state if polysaccharide modification is essential in stabilizing
waterlogged wood dimensions during drying.

Considering the results of the presented research and the data on organosilicon com-
pounds used for waterlogged wood conservation from the previous studies [15,16,43], it
can be concluded that the mechanism of waterlogged archaeological wood dimensional
stabilization by alkoxysilanes is based on (1) bulking the cell wall, (2) forming a stabilizing
polymer network, and (3) chemically interacting with wood polymers (at least in the case
of alkoxysilanes containing mercapto groups). On the other hand, in the case of silox-
anes, wood stabilization seems to be mainly based on filling the cell lumina. However,
the absence of the native cellulose anomeric peak and the absence of the α-carbonyls in
aromatic lignin units in all the siloxane treatments demonstrate that cellulose and lignin
modifications are also intimately involved in stabilizing siloxane-treated wood.

4. Materials and Methods
4.1. Materials

The research material was waterlogged elm (Ulmus spp.) heartwood: the remnants of
a medieval bridge excavated from the sediments of the Lednica Lake in the Wielkopolska
Region, Poland. The wood was highly degraded, with reduced cellulose and hemicelluloses
content and the loss of wood substance estimated at about 70–80% [15,43].

Organosilicon compounds for waterlogged wood treatment were obtained by hydrosi-
lylation of relevant olefins with Si–H-containing compounds in the presence of platinum
catalysts [61] at the Adam Mickiewicz University Foundation, Poznań Science and Technol-
ogy Park, Poznań, Poland [15]:

- methyltrimethoxysilane CH3Si(OCH3)3 (A1);
- 1-[3-(trimethoxysilyl)propyl]pyridinium chloride (C5H5NCl)C3H6Si(OCH3)3 (A2);
- (3-mercaptopropyl)trimethoxysilane HS(CH2)3Si(OCH3)3 (A3);
- (3-thiocyanatopropyl)trimethoxysilane NCS(CH2)3Si(OCH3)3 (A4);
- 1,3-bis(3-glycidyloxypropyl)-1,1,3,3-tetramethyldisiloxane [CH2(O)CHCH2O(CH2)3Si

(CH3)2]2O (S1);
- 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane [H2N(CH2)3Si(CH3)2]2O (S2);
- 1,3-bis-[(diethylamino)-3-(propoxy)propan-2-ol]-1,1,3,3-tetramethyldisiloxane [(C2H5)2

NCH2CH(OH)CH2O(CH2)3Si(CH3)2]2O (S3);
- 1,3-bis-[(ethylenodiamino)-3-(propoxy)propan-2-ol]-1,1,3,3-tetramethyldisiloxane [(NH2

(CH2)2HNCH2CH(OH)CH2O(CH2)3Si(CH3)2]2O (S4);
- 1,3,5,7-tetrakis(1-(diethylamino)-3-(propoxy)propan-2-ol)-1,3,5,7-tetramethylcyclote

trasiloxane [(C2H5)2NCH2CH(OH)CH2O(CH2)3Si(CH3)O]4 (S5);
- 1,3,5,7-tetrakis(3-polyethoxypropyl)-1,3,5,7-tetramethyltetracyclosiloxane methoxy

terminated [CH3O(CH2CH2O)7(CH2)3Si(CH3)O]4 (S6);
- 3-[3-(hydroxy)(polyethoxypropyl)]1,1,1,3,5,5,5-heptamethyltrisiloxane HO(CH2CH2O)7

(CH2)3Si(CH3)[OSi(CH3)3]2 (S7).

For simplicity, the numbers of consecutive alkoxysilanes (A) and siloxanes (S) listed
above, instead of their full chemical names, are used throughout the manuscript.

Dimethylsulfoxide-d6 (DMSO-d6, 99.5% D) and 1-methylimidazole-d6 (NMI-d6) for
NMR analysis were supplied by Aldrich Chemical Company (Milwaukee, WI, USA).
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4.2. Methods
4.2.1. Waterlogged Wood Treatment

Waterlogged elm log was cut into small samples with the dimensions of
20 mm × 20 mm × 10 mm (radial × tangential × longitudinal direction). To ensure the
greatest possible homogeneity of the wood degradation degree, thus reproducibility of the
results, the specimens were sampled from a selected part of the log and a similar distance
from the pit, since the number of suitable wooden pieces was limited.

The specimens were dehydrated by soaking them in 96% ethanol for 4 weeks and then
treated with 50% ethanol solutions of selected organosilicon compounds. An oscillating-
pressure method was used for the wood treatment, applying a −0.9 bar vacuum for 0.5 h
and then 10 bars of pressure for 6 h. The cycle was repeated six times every 24 h. Between
the cycles, the wood was left submerged in the organosilicon solution under atmospheric
pressure to ensure continuous treatment. After the treatment, the samples were removed
from the conservation solution and air-dried at room temperature (21 ± 1 ◦C) for 4 weeks.
As a result, five replicates of each treatment were obtained, and five more untreated
specimens were air-dried from the waterlogged state and used as a standard control for
this type of wood.

To evaluate the effectiveness of the treatment, weight percent gain (WPG) for each
organosilicon compound was calculated according to the standard Equation (1):

WPG =
W1 −W0

W0
× 100 (1)

where W0 is the estimated dry mass of the specimen before treatment, and W1 is the dry
mass of the sample treated with a selected organosilicon compound [15].

The evaluation of the stabilizing effect of particular conservation agents was based on
the values of volumetric shrinkage (Sv) and volumetric anti-shrink efficiency coefficient
(ASEv) calculated according to the standard Equations (2) and (3):

Sv =
V0 −V1

V0
× 100 (2)

where V0 is the initial volume of a waterlogged specimen, and V1 is the final volume of the
specimen (untreated or treated, respectively) after air-drying, and

ASEv =
Svu − Svt

Svu
× 100 (3)

where Svu is the volumetric shrinkage of the untreated specimen, and Svt is the volumetric
shrinkage of the treated specimen.

4.2.2. Wood Preparation for NMR

Air-dried archaeological wood samples were sliced with a knife in the radial direction
to obtain sections approximately 1 mm thick. Each sliced specimen was placed into a 50 mL
ZrO2 jar followed by three 20 mm ZrO2 balls and loaded into a Retsch PM-400 planetary
ball mill (Newtown, PA, USA). The wood was milled for 24 h (300 rpm, 20 min milling,
10 min pause; these conditions allowed us to keep the wood temperature below 50 ◦C,
which prevented its thermal degradation and changes in the chemical composition). Then,
the 20 mm balls were removed and shaken in the copper sieve to recover the wooden
material that remained on their surface. Afterward, ten 10 mm ZrO2 were added to pre-
milled wood, and the milling was continued for another 24 h under the same conditions.
Following ball-milling, the 10 mm balls were removed and shaken in the copper sieve, as
performed previously, and the milled wood was scraped from the jar and weighed.



Molecules 2022, 27, 3407 14 of 18

4.2.3. Wood Cell Wall Dissolution

About 30 mg of each sample was placed in the NMR tube (5 mm in diameter, 17.8 cm
in length) and dissolved using 400 µL DMSO-d6. To expedite the wood dissolution, the
tubes were sonicated at 35 ◦C for 1 h [62]. For the samples that dissolved successfully,
giving homogeneous and transparent solutions, an additional 100 µL DMSO-d6 was added
to reach the final solvent volume of 500 µL. For the samples that did not fully dissolve,
50 µL of 1-methylimidazole-d6 (NMI-d6), a non-degradative co-solvent with DMSO-d6,
was added to facilitate the disruption of hydrogen bonds. NMI-d6 was added to samples
A2, A3, S1, S2, S3, S4, S5, S6, and S7; it was omitted in samples C, A1, and A4 because
dissolution proceeded in DMSO-d6 without the need for NMI-d6. Adding NMI-d6 as a
co-solvent did not affect the NMR chemical shifts of the wood cell wall polymers in this
study. Then, the samples were sonicated until homogeneous and clear solutions evolved.
In the end, 50 µL DMSO-d6 was added to the tubes with NMI-d6 to reach the final solvent
volume of 500 µL.

4.2.4. NMR Analysis

NMR spectra for untreated and treated archaeological wood were acquired using a
Bruker-Biospin (Rheinstetten, Germany) AVANCE III HDTM 500 MHz spectrometer fitted
with a nitrogen-cooled 5 mm ProdigyTM TCI gradient cryoprobe with inverse geome-
try. The one-bond 1H–13C correlation (HSQC) spectra were obtained using the adiabatic
Bruker pulse program hsqcetgpsisp2.2 and processed as previously described [63]. For
semi-quantitative analysis of the wood polymer structures present in the spectra, specific
chemical shifts of native structural units, such as the β-aryl ether, phenylcoumaran, and
resinol subunits in lignin or arabinoxylan and glucomannan units in hemicellulose were
integrated and referenced to the lignin methoxyl group (since it is known as the most stable
functional group) using Bruker TopSpin 3.6.2 software.

5. Conclusions

The conservation of ancient wooden artifacts is critical in preserving history and
retelling stories that would otherwise be lost. Developing unique and effective methods in
wood conservation requires an understanding of the mechanisms involved in stabilizing
the wood. Organosilicons have been proven to be highly effective as wood stabilizers.
Here, we explored and characterized the detailed chemistry occurring between organosil-
icon treatments and the wood cell wall polymers using 2D 1H–13C solution-state NMR.
The results of this study on the reactivity of organosilicon compounds applied as consol-
idants for waterlogged archaeological wood with wood cell wall polymers revealed an
extensive modification of lignin and polysaccharides due to the treatment. In the case
of alkoxysilanes, mainly lignin demethoxylation was observed. However, in the case of
(3-mercaptopropyl)trimethoxysilane treatment, which was the most effective in stabilizing
wood dimensions, more comprehensive interactions with wood polymers were observed,
including depolymerization of cellulose and xylan, reactivity with the C6 primary hydrox-
yls in cellulose, complete removal of lignin side chains, and the lowest syringyl/guaiacyl
unit ratio. In turn, siloxane treatments caused severe modification of lignin aromatics,
including its α-decarboxylation and demethoxylation, as well as cellulose modification.

In answering the questions presented in our research objectives, we can state that:

- New chemical bonds were formed between (3-mercaptopropyl)trimethoxysilane and
cellulose in waterlogged wood. In the case of other organosilicons, it was difficult to
assign unidentified peaks in NMR spectra to potential new bonds formed between
them and wood polymers. This problem is planned to be solved in future research.

- The active sites in wood polymers that interacted with organosilicons were C6 primary
hydroxyls in cellulose (in the case of (3-mercaptopropyl)trimethoxysilane treatment),
as well as methoxyl (in both types of organosilicon treatments) and α-carbonyl groups
in aromatic lignin units (in the case of siloxane treatment).
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- In general, alkoxysilanes appear to preferentially react with lignin, while siloxanes
can modify lignin and polysaccharides; only (3-mercaptopropyl)trimethoxysilane was
confirmed to react also with cellulose.

- Since a similar modification of wood polymers was observed for both groups of
organosilicons used in this study, but their effectiveness as wood stabilizers was
different, we cannot state if lignin demethoxylation or modification of lignin aromatics
by organosilicons plays a crucial role in the stabilizing mechanism; on the other hand,
we can clearly state that the extensive chemical modification of 3-mercaptopropyl)
trimethoxysilane (containing a reactive mercapto group) with wood polymers is
crucial for the excellent stabilization of waterlogged wood dimensions during drying.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules27113407/s1. Figure S1: Partial 2D NMR spectra of
organosilicon-treated wood showing 1-[3-(trimethoxysilyl)propyl]pyridinium chloride (A2), 1,3-bis(3-
glycidyloxypropyl)-1,1,3,3-tetramethyldisiloxane (S1), 1,3,5,7-tetrakis(3-polyethoxypropyl)-1,3,5,7-
tetramethyltetracyclosiloxane methoxy terminated (S6), 3-[3-(hydroxy)(polyethoxypropyl)]1,1,1,3,5,5,
5-heptamethyltrisiloxane (S7). The colored contours and labels correspond to the chemical structures
shown in Figure 3. Table S1: Chemical shifts of functional groups present in selected organosilicon
compounds used in this study. References [64–73] are cited in Supplementary Materials.
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