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1  | INTRODUC TION

Human actions have the potential to generate artificial selection and 
evolution in wild populations (Hendry et al., 2017; Stockwell et al., 2003), 
and one of the most important agents of anthropogenic selection can 
be harvest (Fugère & Hendry, 2018). In a recent article in Evolutionary 
Applications, LaSharr et al., (2019) argue that horn size in bighorn sheep 
(Ovis canadensis) throughout their range is generally stable or increasing, 
largely irrespective of the degree of selectivity of trophy hunting in dif-
ferent regions. Harvest of bighorn sheep rams is limited throughout the 
species’ range by varying combinations of limited entry hunt systems and 
a definition of minimum horn size of harvestable (“legal”) rams.

The degree to which such regulations cause artificial selec-
tion against large horn size will be determined by both the nature 
of the size- dependent harvest and by the overall harvest rate. In 
most US jurisdictions, harvest rates are relatively low, and licence 
numbers are typically controlled by limited entry hunts. As such, 
even though some jurisdictions impose minimum thresholds on 
the horn size, below which harvest is illegal, low overall harvest 
rates probably mean that selection in most of the US part of the 
range is low. In contrast, in the Canadian province of Alberta, 
where approximately 15% of bighorn sheep occur (Larkins 2012), 
selection is likely to be much stronger, and much more directly dic-
tated by minimum size requirements. In most of Alberta, rams may 
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Abstract
A recent article in Evolutionary Applications by LaSharr et al. reports on trends in 
the size of horns of bighorn sheep (Ovis canadensis) throughout much of the species’ 
range. The article concludes that there are “... stable or increasing trends in horn 
growth over nearly 3 decades in the majority of hunt areas throughout the western 
U.S. and Canada.” However, the article equates nonsignificance of predominantly 
negative trends in the areas with the most selective harvest as evidence for the null 
hypothesis of no trends and also fails to consider well- known and serious biases in 
the use of data collected in size- regulated hunts. By applying meta- analysis to the 
estimates reported by LaSharr et al., we show that there has been a pervasive overall 
trend of declining horn sizes in Alberta, where the combination of horn size- based 
legality, combined with unrestricted hunter numbers are understood to generate the 
greatest selective pressures. Given the nature of the biases in the underlying data, the 
magnitudes of the trends resulting from our re- analysis of LaSharr et al.'s (Evolutionary 
Applications, 2019, 12, 1823) trend estimates are probably underestimated.
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not be harvested until a legislated degree of horn curl is reached, 
and harvest rates of legal individuals may be very high as unlim-
ited numbers of licences are available for resident hunters in most 
management areas. As such, LaSharr et al. (2019) surmise that 
harvest pressure on “legal” rams is likely higher in Alberta than 
elsewhere, an interpretation with which we agree. However, de-
spite the expectation of strong selection in Alberta, LaSharr et al. 
(2019) conclude that the data show “... stable or increasing trends 
in horn growth over nearly 3 decades in the majority of hunt areas 
throughout the western U.S. and Canada.”

LaSharr et al. (2019) note that in Alberta “Age- specific horn 
size declined in 44% of hunt areas where harvest was regulated 
solely by morphological criteria”, yet conclude that “phenotypic 
consequences are not a foregone conclusion in the face of selec-
tive harvest; over half of the hunt areas with highly selective and 
intensive harvest did not exhibit age- specific declines in horn size”. 
While basic theory of the evolution of quantitative traits (Walsh 
& Lynch, 2018) recognizes that responses to selection are not a 
foregone conclusion, the tempering of significant declines in 44% 
of areas with a notion that more than half of areas in Alberta show 
stable horn size is problematic. Sample size is greatly diminished 
in any one area, reducing statistical power. Nearly all areas have 
negative trend estimates.

We present alternative analyses of LaSharr et al.'s results. First, 
we conduct a re- analysis of estimates of trends in horn size, using 
established meta- analytic techniques, to avoid equating nonsignif-
icance with evidence for the null hypothesis. We then discuss sta-
tistical artefacts that likely dampen trends of declining horn size in 
harvest data.

2  | NONSIGNIFIC ANCE VS.  SUPPORT FOR 
THE NULL HYPOTHESIS

LaSharr et al. (2019) report that, after accounting for environmental 
variables and demography, the regressions of trophy scores (combi-
nations of linear measurements in which length is heavily weighted) 
on time were nonsignificant or significantly positive in most manage-
ment areas. To conclude from a statistically nonsignificant result that 
there is no meaningful effect would require an analysis sufficiently 
powerful to exclude the possibility that a substantive effect exists.

To see how LaSharr et al.'s (2019) estimates suffer from low 
power, consider one of the areas with the largest sample size, 
Kananaskis- North in Alberta. The data (Tables S1 and S2 of 
LaSharr et al., 2019) included measurements from 344 rams over 
24 years. The estimated slope of the regression of horn size on year 
was 0.01 cm/year, and the 95% confidence interval was −0.12 to 
0.14 cm/year. This nonsignificant result is associated with a range of 
rates of change that encompases increases or decreases of approxi-
mately one cm per decade, or more than 2 cm over the available time 
series. Is this range of changes small enough that the population can 
be characterized as stable? Particularly if many males are harvested 

the year they become legal, 2 cm could be the difference between 
legally harvestable, or not.

3  | HIER ARCHIC AL MODEL-  BA SED 
ANALYSIS OF HORN TRENDS

Statistical noise arising from small sample size will (a) make small ef-
fects likely nonsignificant, and (b) inflate variability from one esti-
mate to the next. While estimated regressions of horn size on time 
in each area are highly uncertain, it is possible to estimate the aver-
age trends, and the variability of trends among areas, with a useful 
amount of precision.

We applied a mixed effects model to LaSharr et al.'s (2019) trend 
estimates as reported in their supplemental tables following

where �̂ i is the estimated slope for area i  and SEi its standard error. 
� i is the (unknown) true regression slopes, and mi is the estimation er-
rors of those slopes (also unknown). The model integrates over the un-
certainty in the measurement errors mi, whose distribution is given by 
their corresponding standard errors (SEi). We can estimate the average 
of true slopes (��) and their variances (�2

�
). Equation 1 is a random effect 

meta- analysis (Koricheva et al., 2013).
We applied the mixed effects meta- analytic model (Equation 1) to 

data from management areas in Alberta, implemented as a Bayesian 
mixed model using the R package MCMCglmm (Hadfield, 2010), ap-
plying diffuse Gaussian and inverse gamma priors (Gelman & Hill, 
2007) for the model intercept (the mean slope, ��), and the resid-
ual variance (the variance of slopes, �2

�
), respectively. We estimated 

the mean and variance of slopes of (a) horn size, (b) horn size stan-
dardized to age seven and (c) horn size standardized to age seven 
accounting for environmental effects. The raw data are the trend 
estimates in Table S1 of LaSharr et al. (2019) for uncorrected horn 
size and in Table S2 for the two measures standardized to age seven. 
LaSharr et al.'s supplemental tables give 95% confidence intervals 
for all slopes; we calculated standard errors for each estimate as 
one quarter of the difference between the upper and lower limits of 
each confidence interval. In most hunt areas in Alberta, size- based 
harvest regulations have been consistent over the study period. In 
the Westcastle- Yarrow area, the legal harvest criterion was changed 
from 4/5 curl to full curl in 1996, forcing a legislated strong in-
crease in mean horn size among harvested individuals over time. We 
therefore conducted all analyses with and without the Westcastle- 
Yarrow area.

(1a)�̂ i = � i + mi

(1b)� i ∼ N
(

�� , �
2
�

)

(1c)mi ∼ N
(

0, SE2
i

)

,
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The meta- analytic model estimates a decline for all three types 
of horn size trend, across all areas within Alberta with consistent 
regulations (Table 1). We focus on predicted horn sizes for age 
seven accounting for environmental variables, which is most rel-
evant to the potential contribution of evolution to changing horn 
size. These analyses are the basis of LaSharr et al.'s key second 
table and third figure. The average change in predicted horn size 
is �� = −0.08 cm per year (95% CI: −0.12 to −0.05 cm/year). Slopes 
vary among areas with �2

�
 = 0.0026 (95% CI: 2 × 10−4 to 0.0072). 

From this mean and variance of slopes, we estimate the propor-
tion of areas in Alberta where the temporal trend in horn size is 
negative, as

where Φ
(

0,�� , �
2
�

)

 is a cumulative normal distribution function with 
mean �� and variance �2

�
, evaluated at 0. Applying Equation (2) to the 

estimated mean and variance of regression slopes in Alberta, we esti-
mate that 95% (95% CI: 79– 100) of areas experience a decline.

The US jurisdictions likely experience weaker selective hunting 
than Alberta. We obtained much smaller estimates of overall decline, 
with CIs that substantially overlap zero. For age- corrected trends 
accounting for environmental variables, the slope across US areas 
averages −0.02 cm per year (95% CI: −0.07 to 0.01). Combined with 
the estimate of variability (0.02; 95% CI: 0.01– 0.03), our estimate of 
the proportion of US areas with declines in horn size is 57% (95% 
CI: 45– 69).

The proportion of areas experiencing a decline does not measure 
the magnitudes of trends. The mean and among- area variability in 
trends, inferred from the hierarchical model analyses, are depicted 
in Figure 1. While jurisdictions in the USA do not show consistent 
declines, variability among management areas is greater than in 
Alberta. When declines occur, they can be of similar magnitude to 
trends in Alberta (Figure 1). Within all jurisdictions that have de-
clined, those declines are about 5% of mean horn size.

In addition the main question of whether or not there are con-
sistent trends in horn size in Alberta and in the United States, the 
difference in the average slope between these two groups of areas 
is also of interest. We fitted a model to directly estimate this differ-
ence, as

Notation is as for Equation 1, except that the model intercept 
�US represents the average slope in US areas, and the contrast �� 
represents the difference in average slope between Albertan and 
US areas, with �AB representing an indicator variable (�AB = 0 for 
US areas, �AB = 1 for Albertan areas); �2

loc
 is residual variances, 

(2)P
[

𝛽 < 0
]

= Φ

(

0,𝜇𝛽 , 𝜎
2
𝛽

)

,

(3a)�̂ i = �US + ���AB + mi

(3b)� i ∼ N
(

�� , �
2
loc

)

(3c)mi ∼ N
(

0, SE2
i

)

.

Management area �� �� P (𝜷 < 0)

(a) Horn size

Alberta (all)a  −0.04 (−0.12 to 0.03) 0.13 (0.07– 0.20) 0.63 (0.42– 0.85)

Alberta (consistent) −0.06 (−0.11 to −0.01) 0.07 (0.03– 0.12) 0.82 (0.60– 1.00)

USA −0.02 (−0.08 to 0.03) 0.18 (0.13– 0.23) 0.55 (0.42– 0.67)

(b) Horn size, corrected to age 7

Alberta (all) −0.09 (−0.13 to −0.05) 0.05 (0.02– 0.09) 0.93 (0.79– 1.00)

Alberta (consistent) −0.09 (−0.13 to −0.06) 0.05 (0.02– 0.08) 0.96 (0.84– 1.00)

USA −0.02 (−0.07 to 0.01) 0.11 (0.07– 0.13) 0.59 (0.46– 0.73)

(c) Horn size, corrected to age 7, controlling for environment

Alberta (all) −0.08 (−0.12 to −0.04) 0.05 (0.02– 0.09) 0.93 (0.77– 1.00)

Alberta (consistent) −0.08 (−0.12 to −0.05) 0.05 (0.02– 0.09) 0.95 (0.79– 1.00)

USA −0.02 (−0.07 to 0.01) 0.13 (0.10– 0.16) 0.57 (0.45– 0.69)

Note: Analyses are conducted for three subsets of the data: first, for all of Alberta, second, for 
management areas in Alberta that had consistent size- based harvest regulations throughout the 
study, and third, for US jurisdictions. Hierarchical model summaries include −�, the average slope 
across management areas, ��, the standard deviation of slopes across management areas, and 
P (𝛽 < 0 ), the proportion of management areas experiencing a declining trend. All estimates are 
posterior means with 95% credible intervals in parentheses.
aOne management area in this subset is expected to have a substantially positively biased trend 
as a result of a change to the size- based harvest regulations during the course of the study. This 
bias is likely to be manifested primarily in the raw size data (part a); standardizations of size 
measurements to age seven should at least eliminate the bias associated with the management 
change for parts (b) and (c) because these analyses attempt to disambiguate effects of age and size 
at age. 

TA B L E  1   Estimated temporal trends in 
(a) horn size of harvested bighorn sheep, 
regardless of age, (b) horn size corrected 
to age seven, using estimated growth 
curves, and (c) age seven- corrected 
size measurements, controlling for 
environmental variables
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representing variability among areas within the US and Alberta. 
Across all measures of horn size and size at age, estimates from the 
model in Equation 3 suggest that trends are more negative in Alberta 
than throughout the United States. Particularly for those measures 
that are most relevant to evolution (size corrected for age), and when 
considering those areas with stable size- based harvest regulations, 
most of the posterior distribution of the �� is negative, indicating 
substantial statistical support for LaSharr et al.'s hypothesis that 
patterns consistent with evolution of slower horn growth should be 
stronger in Alberta than elsewhere.

4  | BIA S A SSOCIATED WITH A FIXED 
THRESHOLD FOR HARVEST

The magnitude of trends in horn size is downwardly biased in data 
from animals harvested under a strict phenotype- based threshold. 
This phenomenon has been demonstrated thoroughly by Pelletier 
et al. (2012) and Festa- Bianchet et al. (2015). More generally, it is 
well established that size- dependent mortality and harvest require 
careful consideration when estimating growth (Ricker, 1969). In this 

section, we attempt to make the most important considerations as 
clear as possible.

Consider the phenotypic distributions depicted by red and blue 
dotted lines in Figure 2a. These distributions differ in mean by 
10 cm. Imagine that the phenotypic distributions represent a popula-
tion where the mean phenotype declined from 90 cm (red) to 80 cm 
(blue). Now, imagine that the only data available are from individuals 
with phenotypes greater than 100 cm (the threshold in Figure 2a). 
Would the available data from the two time periods estimate the 
magnitude of the change?

The mean of a truncated normal distribution, �t, is given by

where � and �2 are the mean and variance of the (nontruncated) 
normal distribution, and � ( ) and Φ ( ) are Gaussian probability den-
sity and cumulative density functions, respectively. Our qualitative 
conclusion is not dependent on the trait having a normal distribu-
tion, but analytical results for the normal distribution illustrate it. 
The mean of the truncated red distribution is 105.25 cm, and the 

(4)�t = � + �2
� ( t,�, �2 )

1 − Φ ( t,�, �2 )
,

F I G U R E  1   Estimated distributions of 
temporal trends in bighorn sheep horn 
size in Alberta (a,c,e) and in American 
jurisdictions (b,d,f). Trends are depicted as 
solid black lines, showing changes from an 
arbitrary initial value of zero. Grey lines 
have a slope of zero. Upper and lower 
boundaries (dashed) lines represent the 
hierarchical model's best estimate of the 
biological variability among management 
areas (within Alberta and the USA, 
separately) in temporal trend by depicting 
the limits of 95% of the distribution of 
among management trends. Uncertainty 
in the means and standard deviations 
of temporal trends are reported as 95% 
credible intervals in Table 1
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mean of the blue is 103.73 cm. A true decline of 10 cm is underes-
timated by −6.6. This phenomenon is not restricted to threshold- 
based selection. Figure 2b shows a highly selective logistic function. 
If this function describes the probability of being harvested, then 
the corresponding distributions of available data are given by the 
solid red and blue lines. In the numerical example in Figure 2b, the 
true change in phenotype of 10 cm is reflected by a change of about 
−3.3 cm in the measured sample.

While �t is entirely determined by the difference between the 
truncation point and the underlying mean, that is, by t − �, for any 
given variance, it is useful to visually examine Equation (4), and 
the partial derivatives of �t with respect to both � and t . Figure 3 

shows how, when t − � is large, �t is almost entirely influenced by 
the truncation point, t , almost without any effect of the true under-
lying mean. A more explicit treatment of how the mean of a trun-
cated distribution can depend more on the truncation point than on 
the true mean is given by the derivatives of �t with respect to the 
underlying mean � and the truncation point t . For changes in the 
mean of a truncated distribution to be indicative of changes in the 
underlying mean, ��t

��
 would ideally be near one. For a large portion 

of the parameter space (when t − � is large, corroborating the inter-
pretation of Figure 3a), ��t

��
 is much less than one, while ��t

��
 is larger, 

and closer to one, indicating that any trends (or stability) is likely to 
be more reflective of changes (or stability) in the truncation point.

F I G U R E  2   Bias in estimating trends 
in mean phenotype from highly selected 
data. (a) depicts the change in the mean 
of a truncated normal distribution as a 
function of the underlying (nontruncated) 
normal distribution. (b) depicts a 
situation when less severe selection than 
truncation is applied, in the form of a 
logistic survival function

40 60 80 100 120

0.00

0.01

0.02

0.03

trait value
de

ns
ity

 (r
el

at
iv

e 
to

 
 p

re
−s

el
ec

tio
n 

di
st

rib
ut

io
n

(a)

distribution time 1
distribution time 2
distribution time 1 (selected)
distribution time 2 (selected)
truncation point or harvest function

40 60 80 100 120

0.00

0.01

0.02

0.03

0.040.04

trait value

(b)

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty
 o

f b
ei

ng
 h

ar
ve

st
ed

time 1 mean
time 2 mean
time 1 mean (selected)
time 2 mean (selected)

F I G U R E  3   The mean of a truncated 
distribution can be determined much 
more by the truncation point than by 
the mean of the underlying distribution. 
(a) mean of values of a truncated normal 
distribution, �t with underlying means � 
betwen 50 and 100, truncated to include 
only values exceeding t, with t between 
50 and 100; the function plotted in (a) is 
that in Equation (4). When the truncation 
point is greater than the mean, the mean 
of the underlying distribution has far less 
influence on the mean of the truncated 
distribution than does the truncation 
point. In (a), contours of �t tend towards 
horizontal lines when t > 𝜇t, in the upper 
left corner. The key conditions where 
t primarily determines values of �t are 
shown more directly by the partial 
derivatives of �t with respect to � and t, 
in plots (b) and (c), respectively. When 
t > 𝜇t, 
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Equation (4) contains useful biological lessons. First, one should 
be extremely careful when using truncated data. Means in truncated 
data can have virtually no bearing on the underlying mean of the 
distribution. Equation (4) also tells us when the mean of a truncated 
distribution will be most associated from the true mean. When much 
of the distribution is above the truncation point, its mean reflects 
the true mean. However, if much of the underlying distribution is 
below the truncation point, then almost nothing can be said about 
the true mean. As such, when size- based regulations are the primary 
determinant of harvests, or minimum trophy scores are the key cri-
terion for inclusion in record books, the resulting data may have very 
little bearing on population means.

LaSharr et al. (2019) present simulations that purport to contra-
dict the general conclusion that threshold- based data collection re-
duces the ability to characterize trends in a phenotype. In contrast to 
a threshold for harvest based on the degree of horn curl, which will 
be closely determined by horn length, LaSharr et al. (2019) define a 
“moving” threshold with reference to the existing mean at any given 
time. To simplify the situation to truncation of a normal distribution, 
to generate a tractable and informative analytical model (a basic fea-
ture of the LaSharr et al., 2019 model), we can modify Equation (4) 
by noting that a truncation point that is defined relative to the mean 
� can be related to a fixed truncation point t, as defined above, as 
t = � + �. The mean of a truncated distribution in terms of this trun-
cation point � that is defined relative to the mean is then

So, the mean of the truncated distribution is given by the un-
derlying mean, plus a quantity �2 � ( � ,0,�2 )

1−Φ ( � ,0,�2 )
. This additional quantity 

does not depend on the mean, and so ���

��
= 1. As such, a change in �� 

is perfectly reflective of a change in �, when a “moving” truncation 
point is defined relative to the mean itself.

A moving truncation point, defined along the lines of �, could be 
a rough model of selection induced by hunters, when they are pre-
sented with abundant legally harvestable animals. Such a pattern of 
selectivity will certainly contribute to the more complex overall pic-
ture of data resulting from measurements of trophies. When a mov-
ing threshold is a good model of nonrandom harvests, the harvest 
data could be used to make robust inference about trends.

The most pervasive feature of the hunt areas (all those in 
Alberta) that LaSharr et al. (2019) characterize as having manage-
ment practices likely to create the strongest selection, is a scarcity 
of legal rams, combined with a fixed threshold. In Alberta, where 
most hunt areas apply fixed thresholds and unlimited licences, any 
moving threshold is likely to be a very poor reflection of the nature 
of phenotype- based harvest and thus data collection. In contrast, 
few jurisdictions in the United States use threshold- based harvest 

regulations, and those that do also limit harvest so that LaSharr 
et al.'s (2019) may be reasonably representative.

This section considered the mean of a distribution truncated 
at a single time point. In a long- lived animal, the consequences 
of truncation will be more complicated. As a cohort matures, and 
its horns grow, selection of horn size by hunters, and thus the ac-
cumulation of data from trophies, will occur over several years. 
Phenotypic changes will affect the age- specific probability of 
exceeding the truncation threshold. The mathematical study of 
truncation in this section is aimed at understanding, in isolation, 
how truncation contributes to a more complex data generating 
mechanism.

5  | ADDITIONAL BIA S A SSOCIATED WITH 
CHANGING AGE STRUC TURE

The interaction of threshold- based harvest and age structure in-
creases the scope for biases that would dampen detection of tem-
poral trends in horn size. Two consequences of age structure are 
relevant. Within a cohort, faster growing individuals will be har-
vested at younger ages than slower growing individuals (Douhard 
et al., 2016; Hengeveld & Festa- Bianchet, 2011). The fastest growing 
individuals will be harvested at relatively young ages, and the mean 
size at age of individuals harvested at older ages will be downwardly 
biased. As a result, growth rates estimated from harvest data will be 
downwardly biased. The underlying principles are well established 
(Ricker, 1969), and we illustrate them here with the help of a nu-
merical toy example aimed qualitatively at the application to horn 
growth.

When the downward bias in estimated growth rate is combined 
with the expectation that mean age at harvest will increase if growth 
rates decline, as reported by Festa- Bianchet et al. (2014), then an 
additional bias will arise. LaSharr et al. (2019) predict mean size at 
age seven from growth functions estimated from harvest data. Since 
these growth functions are too shallow, they underestimate the 
mean size at age seven of individuals that are harvested relatively 
young, and overestimate the mean size at age seven of individuals 
shot at relatively old ages. Where horn growth rates have declined, 
such that harvested individuals show an increasing age trend, the 
change detected from trophy harvests will be further dampened be-
cause older individuals will have upwardly biased estimates of mean 
size at age seven.

There are too many unknowns to quantify the degree to which 
bias generated by the combination of underestimated growth rates 
and shifting mean age at harvest influence results in LaSharr et al. 
(2019). We will therefore only illustrate the qualitative bias. We 
simulated three cohorts with growth mean rates of g = [0.8, 1.0, 1.2 ]. 
We simulated 1000 individuals in each cohort and assigned each 
individual i  a growth rate effect described by a standard random 
deviate � i. We then assigned each individual a horn size trajec-
tory, relative to a harvest threshold with an arbitrary value of zero, 
using the formula yia = −6 + (g + � i )a for integer values of age, 

(5a)�� = � + �2
� (� + �,�, �2 )

1 − Φ (� + �,�, �2 )
,

(5b)= � + �2
� (� , 0, �2 )

1 − Φ (� , 0, �2 )
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a, between four and 10. In the growth expression, −6 is an initial 
size, relative to the threshold for harvest (and therefore measure-
ment) that we arbitrarily set to zero; these only have relevance 
with respect to each other, and their exact values are determined 
by convenience for plotting. We simulated harvest by selecting 
individual records of size at age, if size at age exceeded the thresh-
old, with probability 0.5, simulating a 50% annual harvest rate of 
harvestable males.

We recorded the trajectory of size at age in each cohort, and 
the trajectory inferred from size at age of harvest (top row of 

Figure 4). Mean growth rates were underestimated by harvested 
individuals across all cohorts. The slowest- growing cohort had a 
73% downward bias, relative to approximately 42% bias in the fast-
est growing cohort. Age at harvest increased from the fastest to 
the slowest- growing cohort (middle row of Figure 4). Truncation 
combined with the changing age structure yielded the most severe 
upward bias of predicted sizes at age seven in the cohort with the 
lowest growth rate (bottom right panel of Figure 4), demonstrating 
a further bias in inference of trends in growth rate or size at age 
from harvest data.

F I G U R E  4   Bias arising from the interaction of phenotype- dependent harvest and shifting age structure of harvested individuals. 
Columns from left to right simulate cohorts with decreasing growth rates. The top row shows true growth rates (solid lines) and growth rates 
estimated from harvest data (red lines). The middle row shows the shifting age structure of harvested individuals, as growth rate declines but 
the threshold for harvest remains the same. The bottom row shows the prediction of mean size from the biased estimated growth functions. 
Predicted values at the standard age (seven) are most upwardly biased when the growth rate is lowest, generating a bias that will dampen 
any trend for decreasing horn size. In the bottom row, red points, connected with lines, show mean size at harvest for each age, connected 
to the mean predicted size at age 7
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6  | DISCUSSION

Data from harvested animals can give biased inferences of temporal 
changes in growth rates when harvest is based on a fixed threshold. 
Despite multiple biases that will dampen any trends for decreases in 
growth rate, if and where they exist, the LaSharr et al. (2019) data 
indicate a much more widespread declining trend in bighorn sheep 
horn growth rates than their conclusions reflect. LaSharr et al.'s 
(2019) conclusion that horn sizes in Alberta are stable in most lo-
cations relies on interpreting nonsignificant trends as evidence for 
lack of a trend. Using meta- analysis, we estimated the average trend 
and the heterogeneity of trends across management areas in Alberta 
(Tables 1 and 2, Figure 1). The LaSharr et al. (2019) results thus indi-
cate a consistent pattern of decline across Alberta, with regulations 
based on a fixed threshold to define legally harvestable rams, com-
bined with no limit on harvest, is expected to generate the strongest 
selection on horn size.

Because of the biases inherent to phenotype- based data collec-
tion, it would be unwise to attempt to interpret the magnitude of the 
declines in horn size throughout Alberta. However, it seems inescap-
able that those magnitudes are underestimated. We have elucidated 
two mechanisms –  truncation (Figures 2 and 3), and changes in age 
structure (Figure 4) –  that likely bias estimates of the magnitude of 
changes in mean horn size, as inferred from trophy data, towards 
smaller values.

Documentation of temporal trends in mean phenotype is a 
weak form of inference of evolutionary change (Endler, 1986). 
LaSharr et al.'s (2019) analysis also attempts to control for changes 
in environmental variables. Insofar as such an analysis can ac-
count for changes in the environment to which phenotypes may 
respond plastically, any remaining temporal trend is much more 
reasonably interpreted as an evolutionary change. However, any 

environmental changes beyond those captured by the available en-
vironmental data will contribute to temporal trends in phenotype, 
concomitant with any evolutionary change. We therefore cau-
tion against interpretations of changes in mean phenotype, even 
accounting for environmental covariates at the enormous spatial 
scale of LaSharr et al.'s (2019) analysis, as strong evidence for evo-
lutionary change. Associations between trends in phenotypes and 
selective pressures are an additional type of evidence for an evo-
lutionary response to natural selection (Endler, 1986). The evident 
pattern in LaSharr et al.'s (2019) results (Tables 1 and 2, Figure 1) 
of much stronger trends in phenotype in Alberta than elsewhere 
correlates with the expected strength of selection. Thus, insofar as 
the data reported in LaSharr et al. (2019) can provide evidence for 
or against responses to anthropogenic selection, and they clearly 
support the possibility that evolution of smaller horns has occurred 
where selection is expected to be strongest. Given the biases in 
the underlying data, the magnitudes of the trends resulting from 
LaSharr et al.'s (2019) analysis should be seen as a lower limit on 
declines that have occurred.
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TA B L E  2   Differences in temporal trends of mean horn size of harvested bighorn sheep between Albertan and US areas based on the 
model given in Equation 3, wherein the term ��̂ represents the difference between trends in Alberta vs the United States

Management area �� P
(

𝜷US − 𝜷AB < 0
)

P (H0: �US = �AB )

(a) All areas

Size −0.03 (−0.13 to 0.08) 0.709 0.582

Size, corrected to age 7 −0.06 (−0.11 to −0.01) 0.988 0.024

Size, corrected to age 7 and controlling for 
environment

−0.05 (−0.11 to 0.00) 0.973 0.054

(b) All areas with consistent regulationsa 

Size −0.06 (−0.14 to 0.02) 0.936 0.128

Size, corrected to age 7 −0.07 (−0.12 to −0.01) 0.994 0.012

Size, corrected to age 7 and controlling for 
environment

−0.06 (−0.11 to −0.01) 0.986 0.028

Note: Estimates of ��̂ are reported with 95% credible interals, and also P (𝛽US − 𝛽AB < 0 ), the proportion of posterior distribution of the ��̂ that is 
negative (indicating more negative trends in Alberta than elsewhere), and P (H0: �US = �AB ) the two- sided quasi p value associated with the null 
hypothesis of equal mean slopes in Alberta and in the United States.
aOne management area in Alberta is expected to have a substantially positively biased trend as a result of a change to the size- based harvest 
regulations during the course of the study and is excluded from analyses reported in part (b). This bias is likely to be manifested primarily in the raw 
size data. 
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