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Abstract
Bioequivalence	(BE)	studies	are	prerequisite	in	generic	products	approval.	Normally,	
they	 are	 quite	 simple	 in	 design	 and	 expensive	 in	 execution,	 and	 sometimes	 suffer	
ethical	 questioning.	 Genetics	 Algorithms	 and	 Running	 simulations	 from	 Ordinary	
Differential	Equations-	based	model	 (GA-	RxODE)	 is	a	multipurpose	method	used	 in	
pharmacokinetic	 (PK)	optimization.	 It	 can	be	used	 to	 complete	 concentration–	time	
(C–	T)	missing	data.	In	this	investigation,	GA-	RxODE	was	applied	in	BE	field.	For	this	
purpose,	three	BE	studies	were	selected	as	a	source	data	comprising	formulations	of	
metformin,	 alprazolam	and	clonazepam.	From	 them,	 five	blood	 samples	values	per	
volunteer-	round	from	specific	preset	times	were	chosen	as	 if	BE	study	was	carried	
out	with	five	instead	of	the	classic	10–	20	samples.	With	the	five	values	of	each	vol-
unteer	a	complete	C–	T	curve	was	simulated	by	GA-	RxODE	and	certain	PK	estima-
tion	parameters	 (as	maximum	concentration,	Cmax,	 and	area	under	C–	T	 curve	 from	
zero	to	 infinite,	AUCinf)	were	elicited.	Finally,	with	these	modeled	parameters,	a	BE	
analysis was performed according to certain regulatory agencies guidances. Some re-
sults,	expressed	as	geometric	mean	ratios	of	compared	formulations	and	their	90%	
confidence	intervals	(CI90),	were	as	follows:	Metformin	Cmax	=	0.954	(0.878–	1.035),	
AUCinf	=	0.949	(0.881–	1.022);	Alprazolam	Cmax	=	1.063	(0.924–	1.222),	AUCinf	=	1.036	
(0.857–	1.249),	Clonazepam	Cmax	=	0.927	(0.831–	1.034),	and	AUCinf	=	1.021	(0.931–	
1.119).	All	CI90	were	inside	the	0.8–	1.25	BE	range.	In	summary,	the	simulated	data	
were	 bioequivalent	 and	 non-	significantly	 different	 from	original	 studies’	 data.	 This	
raises the opportunity to perform more economic BE studies to build reliable PK esti-
mation parameters from a few samples per volunteer.
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1  |  INTRODUC TION

From	 the	 1970s,	 regulatory	 agencies	 have	 placed	 great	 empha-
sis on pharmaceutical products bioavailability as a way to pro-
mote	 the	 manufacturing	 of	 better-	quality	 medicines	 and	 avoid	
ineffectiveness–	toxicity	 problems.1,2	 However,	 this	 emphasis	 has	
implied a great technical adjustment that progressively affected the 
entire	production	network,	 and	 such	 adjustment,	 far	 from	has	 re-
duced	costs,	has	triggered	them	to	unacceptable	levels.

In	a	context	of	 lessen	health	costs,	generic	medication	 is	a	 re-
source	that	countries	could	exploit.	A	generic	drug	is	a	formulation	
that	 contains	 the	 same	 active	 principle	 (in	 salts,	 isomers,	 or	 crys-
talline	 forms),	 the	 same	excipients,	 and	 the	 same	dosage	 strength	
under the same pharmaceutical form as a former brand name of 
product,	the	so-	called	innovator.3 The innovator is exclusive in the 
pharmaceutical	market	 until	 its	 patent	 expires,	 from	 that	moment	
anyone	in	the	industry	may	copy	it.	In	such	case,	certain	laboratory	
may manufacture the generic following the same procedures as the 
one which designed and approved the innovator.4 Because generic 
drugs	do	not	undergo	all	the	required	clinical	investigation	for	a	New	
Drug	Approval,	they	should	be	cheaper	than	innovators.5–	7

Several countries around the world have been defining the char-
acteristics	and	requirements	for	their	generic	drugs,	either	through	
legal provisions from their regulatory agencies or through laws en-
acted	by	their	parliaments.	For	instance,	the	American	legislation,	by	
the	Hatch-	Waxman	Act	of	1984,	may	authorize	a	given	laboratory	to	
produce and sell generic products whenever it could demonstrate 
that	they	have	the	same	quality	and	are	bioequivalent	to	innovators,	
and	of	course,	do	not	infringe	their	patents.4,8

In	 Argentina,	 the	 word	 “generic”	 only	 indicates	 the	 WHO	
International	 Non-	proprietary	 Name	 (INN)	 of	 a	 drug	 substance.	
And	although	Argentina	does	not	have	specific	 regulations	for	ge-
neric	 drugs	 like	United	 States	 or	 the	 European	 countries,	 in	 1999	
its	regulatory	agency,	ANMAT,	established	the	bioequivalence	(BE)	
standards	for	high	sanitary	risk	products	marketed	in	its	territory.9 
These	standards	can	be	taken	as	a	basis	for	exchangeability	among	
the	products	marketed	in	Argentina,	either	if	they	were	considered	
generics or not.

According	 to	 our	 experience,	BE	 studies	 in	Argentina	 are	 sim-
ple	 to	design,	 expensive	 to	 execute,	 and	 complex	 to	 solve	 certain	
aspects. The BE demonstration between two pharmaceutical for-
mulations,	 the	generic	and	 the	 innovator	 (in	 this	 study,	also	called	
test	or	T	and	reference	or	R,	 respectively),	 involves	carrying	out	a	
randomized,	cross-	over	clinical	trial	 in	healthy	volunteers	to	deter-
mine	similar	drug	plasma	levels	comparing	certain	pharmacokinetic	
(PK)	estimation	parameters,	a	fact	considered	as	surrogate	variable	
of similar therapeutic effect.10,11 The more determinations carried 
out,	the	more	precise	an	obtained	PK	profile	is	assumed	to	be;	but	
this	also	implies	more	costs	and,	especially,	more	volunteers’	expo-
sure	to	hospital	milieu,	a	fact	that	causes	discomfort	and	increases	
the	infection	risk,	and	can	be	ethically	questionable.

We	have	recently	studied	the	potential	of	the	multipurpose	tool,	
written	in	R	language,	GA-	RxODE	for	the	PK	studies.12	GA-	RxODE	

comprises	 two	 routines,	 GA	 (Genetics	 Algorithms)	 and	 Rx-	ODE	
(Running	 simulations	 from	 Ordinary	 Differential	 Equations	 based	
model).	The	RxODE	part	 sets	 the	non-	lineal	mixed-	effect	 (NLME)	
model	to	be	followed,	offering	a	framework	for	simulation	criteria.	
The	GA	part	obtains	the	best	parameters	that	fit	the	simulation	cri-
teria	defined	by	investigators,	combining	and	selecting	data	matri-
ces	by	Mendelian	principles	 and	 the	Natural	 Selection.13 Because 
GA	is	a	heuristic	approach	used	in	artificial	intelligence	to	optimize	
available	data,	 the	entire	process	allows	to	analyze	 large	amounts	
of	data	in	the	NLME	context	reducing	restrictions	can	be	imposed	
by	the	principle	of	maximum	entropy,	as	shown	in	drug	modeling.14 
Since there is an infinite combination of parameters that could sat-
isfy	 a	model	 for	 a	 given	 set	of	data	points,	 it	would	be	 computa-
tionally unfeasible to perform a brute force or grid search of such 
parameters.	Furthermore,	noisy,	collinear,	or	poor-	quality	datasets	
tend	to	produce	singular	matrices	or	non-	converging	results	when	
conventional	optimization	methods	are	applied.	In	this	scenario,	GA	
is a very robust routine and guarantees to converge into a solution.

Once the investigator sets the desired model and put the source 
values	to	which	 it	should	be	adjust,	GA-	RxODE	generating	a	series	
of	 concentration–	time	 (C–	T)	 curves	 that	progressively	 converge	 to-
ward	the	preset	data.	For	each	modeled	subject	(e.g.,	animal,	volun-
teer,	patient,	etc.),	Rx-	ODE	produces	initially	100	randomly	simulated	
curves	and	contrasts	them	with	a	loss	function	L12 that includes the 
source	values,	so	curves	can	be	ordered	from	best	to	worst	fit	 into	
100	 vectors	 or	 “genes”.	 Then,	GA	proceeds	 cyclically;	 analyzes	 the	
genes,	retains	the	best	10,	recombines	the	next	40	among	them,	se-
lects	and	randomly	mutates	25	of	the	previous	50,	and	replaces	the	
25	worst	vectors	by	new	ones	from	Rx-	ODE.	Finally,	the	next	cycle	
is restarted when these new 100 vectors are compared again with 
L	and	reordered	for	GA	task.	Each	cycle	is	called	a	“generation”	and	
the procedure continues for 100 cycles or until the best convergence 
is	achieved;	in	addition,	every	10	generations,	the	best	vector	is	fur-
ther	optimized	by	the	Levenberg–	Marquardt	algorithm.15 The choice 
of	100	vectors	and	100	generations	is	arbitrary,	but	these	figures	are	
large	enough	to	give	GA-	RxODE	a	"generous"	search	space	to	achieve	
model	 convergence	 under	 all	 circumstances.	 Likewise,	 the	 random	
but uniform distributed mutation done in the genes should also guar-
antee the proposed solution will not fall outside of such space.16 The 
final	GA-	RxODE	construct,	called	“token-		or	para-	data”,	has	less	ex-
perimental	error,	mainly	intra-	individual,	and	can	be	used	by	further	
procedures.	Token	data	also	enable	to	analyze	trends	like	moving	av-
erage and create much more robust population PK models.12

An	 issue	 addressed	 in	our	previous	 study	was	 the	 construction	
of	reliable	simulated	C–	T	curves	using	few	determinations	as	if	there	
were missing data. It was demonstrated that with fewer determina-
tions per volunteer the initially obtained population PK model was 
conserved. It also established a minimum of three determinations 
in	order	to	maintain	the	model,	whenever	these	followed	the	order,	
baseline–	maximum–	minimum,	simulating	a	peak-	valley	PK	behavior.12

Therefore,	 if	 classical	BE	 studies	 employ	10–	20	determinations	
per	volunteer	 to	build	C–	T	curves	and	obtain	useful	PK	estimation	
parameters	 to	 claim	 BE,	 the	 aims	 of	 this	 work	 are	 as	 follows:	 to	
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demonstrate	that	GA-	RxODE	can	simulate	C–	T	curves	but	from	5	de-
terminations	per	volunteer	instead	the	usual	number,	and	to	demon-
strate that these curves are also suitable to study and claim BE.

2  |  MATERIAL S AND METHODS

2.1  |  Source data origin and trials conducting

During	the	first	decade	of	the	21st	century,	Química Montpellier SA,	as	
part of the Bagó Group,	developed	a	series	of	studies	to	demonstrate	
BE	between	certain	proprietary	solid	oral	formulations	(T)	and	the	cor-
responding	classic	brand	names	 (R)	 for	 its	commercialization	abroad.	
These studies were carried out by local independent Contract Research 
Organizations	 (CROs)	 in	 accordance	with	all	 regulations	valid	at	 that	
time	and	following	appropriate	ethical	requirements.	Even	though	the	
demonstrated BEs were not published because they were developed 
exclusively	for	regulatory	purposes,	their	results	can	be	employed	for	
this	research	as	original,	source,	and	raw	or	real	data	indistinctly.

In	brief,	the	BE	trials	were	performed	according	to	classic	double-	
blind	randomized	crossover	design	on	a	minimum	of	24	both	genders	
healthy subjects.17 The volunteers gave their written informed con-
sent	to	participate	in	studies	and	underwent	two	doses	in	two	rounds,	
one	for	T	and	one	for	R,	separated	by	a	wash-	out	period	greater	than	
five elimination t½	of	 the	drug	under	 study.	According	 to	 the	drug	
to	be	measured,	extraction	times	and	hospital	stay	were	calculated.	
Blood	samples	were	processed	and	stored	at	−70℃ until biochemi-
cal	analysis.	Each	completed	trial	produced	approximately	600–	700	
samples	that	were	analyzed	under	high-	pressure	liquid	chromatogra-
phy	(HPLC)	and	UV	light	detection	set	at	240	nm	wavelength.

2.2  |  Usual obtaining procedures for PK 
estimation parameters

From	10	to	20	determinations	from	each	volunteer	and	round,	indi-
vidual	C–	T	curves	were	constructed.	From	each	C–	T	curve,	individual	
PK estimation parameters were obtained as follows18: the maximum 
concentration	 (Cmax)	 and	 the	 time	 to	 reach	 it	 (tmax)	 through	 direct	
recording;	 the	 area	 under	 the	 curve	 to	 last	 recorded	 time	 (AUCt)	
through	Trapezoidal	sum	method;	the	final	elimination	slope	(λz)	and	
the t½	by	 last	 concentrations’	 natural	 log-	conversion;	 the	 residual	
area by dividing the last concentration by λz,	and	the	AUC	to	infinity	
(AUCinf)	by	adding	residual	area	to	AUCt.

2.3  |  GA- RxODE modeling

To	reproduce	BE	trials	using	GA-	RxODE	C–	T	simulation,	three	origi-
nal	studies	were	selected,	one	with	the	antidiabetic	Metformin,	and	
two	 with	 the	 benzodiazepines,	 Alprazolam,	 and	 Clonazepam.	 The	
three	trials	were	primarily	selected	on	the	source	data	affordability,	
whose declassification was made 10 years after their submission for 

commercial registration. The drug type and its therapeutic relevance 
were used as secondary selection criteria.

Source data were extracted from final reports to calculate average 
C–	T	curves.	Each	curve	included	all	values	(T	plus	R)	per	time.	Average	
values	were	log-	transformed	and	PK	parameters,	tmax,	λz,	and	t½ were 
directly calculated in order to select five preset times as if only five 
samples	were	extracted	from	each	volunteer	during	a	real	study.	As	
initial	assumption,	the	sampling	times	were	selected	arbitrarily	under	
the	aforementioned	peek	valley	concept	to	cover	the	typical	PK	pro-
files	of	drugs	under	study:	one	basal,	one	during	the	absorption	phase,	
one close to Cmax,	and	two	during	the	elimination	phase.	Using	plasma	
concentration	values	taken	from	the	source	data	for	each	preset	time,	
new	C–	T	curves	per	volunteer-	round	were	modeled	by	GA-	RxODE,	
implemented	in	R	programming	language,	following	a	monocompart-
mental	model	with	absorption	by	default.	Before	to	continue,	a	min-
imum population model for each drug was constructed to verify the 
accuracy	in	simulation.	Finally,	from	these	simulated	curves,	appropri-
ate individual PK estimation parameters for T or R formulations were 
obtained according to the procedures described in Section 2.2.

2.4  |  BE procedures

According	to	most	regulatory	agencies,	the	BE	proof	is	achieved	when	
the geometric mean ratio between T and R— or point estimate— of 
Cmax,	AUCt,	and	AUCinf	approaches	to	one	and	 its	90%	confidence	
interval	 (CI90)	 lies	 inside	 the	0.8–	1.25	 range.18 With these PK es-
timation	parameters	from	each	drug's	formulations,	the	CROs	ana-
lyzed	whether	the	data	were	bioequivalent	using	specific	software	
of	that	time	(PKCalc®	and	WinNonLin	4.0®)	and	prepared	the	final	
reports	 on	BE	 following	US	Food	 and	Drug	Administration	 (FDA),	
European	Medicines	Agency	(EMA),	and	Administración	Nacional	de	
Medicamentos,	Alimentos	y	Tecnología	Médica	(ANMAT)	Argentina	
recommendations.9,19,20

With	this	methodology,	it	was	attempted	to	demonstrate	BE	with	
T	and	R	formulations’	parameters	derived	from	simulated	data.	Thus,	
values for Cmax,	AUCt,	and	AUCinf	were	log-	transformed	and	processed	
to	 acquire	 and	 test	 the	 point	 estimates.	 By	 mixed-	effect	 two-	way	
ANOVA21	(or	BE	ANOVA),	the	sources	of	variances	could	be	discrim-
inated and elicit the proper residuals to build the CI90s. To verify that 
each	CI90	fit	within	the	proposed	range,	a	two	one-	sided	(TOS)	test	
was used.22 To construct individual PK estimation parameters after 
C–	T	modeling	in	R	language	and	perform	the	BE	analysis	as	described,	
an	Excel	2013	for	Windows® sheet was specifically programmed.

2.5  |  Statistics

Most	C–	T	curves	were	drawn	using	natural	 log-	conversion	of	con-
centration	values	 in	order	to	rectify	the	elimination	slopes,	except	
those that represented population models. Because of PK estima-
tion	 parameters	 values	 have	 a	 log-	normal	 distribution,	 their	 natu-
ral	 log-	conversion	was	 absolutely	 necessary	 before	 to	 initiate	 any	



4 of 10  |     NUSKE et al.

analysis.	So,	data	were	expressed	as	median	(range),	mean	(SD),	mean	
(CI95),	 or	 geometric	 mean	 (CI90)	 where	 necessary.	 The	 deviation	
between actual and simulated values of PK estimation parameters 
were	evaluated	via	mean	percentage	error	(MPE)	and	corrected	by	
mean	root-	mean-	square	error	(cRMSE).	Overall	data	were	analyzed	
by	a	 fixed-	effect	 two-	way	ANOVA23 and the differences between 
point	estimates	were	studied	by	mean	difference	test	linked	to	this	
ANOVA.	For	the	statistical	analysis	and	graphic	rendering,	another	
Excel	2013	for	Windows® sheet was prepared.

3  |  RESULTS

This	investigation	has	generated,	processed,	and	confronted	a	huge	
data	amount.	For	instance,	the	development	of	the	simulated	PK	es-
timation	parameters	of	one	drug	under	study	requires	at	least	10	000	
matrices	among	data	extrapolation,	residuals	analysis,	and	covariate	
comparisons. This is the main reason because three and no more 
studies were included as source data; and the second reason is only 
those	three	trials	were	declassified	at	first	instance.	Furthermore,	it	
should be considering the studied drugs are widely used and recog-
nized	worldwide;	Metformin	is	first-	line	drug	for	diabetes	and	meta-
bolic	syndrome	treatments,	and	the	two	benzodiazepines	are	among	
the most prescribed anxiolytic drugs.

Tables 1 and 2 present some characteristics of source BE trials. In 
all	studies,	there	were	a	prevalence	of	male	volunteers.	The	number	of	

determinations	per	volunteer-	round	used	to	build	individual	C–	T	curves	
were	18	in	the	metformin	study	and	11	in	the	2	benzodiazepine	studies.

Figure	1	displays	the	redrawn	average	C–	T	curves	of	each	stud-
ied	 drug.	 At	 first	 glimpse,	 Metformin	 and	 Alprazolam	 appear	 to	
follow	a	monocompartmental	model,	while	Clonazepam	displays	a	
clear	bicompartmental	model.	Furthermore,	Figure	1	 indicates	 the	
PK parameters necessary to select the five times. Considering tmax 
and λz-	derived	t½,	the	better	representative	times	to	perform	sim-
ulations	were,	for	Metformin:	0,	1,	3,	6,	and	12	h,	respectively;	for	
Alprazolam:	0,	0.5,	1,	8,	and	24	h,	respectively,	and	for	Clonazepam:	
0,	1,	2,	12,	and	48	h,	respectively.

Using	 a	monocompartmental	model	with	 absorption	 (as	 surro-
gate	 of	 non-	compartmental	 PK)	 and	 the	 five	 times,	 the	 simulated	
model	parameters	shown	 in	Table	3	were	obtained.	Figure	2	com-
plements such information displaying the population models calcu-
lated	with	these	parameters.	As	seen,	the	five	points	were	enough	to	
generate	a	representative	and	conserved	model	(left)	whose	average	
curves-	CI95s	contains	almost	all	means	of	the	real	data	(right).	 If	a	
mean	lies	inside	CI95	of	another	mean,	this	is	indicative	they	are	non-	
significantly	different	and	no	more	evidence	are	needed.	Likewise,	
Figure	3	 further	contribute	 to	shows	similarity	between	simulated	
and	 original	 data.	Here,	 T	 and	R	 values	 from	 the	 two	 sources	 for	
Cmax	and	AUCinf	are	 illustrated	 individually	per	volunteer	 (markers)	
and	 by	 the	 representative	 geometric	 mean-	CI90	 (line-	bar).	 In	 ad-
dition,	 it	 includes	MPE,	 cRMSE,	 and	p	 (from	 the	ANOVA	analysis)	
values.	Visually,	the	data	distribution	appears	to	be	similar	between	
the	simulated	and	real	ones,	but	the	deviation	between	original	and	
simulated	data	implies	a	rough	variation	of	−20%	to	26%	(MPE)	and	
8%–	57%	(cRMSE),	with	the	highest	percentage	variation	originated	
by	 Clonazepam	 AUC.	 The	 two-	way	 ANOVA	 indicates	 there	 were	
non-	significant	differences.	All	of	this	indicate	that	GA-	RxODE	sim-
ulated curves would exhibit a similar behavior to the original ones.

Returning	 to	 the	 second	 aim,	 Table	 4	 shows	 the	 non-	
compartmental	PK	estimation	parameters	needed	to	analyze	BE,	but	
derived	 from	 the	GA-	RxODE-	simulated	 curves.	And	Table	5	 shows	
the results of classic BE analysis achieved with simulated PK parame-
ters,	compared	with	the	BE	data	provided	by	source	trials.	This	table	
is	organized	around	the	point	estimates	of	each	necessary	PK	param-
eter: Cmax,	AUCt,	and	AUCinf	 for	the	studied	drugs,	and	their	CI90s.	
All	CI90s	of	simulated	data	are	within	the	0.80–	1.25	range	 (second	
column)	and	the	performed	TOS	tests	were	significant	(p	<	.05;	values	

TA B L E  1 General	characteristics	of	original	BE	studies

Metformin Alprazolam Clonazepam

Year of performing 2004 2007 2008

Brand-	name	Test	
formulation

DBI® Tranquinal® Neuryl®

Brand-	name	
Reference 
formulation

Glucophage® Xanax® Rivotril®

Pharmaceutical form Coated tablets 
normal release

Tablets Tablets

Single dose used 
(mg)	per	
volunteer-	round

500 0.5 1

Metformin Alprazolam Clonazepam

n volunteers completed 
the trial

24 24 24

Age	(years) 32.5	(8.9) 31.8	(10.4) 32.1	(8.5)

Sex	(%	Female) 25 34 29

Height	(m) 1.68	(0.09) 1.68	(0.09) 1.72	(0.07)

Weight	(kg) 69.6	(11.1) 65.9	(11.5) 72.9	(6.3)

Adverse	events	during	or	
after trial execution

Not registered Not registered Not registered

Data	expressed	as	mean	(SD)	except	sex	(%).

TA B L E  2 Demographic	characteristics	
of original BE studies
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not	shown).	The	simulated	values	are	close	to	the	original	data	(central	
column).	However,	in	the	original	data	series,	all	CI90s	are	also	inside	
the	0.80–	1.25	range,	except	the	CI90	of	Alprazolam	AUCinf that touch 
the	upper	 limit	and	so,	 its	TOS	test	was	non-	significant.	Finally,	the	
log-	transformed	 mean	 differences	 between	 simulated	 and	 original	
point	estimates	for	all	PK	parameters	were	also	non-	significant	(last	
two	columns).	Thus,	BE	can	be	demonstrated	using	C–	T	curves	mod-
eled	by	GA-	RxODE	from	a	few	data	points.

4  |  DISCUSSION

Nowadays,	the	societies	increasingly	demand	from	the	pharmaceuti-
cal	industry,	directly	or	indirectly,	products	of	the	highest	quality	and	
inexpensive.	A	way	to	elicit	 them	 is	 through	generic	drugs	produc-
tion that would operate as more accessible therapeutic alternatives 

that	can	be	exchanged	without	further	ado	at	the	patient-	consumer	
request.24	However,	the	term	generic	medication	arouses	in	a	good	
portion	of	the	population	a	certain,	but	perhaps	unjustified,	skepti-
cism and concern.7,25,26

To	be	exchangeable,	a	generic	should	be	equal	to	its	innovator	in	
almost	all	aspects.	However,	nearly	its	entire	essence	is	based	on	the	
BE	demonstration	and	obviously,	neither	its	manufacturing	process	nor	
its	proven	BE	assure	its	quality	in	terms	of	therapeutic	effectiveness	
and safety.26 The manufacturing of generic products should lower the 
health	costs,	but	both	Good	Manufacturing	Practices	and	Good	Clinical	
Practices	applied	 today	actually	 rises	 the	productive	costs,27	making	
this	approach	less	profitable.	Therefore,	companies	could	cut	expenses	
and	the	final	quality	of	a	given	generic	medication	might	suffer.

On	the	other	hand,	BE	trials	are	carried	out	in	healthy	volunteers	
from whom blood is drawn in clinical setting to safeguard any contin-
gency.	Beyond	the	financial	compensation	they	receive,	each	volunteer	

F I G U R E  1 Average	C–	T	curves	for	
the	drugs	under	study.	Each	C–	T	point	
comprises the mean of all T and R 
formulations	values,	so	n = 48. The data 
were	extracted	from	original	BE	studies,	
redrawn	(using	log-	transformation)	and	
recalculated to produce PK parameters 
necessary to estimate the possible 
sampling times according to each drug 
(see	the	inset)
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loses	about	200–	300	ml	of	blood	per	BE	study	and	is	exposed	to	the	
hospital	environment	for	24–	36	h	with	possible	risk	infection.	So,	why	
someone healthy should be treated as an ill person can revive classic 
controversies in bioethics.28,29

All	 these	 circumstances	 should	 prompt	 regulatory	 agencies	 to	
look	for	new,	original	ideas	and	points	of	view	to	satisfy	the	balance	

among	quality,	economy,	and	benefits	of	the	products	that	must	au-
thorize.	In	this	prospect,	GA-	RxODE	could	be	extremely	useful.	This	
multipurpose procedure was used in this investigation to construct 
PK	profiles	with	only	five	C–	T	values	in	order	to	demonstrate	BE	be-
tween	generic-	innovator	formulations,	as	if	a	BE	study	was	made	with	
few	determinations	per	volunteer-	round.

TA B L E  3 Monocompartmental	model	estimate	parameters	after	GA-	RxODE	simulation

Drug Metformin Alprazolam Clonazepam

Formulation T R T R T R

ka	(h
−1) 4.76	(0.48) 4.77	(0.98) 9.99	(3.70) 4.52	(1.54) 0.71	(0.29) 0.95	(0.46)

ke	(h
−1) −0.243	(0.064) −0.234	(0.056) −0.061	(0.030) −0.057	(0.046) −0.024	(0.027) −0.037	(0.029)

Vd	(L) 520.60	(140.20) 505.90	(106.40) 94.40	(19.75) 99.86	(20.50) 270.31	(47.20) 232.05	(92.35)

Data	expressed	as	mean	(SD).
Abbreviations:	ka,	absorption	constant;	ke,	elimination	constant;	Vd,	apparent	distribution	volume.

F I G U R E  2 PK	population	models	
for T and R formulations of the drugs 
under study built using parameters 
derived	from	five	sample	points	(data	
extracted	from	original	BE	studies).	For	
comprehensive	purposes,	the	graphic	
was	divided	into	two	parts;	on	the	left,	
the	model	is	represented	as	average	C–	T	
curve	±standard	deviations	and,	on	the	
right,	the	model	is	represented	as	CI95	of	
the	mean.	Likewise,	on	the	left,	the	five	
determinations that produced the model 
and,	on	the	right,	all	average	original	C–	T	
determinations	(11	or	18	by	drug)	are	
superimposed in order to indicate that 
model represents all of values. Circles T 
(test)	data,	n	=	24;	triangles	R	(reference)	
data,	n = 24
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In	regard	to	above,	this	research	found:	First	and	foremost,	GA-	
RxODE was capable of building a series of simulated PK curves with 
similar	characteristics	to	real	ones,	using	 less	data	points.	Second,	
these	C–	T	curves	were	useful	 to	obtain	 reliable	PK	parameters	 to	
estimate	BE	between	 formulations.	Third,	 these	 simulated	BE	pa-
rameters did not show to be significantly different from the original 
BE	data	provided	by	 the	three	studies.	For	 the	studied	drugs,	 the	
simulated results would be similar to the source BE data. This would 
imply	the	modeling	for	BE	generated	by	GA-	RxODE	is	efficient.

However,	 three	 issues	are	needed	to	be	discussed	before	con-
tinuing,	 the	 BE	 studies	 in	 Argentina,	 the	 arbitrary	 choice	 of	 five	
determinations	to	do	simulations	instead	of	other	number,	and	the	
great	source	of	variation	in	Clonazepam	AUC	between	simulated	and	
real data.

As	 mentioned	 before,	 in	 Argentina	 there	 are	 no	 regulatory	
provisions	on	generic	medication;	 therefore,	 any	product	whose	

patent	has	expired	can	be	copied	without	any	other	requirement	
if	 it	 is	already	marketed	 in	 the	country.	However,	BE	studies	are	
used in this country to evaluate the interchangeability of prod-
ucts whose active ingredients are contained in extended release 
oral	 pharmaceutical	 forms	or	have	high	health	 risk.9 The last in-
cluded,	 those	 indicated	 for	 severe	 pathologies	 such	 as	 epilepsy	
(Antiepileptics)	or	HIV	infection	(Antiretrovirals),	those	that	pres-
ent	 a	 great	number	of	pharmacovigilance	 reports	 (Clozapine),	 or	
those	 that	 have	 a	 complicated	PK	 (Clopidogrel).	 In	 the	 past,	 the	
costs	 to	 perform	 BE	 studies	 were	 low	 enough	 to	 allow	 making	
them for export. But today the situation has changed dramati-
cally	and	the	domestic	costs	are	very	high,	especially	the	analyt-
ical	procedures	and	 the	devices	maintenance,	 so	 the	 studies	are	
expensive	and	 limited	to	regulatory	requirements.	 In	this	regard,	
the	Argentinean	regulatory	agency,	ANMAT,	in	some	cases	shows	
certain	ethical-	legal	objections	toward	these	studies	and	takes	its	

F I G U R E  3 Comparison	between	
simulated and original relevant PK 
estimation	Parameters,	Cmax	and	AUCinf,	
from	the	studied	drugs.	In	all	cases,	
markers	represent	individual	non-	log-	
transformed volunteer's value per 
formulation,	and	horizontal	lines	and	bars	
represent	the	geometric	mean	and	CI90,	
respectively,	of	each	data	group.	The	
figure includes the deviation estimation of 
simulated	over	real	data	(MPE	and	cRMSE)	
and	the	statistical	analysis	(fixed-	effect	
two-	way	ANOVA	of	log-	transformed	
data).	There	were	no	statistical	
differences between simulated and real 
parameters.	Circles	T	(test)	data,	n = 24; 
triangles	R	(reference)	data,	n = 24
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time	 in	 issuing	and	authorizing	 their	carry	out.	Faced	with	 these	
difficulties,	we	have	thought	to	apply	GA-	RxODE	in	the	BE	field.

Since	a	PK	model	generated	by	GA-	RxODE	could	be	produced	
with up to three determinations and even so preserve its internal 
congruency,12 five values seemed a better option because they 
could give more clarity to the model avoiding greater external dis-
persion,	as	shown	in	this	work.	The	key	concept	here	is	to	provide	
the	model	with	a	peak-	valley	behavior,	so	any	erratic	and	underfitted	
curve	that	may	appear	will	be	discarded	by	GA	routine	if	does	not	
fulfil	the	required	profile.	For	this	reason,	it	was	preferred	the	sam-
pling	distribution	described	 in	Material	 and	Methods	 to	 cover	 the	
curve	development.	And	although	there	might	be	excellent	specific	
software	to	calculate	the	best	time	values	for	a	given	C–	T	curve,	in	
this	investigation,	they	were	chosen	“by	hand”	knowing	tmax and t½ 
of	drugs	to	be	studied.	To	end,	a	simple	proof	that	the	points	chosen	
were appropriate is the closeness between the λz values shown in 
Figure	1	and	the	ke	values	shown	in	Table	3	(middle	row).

As	 seen	 in	 Figure	 3,	 there	 were	 great	 internal	 dispersion	 in	
Clonazepam	AUCinf	 values	 detected	 by	 cRMSE	 test,	 between	 sim-
ulated	 and	 original	 data.	 Its	 exact	 significance	 is	 unclear.	 Thinking	
about	it	and	reviewing	the	situation,	we	believed	that,	unfortunately,	
the	original	Clonazepam	study	had	a	design	error	that	apparently	did	
not	 influence	 the	BE	demonstration	 in	 the	past,	but	 the	procedure	
followed here to mend the situation could be the cause of such dis-
persion.	The	design	error	was	revealed	during	this	investigation	when,	
initially,	 residual	AUC	was	 recalculated	and	yielded	a	value	of	39%,	
when	the	usual	is	20%	or	less.	This	would	indicate	that	an	additional	
determination	should	have	been	included	after	48	h.	Therefore,	the	
simulated	Clonazepam	curve	was	prolonged	until	 72	h	 and	AUC72	
was	used	instead	of	AUC48,	since	what	was	to	be	compared	in	the	
figure	was	its	derived	AUCinf.	Under	this	procedure,	the	residual	AUC	
was	reduced	to	28%,	but	it	would	not	seem	to	be	capable	to	decrease	
the	internal	dispersion	or	perhaps,	it	could	even	add	more.	This	is	an	
open	issue	and	additional	research	would	be	required	to	be	solved.

In	sum,	the	world	interest	in	generic	products	is	rising,	proof	of	
this	is	the	increase	in	the	number	of	papers	about	“BE	studies	and	
generic	medication”	that	have	been	published	 in	the	 last	50	years,	
from	1	in	1973	to	80–	90	in	the	last	year.30	In	this	context,	this	 in-
vestigation	intended	to	show	the	capabilities	of	GA-	RxODE	in	BE.

So,	 whether	 it	 is	 applied	 to	 BE	 studies,	 these	 trials	 would	 be	
cheaper	and	safer	inasmuch	as	they	will	require	only	30%–	50%	of	the	
usual	determinations	and	a	shorter	hospitalization	time.	This	opens	
the	possibility	that	GA-	RxODE	model	simulation	might	be	used	as	a	
reliable	substitute	to	the	traditional	methodology	in	BE	studies,	and	
even could be used during the planning or design phase to simulate 
possible	scenarios	and	optimize	the	protocol	preparation.

This investigation is a first step in this area and covering solely 
the comparison between conducted trials and their derived simu-
lated	 data,	 there	 are	 some	 limitations:	 the	 conclusions	 cannot	 be	
generalized	to	high	variability	PK	drugs	or	those	with	multiple	and	
erratic	metabolism,	until	more	BE	trials	are	available	to	us.

We	are	now	able	 to	extend	the	GA-	RxODE	capabilities	 in	 this	
field	 planning	 new	 BE	 comparisons	 with	 older	 studies,	 including	TA
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those	 non-	bioequivalents,	 and	 awakening	 the	 general	 interest	 of	
this	tool	in	such	BE	trials.	If	potential	users,	that	is,	academic	envi-
ronment,	pharmaceutical	 industry,	health	authorities,	ethical	com-
mittees,	 and	 others,	 consider	 this	 approach	 useful	 and	 enable	 its	
development,	 a	 series	of	new	kind	of	BE	studies	can	be	designed	
and carried out.
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TA B L E  5 Bioequivalent	point	estimates	between	T	and	R	formulations	for	the	simulated	and	original	data

Parametera  Simulated BEb 
CV% 
intrac 

CV% 
interd  Original BEb 

CV% 
intrac 

CV% 
interd  Differencee  pf 

Metformin

Cmax 0.954	(0.878–	1.035) 17 31 0.885	(0.822–	0.954) 16 31 −0.085 .1251

AUCt24 0.946	(0.877–	1.019) 16 25 0.914	(0.857–	0.975) 14 25 −0.073 .1111

AUCinf 0.949	(0.881–	1.022) 16 25 0.926	(0.867–	0.989) 14 25 −0.064 .1394

Alprazolam

Cmax 1.046	(0.926–	1.181) 26 10 0.960	(0.836–	1.103) 29 8 0.002 .5149

AUCt36 1.031	(0.877–	1.213) 34 8 1.043	(0.896–	1.213) 32 19 0.036 .6905

AUCinf 1.036	(0.857–	1.249) 40 22 1.043	(0.861–	1.253)* 40 23 0.036 .6906

Clonazepam

Cmax 0.927	(0.831–	1.034) 23 31 0.934	(0.853–	1.023) 19 25 −0.072 .1625

AUCt48 1.007	(0.920–	1.103) 19 24 1.043	(0.958–	1.128) 17 27 0.014 .5873

AUCinf 1.021	(0.931–	1.119) 19 24 1.078	(0.934–	1.243) 30 43 0.052 .7170

Abbreviations:	As	Table	2;	CV%	inter,	CV	interindividual;	CV%	intra,	CV	intraindividual.
aAll	simulated	and	real	parameters	exhibited	BE;	TOS	test	p	<	.05	except	(*)	ns.
bData expressed as geometric mean T/R ratios and their CI90s.
cCV%	intra,	values	obtained	from	residual	MS	of	BE	ANOVA.
dCV%	inter,	values	obtained	from	volunteer	MS	minus	residual	MS	of	BE	ANOVA.
eDifference	between	simulated	BE	and	original	BE	point	estimates;	each	value	expresses	the	log-	transformed	mean	difference	(T-	R	simulated	minus	
T-	R	original).
fMean	difference	test	using	residual	MS	from	fixed-	effects	two-	way	ANOVA.
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