
Pharmacol Res Perspect. 2021;9:e00824.	 ﻿	   | 1 of 10
https://doi.org/10.1002/prp2.824

wileyonlinelibrary.com/journal/prp2

Received: 29 November 2020  | Accepted: 22 March 2021
DOI: 10.1002/prp2.824  

I N V I T E D  R E V I E W

The use of GA-RxODE (Genetics Algorithms and Running 
simulations from Ordinary Differential Equations-based model) 
method to optimize bioequivalence studies

Ezequiel Omar Nuske  |   Mikhail Morozov |   Héctor Alejandro Serra

This is an open access article under the terms of the Creat​ive Commo​ns Attri​butio​n-NonCo​mmerc​ial-NoDerivs License, which permits use and distribution in 
any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2021 The Authors. Pharmacology Research & Perspectives published by British Pharmacological Society and American Society for Pharmacology and 
Experimental Therapeutics and John Wiley & Sons Ltd.

Abbreviations: AUCinf, area under curve from zero to infinity; AUCt, AUC from zero to the determined last time; BE, bioequivalence; Cmax, maximum concentration; cRMSE, corrected by 
mean root-mean-square error; CROs, Contract Research Organizations; C–T, concentration–time; GA-RxODE, genetics algorithms and running simulations from ordinary differential 
equations based model; HPLC, high-pressure liquid chromatography; ka, absorption constant; ke, elimination constant; MPE, mean percentage error; NLME, non-lineal mixed-effect 
model; PK, pharmacokinetic; R, reference formulation; T, test formulation; tmax, time to Cmax; Vd, apparent distribution volume; λz, final elimination slope.

Pharmacology Department, School of 
Medicine, University of Buenos Aires, 
Buenos Aires, Argentina

Correspondence
Héctor Alejandro Serra, Paraguay 2155 
15th floor, C1121ABG Buenos Aires, 
Argentina.
Email: haserrafarmaco@gmail.com

Abstract
Bioequivalence (BE) studies are prerequisite in generic products approval. Normally, 
they are quite simple in design and expensive in execution, and sometimes suffer 
ethical questioning. Genetics Algorithms and Running simulations from Ordinary 
Differential Equations-based model (GA-RxODE) is a multipurpose method used in 
pharmacokinetic (PK) optimization. It can be used to complete concentration–time 
(C–T) missing data. In this investigation, GA-RxODE was applied in BE field. For this 
purpose, three BE studies were selected as a source data comprising formulations of 
metformin, alprazolam and clonazepam. From them, five blood samples values per 
volunteer-round from specific preset times were chosen as if BE study was carried 
out with five instead of the classic 10–20 samples. With the five values of each vol-
unteer a complete C–T curve was simulated by GA-RxODE and certain PK estima-
tion parameters (as maximum concentration, Cmax, and area under C–T curve from 
zero to infinite, AUCinf) were elicited. Finally, with these modeled parameters, a BE 
analysis was performed according to certain regulatory agencies guidances. Some re-
sults, expressed as geometric mean ratios of compared formulations and their 90% 
confidence intervals (CI90), were as follows: Metformin Cmax = 0.954 (0.878–1.035), 
AUCinf = 0.949 (0.881–1.022); Alprazolam Cmax = 1.063 (0.924–1.222), AUCinf = 1.036 
(0.857–1.249), Clonazepam Cmax = 0.927 (0.831–1.034), and AUCinf = 1.021 (0.931–
1.119). All CI90 were inside the 0.8–1.25 BE range. In summary, the simulated data 
were bioequivalent and non-significantly different from original studies’ data. This 
raises the opportunity to perform more economic BE studies to build reliable PK esti-
mation parameters from a few samples per volunteer.
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1  |  INTRODUC TION

From the 1970s, regulatory agencies have placed great empha-
sis on pharmaceutical products bioavailability as a way to pro-
mote the manufacturing of better-quality medicines and avoid 
ineffectiveness–toxicity problems.1,2 However, this emphasis has 
implied a great technical adjustment that progressively affected the 
entire production network, and such adjustment, far from has re-
duced costs, has triggered them to unacceptable levels.

In a context of lessen health costs, generic medication is a re-
source that countries could exploit. A generic drug is a formulation 
that contains the same active principle (in salts, isomers, or crys-
talline forms), the same excipients, and the same dosage strength 
under the same pharmaceutical form as a former brand name of 
product, the so-called innovator.3 The innovator is exclusive in the 
pharmaceutical market until its patent expires, from that moment 
anyone in the industry may copy it. In such case, certain laboratory 
may manufacture the generic following the same procedures as the 
one which designed and approved the innovator.4 Because generic 
drugs do not undergo all the required clinical investigation for a New 
Drug Approval, they should be cheaper than innovators.5–7

Several countries around the world have been defining the char-
acteristics and requirements for their generic drugs, either through 
legal provisions from their regulatory agencies or through laws en-
acted by their parliaments. For instance, the American legislation, by 
the Hatch-Waxman Act of 1984, may authorize a given laboratory to 
produce and sell generic products whenever it could demonstrate 
that they have the same quality and are bioequivalent to innovators, 
and of course, do not infringe their patents.4,8

In Argentina, the word “generic” only indicates the WHO 
International Non-proprietary Name (INN) of a drug substance. 
And although Argentina does not have specific regulations for ge-
neric drugs like United States or the European countries, in 1999 
its regulatory agency, ANMAT, established the bioequivalence (BE) 
standards for high sanitary risk products marketed in its territory.9 
These standards can be taken as a basis for exchangeability among 
the products marketed in Argentina, either if they were considered 
generics or not.

According to our experience, BE studies in Argentina are sim-
ple to design, expensive to execute, and complex to solve certain 
aspects. The BE demonstration between two pharmaceutical for-
mulations, the generic and the innovator (in this study, also called 
test or T and reference or R, respectively), involves carrying out a 
randomized, cross-over clinical trial in healthy volunteers to deter-
mine similar drug plasma levels comparing certain pharmacokinetic 
(PK) estimation parameters, a fact considered as surrogate variable 
of similar therapeutic effect.10,11 The more determinations carried 
out, the more precise an obtained PK profile is assumed to be; but 
this also implies more costs and, especially, more volunteers’ expo-
sure to hospital milieu, a fact that causes discomfort and increases 
the infection risk, and can be ethically questionable.

We have recently studied the potential of the multipurpose tool, 
written in R language, GA-RxODE for the PK studies.12 GA-RxODE 

comprises two routines, GA (Genetics Algorithms) and Rx-ODE 
(Running simulations from Ordinary Differential Equations based 
model). The RxODE part sets the non-lineal mixed-effect (NLME) 
model to be followed, offering a framework for simulation criteria. 
The GA part obtains the best parameters that fit the simulation cri-
teria defined by investigators, combining and selecting data matri-
ces by Mendelian principles and the Natural Selection.13 Because 
GA is a heuristic approach used in artificial intelligence to optimize 
available data, the entire process allows to analyze large amounts 
of data in the NLME context reducing restrictions can be imposed 
by the principle of maximum entropy, as shown in drug modeling.14 
Since there is an infinite combination of parameters that could sat-
isfy a model for a given set of data points, it would be computa-
tionally unfeasible to perform a brute force or grid search of such 
parameters. Furthermore, noisy, collinear, or poor-quality datasets 
tend to produce singular matrices or non-converging results when 
conventional optimization methods are applied. In this scenario, GA 
is a very robust routine and guarantees to converge into a solution.

Once the investigator sets the desired model and put the source 
values to which it should be adjust, GA-RxODE generating a series 
of concentration–time (C–T) curves that progressively converge to-
ward the preset data. For each modeled subject (e.g., animal, volun-
teer, patient, etc.), Rx-ODE produces initially 100 randomly simulated 
curves and contrasts them with a loss function L12 that includes the 
source values, so curves can be ordered from best to worst fit into 
100 vectors or “genes”. Then, GA proceeds cyclically; analyzes the 
genes, retains the best 10, recombines the next 40 among them, se-
lects and randomly mutates 25 of the previous 50, and replaces the 
25 worst vectors by new ones from Rx-ODE. Finally, the next cycle 
is restarted when these new 100 vectors are compared again with 
L and reordered for GA task. Each cycle is called a “generation” and 
the procedure continues for 100 cycles or until the best convergence 
is achieved; in addition, every 10 generations, the best vector is fur-
ther optimized by the Levenberg–Marquardt algorithm.15 The choice 
of 100 vectors and 100 generations is arbitrary, but these figures are 
large enough to give GA-RxODE a "generous" search space to achieve 
model convergence under all circumstances. Likewise, the random 
but uniform distributed mutation done in the genes should also guar-
antee the proposed solution will not fall outside of such space.16 The 
final GA-RxODE construct, called “token- or para-data”, has less ex-
perimental error, mainly intra-individual, and can be used by further 
procedures. Token data also enable to analyze trends like moving av-
erage and create much more robust population PK models.12

An issue addressed in our previous study was the construction 
of reliable simulated C–T curves using few determinations as if there 
were missing data. It was demonstrated that with fewer determina-
tions per volunteer the initially obtained population PK model was 
conserved. It also established a minimum of three determinations 
in order to maintain the model, whenever these followed the order, 
baseline–maximum–minimum, simulating a peak-valley PK behavior.12

Therefore, if classical BE studies employ 10–20 determinations 
per volunteer to build C–T curves and obtain useful PK estimation 
parameters to claim BE, the aims of this work are as follows: to 
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demonstrate that GA-RxODE can simulate C–T curves but from 5 de-
terminations per volunteer instead the usual number, and to demon-
strate that these curves are also suitable to study and claim BE.

2  |  MATERIAL S AND METHODS

2.1  |  Source data origin and trials conducting

During the first decade of the 21st century, Química Montpellier SA, as 
part of the Bagó Group, developed a series of studies to demonstrate 
BE between certain proprietary solid oral formulations (T) and the cor-
responding classic brand names (R) for its commercialization abroad. 
These studies were carried out by local independent Contract Research 
Organizations (CROs) in accordance with all regulations valid at that 
time and following appropriate ethical requirements. Even though the 
demonstrated BEs were not published because they were developed 
exclusively for regulatory purposes, their results can be employed for 
this research as original, source, and raw or real data indistinctly.

In brief, the BE trials were performed according to classic double-
blind randomized crossover design on a minimum of 24 both genders 
healthy subjects.17 The volunteers gave their written informed con-
sent to participate in studies and underwent two doses in two rounds, 
one for T and one for R, separated by a wash-out period greater than 
five elimination t½ of the drug under study. According to the drug 
to be measured, extraction times and hospital stay were calculated. 
Blood samples were processed and stored at −70℃ until biochemi-
cal analysis. Each completed trial produced approximately 600–700 
samples that were analyzed under high-pressure liquid chromatogra-
phy (HPLC) and UV light detection set at 240 nm wavelength.

2.2  |  Usual obtaining procedures for PK 
estimation parameters

From 10 to 20 determinations from each volunteer and round, indi-
vidual C–T curves were constructed. From each C–T curve, individual 
PK estimation parameters were obtained as follows18: the maximum 
concentration (Cmax) and the time to reach it (tmax) through direct 
recording; the area under the curve to last recorded time (AUCt) 
through Trapezoidal sum method; the final elimination slope (λz) and 
the t½ by last concentrations’ natural log-conversion; the residual 
area by dividing the last concentration by λz, and the AUC to infinity 
(AUCinf) by adding residual area to AUCt.

2.3  |  GA-RxODE modeling

To reproduce BE trials using GA-RxODE C–T simulation, three origi-
nal studies were selected, one with the antidiabetic Metformin, and 
two with the benzodiazepines, Alprazolam, and Clonazepam. The 
three trials were primarily selected on the source data affordability, 
whose declassification was made 10 years after their submission for 

commercial registration. The drug type and its therapeutic relevance 
were used as secondary selection criteria.

Source data were extracted from final reports to calculate average 
C–T curves. Each curve included all values (T plus R) per time. Average 
values were log-transformed and PK parameters, tmax, λz, and t½ were 
directly calculated in order to select five preset times as if only five 
samples were extracted from each volunteer during a real study. As 
initial assumption, the sampling times were selected arbitrarily under 
the aforementioned peek valley concept to cover the typical PK pro-
files of drugs under study: one basal, one during the absorption phase, 
one close to Cmax, and two during the elimination phase. Using plasma 
concentration values taken from the source data for each preset time, 
new C–T curves per volunteer-round were modeled by GA-RxODE, 
implemented in R programming language, following a monocompart-
mental model with absorption by default. Before to continue, a min-
imum population model for each drug was constructed to verify the 
accuracy in simulation. Finally, from these simulated curves, appropri-
ate individual PK estimation parameters for T or R formulations were 
obtained according to the procedures described in Section 2.2.

2.4  |  BE procedures

According to most regulatory agencies, the BE proof is achieved when 
the geometric mean ratio between T and R—or point estimate—of 
Cmax, AUCt, and AUCinf approaches to one and its 90% confidence 
interval (CI90) lies inside the 0.8–1.25 range.18 With these PK es-
timation parameters from each drug's formulations, the CROs ana-
lyzed whether the data were bioequivalent using specific software 
of that time (PKCalc® and WinNonLin 4.0®) and prepared the final 
reports on BE following US Food and Drug Administration (FDA), 
European Medicines Agency (EMA), and Administración Nacional de 
Medicamentos, Alimentos y Tecnología Médica (ANMAT) Argentina 
recommendations.9,19,20

With this methodology, it was attempted to demonstrate BE with 
T and R formulations’ parameters derived from simulated data. Thus, 
values for Cmax, AUCt, and AUCinf were log-transformed and processed 
to acquire and test the point estimates. By mixed-effect two-way 
ANOVA21 (or BE ANOVA), the sources of variances could be discrim-
inated and elicit the proper residuals to build the CI90s. To verify that 
each CI90 fit within the proposed range, a two one-sided (TOS) test 
was used.22 To construct individual PK estimation parameters after 
C–T modeling in R language and perform the BE analysis as described, 
an Excel 2013 for Windows® sheet was specifically programmed.

2.5  |  Statistics

Most C–T curves were drawn using natural log-conversion of con-
centration values in order to rectify the elimination slopes, except 
those that represented population models. Because of PK estima-
tion parameters values have a log-normal distribution, their natu-
ral log-conversion was absolutely necessary before to initiate any 
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analysis. So, data were expressed as median (range), mean (SD), mean 
(CI95), or geometric mean (CI90) where necessary. The deviation 
between actual and simulated values of PK estimation parameters 
were evaluated via mean percentage error (MPE) and corrected by 
mean root-mean-square error (cRMSE). Overall data were analyzed 
by a fixed-effect two-way ANOVA23 and the differences between 
point estimates were studied by mean difference test linked to this 
ANOVA. For the statistical analysis and graphic rendering, another 
Excel 2013 for Windows® sheet was prepared.

3  |  RESULTS

This investigation has generated, processed, and confronted a huge 
data amount. For instance, the development of the simulated PK es-
timation parameters of one drug under study requires at least 10 000 
matrices among data extrapolation, residuals analysis, and covariate 
comparisons. This is the main reason because three and no more 
studies were included as source data; and the second reason is only 
those three trials were declassified at first instance. Furthermore, it 
should be considering the studied drugs are widely used and recog-
nized worldwide; Metformin is first-line drug for diabetes and meta-
bolic syndrome treatments, and the two benzodiazepines are among 
the most prescribed anxiolytic drugs.

Tables 1 and 2 present some characteristics of source BE trials. In 
all studies, there were a prevalence of male volunteers. The number of 

determinations per volunteer-round used to build individual C–T curves 
were 18 in the metformin study and 11 in the 2 benzodiazepine studies.

Figure 1 displays the redrawn average C–T curves of each stud-
ied drug. At first glimpse, Metformin and Alprazolam appear to 
follow a monocompartmental model, while Clonazepam displays a 
clear bicompartmental model. Furthermore, Figure 1 indicates the 
PK parameters necessary to select the five times. Considering tmax 
and λz-derived t½, the better representative times to perform sim-
ulations were, for Metformin: 0, 1, 3, 6, and 12 h, respectively; for 
Alprazolam: 0, 0.5, 1, 8, and 24 h, respectively, and for Clonazepam: 
0, 1, 2, 12, and 48 h, respectively.

Using a monocompartmental model with absorption (as surro-
gate of non-compartmental PK) and the five times, the simulated 
model parameters shown in Table 3 were obtained. Figure 2 com-
plements such information displaying the population models calcu-
lated with these parameters. As seen, the five points were enough to 
generate a representative and conserved model (left) whose average 
curves-CI95s contains almost all means of the real data (right). If a 
mean lies inside CI95 of another mean, this is indicative they are non-
significantly different and no more evidence are needed. Likewise, 
Figure 3 further contribute to shows similarity between simulated 
and original data. Here, T and R values from the two sources for 
Cmax and AUCinf are illustrated individually per volunteer (markers) 
and by the representative geometric mean-CI90 (line-bar). In ad-
dition, it includes MPE, cRMSE, and p (from the ANOVA analysis) 
values. Visually, the data distribution appears to be similar between 
the simulated and real ones, but the deviation between original and 
simulated data implies a rough variation of −20% to 26% (MPE) and 
8%–57% (cRMSE), with the highest percentage variation originated 
by Clonazepam AUC. The two-way ANOVA indicates there were 
non-significant differences. All of this indicate that GA-RxODE sim-
ulated curves would exhibit a similar behavior to the original ones.

Returning to the second aim, Table  4 shows the non-
compartmental PK estimation parameters needed to analyze BE, but 
derived from the GA-RxODE-simulated curves. And Table 5 shows 
the results of classic BE analysis achieved with simulated PK parame-
ters, compared with the BE data provided by source trials. This table 
is organized around the point estimates of each necessary PK param-
eter: Cmax, AUCt, and AUCinf for the studied drugs, and their CI90s. 
All CI90s of simulated data are within the 0.80–1.25 range (second 
column) and the performed TOS tests were significant (p < .05; values 

TA B L E  1 General characteristics of original BE studies

Metformin Alprazolam Clonazepam

Year of performing 2004 2007 2008

Brand-name Test 
formulation

DBI® Tranquinal® Neuryl®

Brand-name 
Reference 
formulation

Glucophage® Xanax® Rivotril®

Pharmaceutical form Coated tablets 
normal release

Tablets Tablets

Single dose used 
(mg) per 
volunteer-round

500 0.5 1

Metformin Alprazolam Clonazepam

n volunteers completed 
the trial

24 24 24

Age (years) 32.5 (8.9) 31.8 (10.4) 32.1 (8.5)

Sex (% Female) 25 34 29

Height (m) 1.68 (0.09) 1.68 (0.09) 1.72 (0.07)

Weight (kg) 69.6 (11.1) 65.9 (11.5) 72.9 (6.3)

Adverse events during or 
after trial execution

Not registered Not registered Not registered

Data expressed as mean (SD) except sex (%).

TA B L E  2 Demographic characteristics 
of original BE studies
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not shown). The simulated values are close to the original data (central 
column). However, in the original data series, all CI90s are also inside 
the 0.80–1.25 range, except the CI90 of Alprazolam AUCinf that touch 
the upper limit and so, its TOS test was non-significant. Finally, the 
log-transformed mean differences between simulated and original 
point estimates for all PK parameters were also non-significant (last 
two columns). Thus, BE can be demonstrated using C–T curves mod-
eled by GA-RxODE from a few data points.

4  |  DISCUSSION

Nowadays, the societies increasingly demand from the pharmaceuti-
cal industry, directly or indirectly, products of the highest quality and 
inexpensive. A way to elicit them is through generic drugs produc-
tion that would operate as more accessible therapeutic alternatives 

that can be exchanged without further ado at the patient-consumer 
request.24 However, the term generic medication arouses in a good 
portion of the population a certain, but perhaps unjustified, skepti-
cism and concern.7,25,26

To be exchangeable, a generic should be equal to its innovator in 
almost all aspects. However, nearly its entire essence is based on the 
BE demonstration and obviously, neither its manufacturing process nor 
its proven BE assure its quality in terms of therapeutic effectiveness 
and safety.26 The manufacturing of generic products should lower the 
health costs, but both Good Manufacturing Practices and Good Clinical 
Practices applied today actually rises the productive costs,27 making 
this approach less profitable. Therefore, companies could cut expenses 
and the final quality of a given generic medication might suffer.

On the other hand, BE trials are carried out in healthy volunteers 
from whom blood is drawn in clinical setting to safeguard any contin-
gency. Beyond the financial compensation they receive, each volunteer 

F I G U R E  1 Average C–T curves for 
the drugs under study. Each C–T point 
comprises the mean of all T and R 
formulations values, so n = 48. The data 
were extracted from original BE studies, 
redrawn (using log-transformation) and 
recalculated to produce PK parameters 
necessary to estimate the possible 
sampling times according to each drug 
(see the inset)
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loses about 200–300 ml of blood per BE study and is exposed to the 
hospital environment for 24–36 h with possible risk infection. So, why 
someone healthy should be treated as an ill person can revive classic 
controversies in bioethics.28,29

All these circumstances should prompt regulatory agencies to 
look for new, original ideas and points of view to satisfy the balance 

among quality, economy, and benefits of the products that must au-
thorize. In this prospect, GA-RxODE could be extremely useful. This 
multipurpose procedure was used in this investigation to construct 
PK profiles with only five C–T values in order to demonstrate BE be-
tween generic-innovator formulations, as if a BE study was made with 
few determinations per volunteer-round.

TA B L E  3 Monocompartmental model estimate parameters after GA-RxODE simulation

Drug Metformin Alprazolam Clonazepam

Formulation T R T R T R

ka (h
−1) 4.76 (0.48) 4.77 (0.98) 9.99 (3.70) 4.52 (1.54) 0.71 (0.29) 0.95 (0.46)

ke (h
−1) −0.243 (0.064) −0.234 (0.056) −0.061 (0.030) −0.057 (0.046) −0.024 (0.027) −0.037 (0.029)

Vd (L) 520.60 (140.20) 505.90 (106.40) 94.40 (19.75) 99.86 (20.50) 270.31 (47.20) 232.05 (92.35)

Data expressed as mean (SD).
Abbreviations: ka, absorption constant; ke, elimination constant; Vd, apparent distribution volume.

F I G U R E  2 PK population models 
for T and R formulations of the drugs 
under study built using parameters 
derived from five sample points (data 
extracted from original BE studies). For 
comprehensive purposes, the graphic 
was divided into two parts; on the left, 
the model is represented as average C–T 
curve ±standard deviations and, on the 
right, the model is represented as CI95 of 
the mean. Likewise, on the left, the five 
determinations that produced the model 
and, on the right, all average original C–T 
determinations (11 or 18 by drug) are 
superimposed in order to indicate that 
model represents all of values. Circles T 
(test) data, n = 24; triangles R (reference) 
data, n = 24
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In regard to above, this research found: First and foremost, GA-
RxODE was capable of building a series of simulated PK curves with 
similar characteristics to real ones, using less data points. Second, 
these C–T curves were useful to obtain reliable PK parameters to 
estimate BE between formulations. Third, these simulated BE pa-
rameters did not show to be significantly different from the original 
BE data provided by the three studies. For the studied drugs, the 
simulated results would be similar to the source BE data. This would 
imply the modeling for BE generated by GA-RxODE is efficient.

However, three issues are needed to be discussed before con-
tinuing, the BE studies in Argentina, the arbitrary choice of five 
determinations to do simulations instead of other number, and the 
great source of variation in Clonazepam AUC between simulated and 
real data.

As mentioned before, in Argentina there are no regulatory 
provisions on generic medication; therefore, any product whose 

patent has expired can be copied without any other requirement 
if it is already marketed in the country. However, BE studies are 
used in this country to evaluate the interchangeability of prod-
ucts whose active ingredients are contained in extended release 
oral pharmaceutical forms or have high health risk.9 The last in-
cluded, those indicated for severe pathologies such as epilepsy 
(Antiepileptics) or HIV infection (Antiretrovirals), those that pres-
ent a great number of pharmacovigilance reports (Clozapine), or 
those that have a complicated PK (Clopidogrel). In the past, the 
costs to perform BE studies were low enough to allow making 
them for export. But today the situation has changed dramati-
cally and the domestic costs are very high, especially the analyt-
ical procedures and the devices maintenance, so the studies are 
expensive and limited to regulatory requirements. In this regard, 
the Argentinean regulatory agency, ANMAT, in some cases shows 
certain ethical-legal objections toward these studies and takes its 

F I G U R E  3 Comparison between 
simulated and original relevant PK 
estimation Parameters, Cmax and AUCinf, 
from the studied drugs. In all cases, 
markers represent individual non-log-
transformed volunteer's value per 
formulation, and horizontal lines and bars 
represent the geometric mean and CI90, 
respectively, of each data group. The 
figure includes the deviation estimation of 
simulated over real data (MPE and cRMSE) 
and the statistical analysis (fixed-effect 
two-way ANOVA of log-transformed 
data). There were no statistical 
differences between simulated and real 
parameters. Circles T (test) data, n = 24; 
triangles R (reference) data, n = 24
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time in issuing and authorizing their carry out. Faced with these 
difficulties, we have thought to apply GA-RxODE in the BE field.

Since a PK model generated by GA-RxODE could be produced 
with up to three determinations and even so preserve its internal 
congruency,12 five values seemed a better option because they 
could give more clarity to the model avoiding greater external dis-
persion, as shown in this work. The key concept here is to provide 
the model with a peak-valley behavior, so any erratic and underfitted 
curve that may appear will be discarded by GA routine if does not 
fulfil the required profile. For this reason, it was preferred the sam-
pling distribution described in Material and Methods to cover the 
curve development. And although there might be excellent specific 
software to calculate the best time values for a given C–T curve, in 
this investigation, they were chosen “by hand” knowing tmax and t½ 
of drugs to be studied. To end, a simple proof that the points chosen 
were appropriate is the closeness between the λz values shown in 
Figure 1 and the ke values shown in Table 3 (middle row).

As seen in Figure  3, there were great internal dispersion in 
Clonazepam AUCinf values detected by cRMSE test, between sim-
ulated and original data. Its exact significance is unclear. Thinking 
about it and reviewing the situation, we believed that, unfortunately, 
the original Clonazepam study had a design error that apparently did 
not influence the BE demonstration in the past, but the procedure 
followed here to mend the situation could be the cause of such dis-
persion. The design error was revealed during this investigation when, 
initially, residual AUC was recalculated and yielded a value of 39%, 
when the usual is 20% or less. This would indicate that an additional 
determination should have been included after 48 h. Therefore, the 
simulated Clonazepam curve was prolonged until 72 h and AUC72 
was used instead of AUC48, since what was to be compared in the 
figure was its derived AUCinf. Under this procedure, the residual AUC 
was reduced to 28%, but it would not seem to be capable to decrease 
the internal dispersion or perhaps, it could even add more. This is an 
open issue and additional research would be required to be solved.

In sum, the world interest in generic products is rising, proof of 
this is the increase in the number of papers about “BE studies and 
generic medication” that have been published in the last 50 years, 
from 1 in 1973 to 80–90 in the last year.30 In this context, this in-
vestigation intended to show the capabilities of GA-RxODE in BE.

So, whether it is applied to BE studies, these trials would be 
cheaper and safer inasmuch as they will require only 30%–50% of the 
usual determinations and a shorter hospitalization time. This opens 
the possibility that GA-RxODE model simulation might be used as a 
reliable substitute to the traditional methodology in BE studies, and 
even could be used during the planning or design phase to simulate 
possible scenarios and optimize the protocol preparation.

This investigation is a first step in this area and covering solely 
the comparison between conducted trials and their derived simu-
lated data, there are some limitations: the conclusions cannot be 
generalized to high variability PK drugs or those with multiple and 
erratic metabolism, until more BE trials are available to us.

We are now able to extend the GA-RxODE capabilities in this 
field planning new BE comparisons with older studies, including TA
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those non-bioequivalents, and awakening the general interest of 
this tool in such BE trials. If potential users, that is, academic envi-
ronment, pharmaceutical industry, health authorities, ethical com-
mittees, and others, consider this approach useful and enable its 
development, a series of new kind of BE studies can be designed 
and carried out.
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