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To identify the molecular mechanisms and novel therapeutic agents of late-onset
Alzheimer’s disease (AD), we performed integrative network analysis using multiple
transcriptomic profiles of human brains. With the hypothesis that AD pathology involves
the whole cerebrum, we first identified co-expressed modules across multiple cerebral
regions of the aging human brain. Among them, two modules (M3 and M8) consisting
of 1,429 protein-coding genes were significantly enriched with AD-correlated genes.
Differential expression analysis of microarray, bulk RNA-sequencing (RNA-seq) data
revealed the dysregulation of M3 and M8 across different cerebral regions in both
normal aging and AD. The cell-type enrichment analysis and differential expression
analysis at the single-cell resolution indicated the extensive neuronal vulnerability in AD
pathogenesis. Transcriptomic-based drug screening from Connectivity Map proposed
Gly-His-Lys acetate salt (GHK) as a potential drug candidate that could probably restore
the dysregulated genes of the M3 and M8 network. Pretreatment with GHK showed
a neuroprotective effect against amyloid-beta-induced injury in differentiated human
neuron-like SH-SY5Y cells. Taken together, our findings uncover a dysregulated network
disrupted across multiple cerebral regions in AD and propose pretreatment with GHK
as a novel neuroprotective strategy against AD.

Keywords: Alzheimer’s disease, transcriptomic analysis, co-expressed modules, drug repurpose, aging

INTRODUCTION

Alzheimer’s disease (AD) is a slowly progressive, incurable neurodegenerative disease, characterized
by cognitive impairment and neuropsychiatric symptoms (NPS) such as olfactory dysfunction,
anxiety, depression, sleep disruption (Lyketsos et al., 2011; Eikelboom et al., 2021). AD is the most
common cause of dementia in the world, accounting for around two-thirds of people living with
dementia globally (Scheltens et al., 2016). Previous studies have already verified that aging is the
greatest risk factor for AD (Brookmeyer et al., 2007; Hebert et al., 2013). With the acceleration
of global population aging, AD has become a significant public health issue that needs to be
resolved urgently (2021 Alzheimer’s disease facts and figures, 2021). However, the mainstream
therapeutic medications show little effect on slowing down or stopping the progression of AD (Joe
and Ringman, 2019). Thus, there is an urgent need to develop effective anti-AD drugs.
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With the pathological features of amyloid-beta (Aβ)
plaque and neurofibrillary tangle (NFT) in the human AD
brain (Scheltens et al., 2016), AD is widely believed to be
triggered by the production and accumulation of Aβ and
hyperphosphorylated tau (p-tau) (Viola and Klein, 2015;
Congdon and Sigurdsson, 2018). Based on the Aβ and p-tau
hypothesis, transgenic mouse models overexpressing mutant
APP and PSEN1 or MAPT (Holcomb et al., 1998; Oddo et al.,
2003) are universally used for pathological mechanism research
and preliminary medicines screening (Bilkei-Gorzo, 2014; Puzzo
et al., 2015). However, although anti-Aβ antibodies show a
promising neuroprotective effect on transgenic rodent models,
33 drugs targeting Aβ have failed to slow cognitive decline
in phase 3 clinical trials (Ayton and Bush, 2021). Similarly,
tau-based clinical trials have not yet produced positive results
(Congdon and Sigurdsson, 2018). This is possibly because our
knowledge of AD pathology is mostly based on the effects of
some familial rare gene mutations, which are responsible for
early-onset AD (EOAD) accounting for only 5% of the total
AD cases (Drummond and Wisniewski, 2017). Meanwhile,
current transgenic mouse models do not display the whole
characteristic pathology of AD, such as aging and massive
neuronal loss. Therefore, it is reasonable to think that late-onset
AD (LOAD), accounting for the majority of the AD population,
may be involved with other molecular processes disruption
(Pimenova et al., 2018) and that it is necessary to take LOAD-
correlated genes into account when determining the underlying
mechanisms of AD.

Another problem that needs to be resolved concerning AD
is the pathologically vulnerable brain regions. The majority of
research often focuses on cognitive-related brain regions such
as the hippocampus (HIP) and the prefrontal cortex (PFC).
However, diverse NPS imply that AD might be associated with
abnormalities in different brain areas, including the frontal
cortex, HIP, entorhinal cortex, amygdala, etc. (Chen et al., 2021).
Neuroimaging techniques such as MRI, functional MRI, Aβ

PET, glucose metabolism PET, and diffusion tensor imaging
also indicate many AD-related regions such as the PFC,
temporal cortex, cingulum, precuneus, entorhinal cortex (EC),
hippocampal body, parahippocampal gyrus (PHG), amygdala,
cingulum bundles, and corpus callosum (Márquez and Yassa,
2019; Wang et al., 2020). We, therefore, hypothesize that AD
pathological changes involve the whole brain, but are not
restricted to a certain brain region.

Some databases already collect AD-associated genes and
variants from multiple resources including genome-wide
association studies (GWAS) and other large-scale association
studies, animal models, and scientific literature (Rappaport et al.,
2017; Piñero et al., 2020). Gene network analysis provides a
powerful approach to elucidate a comprehensive understanding
of dysregulated molecular processes underlying disease, as
opposed to traditional single-gene approaches (Parikshak et al.,
2015). The application of co-expression network analysis has
already identified dysregulated networks of AD in the human
dorsolateral PFC (DLPFC) and HIP (Miller et al., 2013; Zhang
et al., 2013). Beyond discovering the underlying mechanism of
disease, network analysis also provides a new strategy for drug

discovery or repurposing (Lamb et al., 2006; Iorio et al., 2010).
Drugs are often screened by their ability to induce transcriptional
responses, not by their binding affinity to specific proteins in a
traditional way.

In the present study, because NPS and neuroimaging results
imply that multiple brain regions are involved in AD, we utilized
a systematic approach to investigate the underlying dysregulated
gene network across multiple brain regions and further screen
potential agents against AD by targeting this network. The
workflow of our experimental design is shown in Figure 1.
We first constructed gene co-expression networks (modules)
across different cerebral regions from normal aging individuals
to identify the common physiological processes across the whole
cerebrum. To identify modules relevant to AD, we collected AD-
correlated genes from three datasets and reported two modules
significantly enriched with AD-correlated genes. Functional
enrichment and cell-type enrichment analysis revealed that
the two modules were mainly involved in the pathway of
synapse function and energy metabolism in neuronal cells.
Differential expression (DE) analysis of microarray, bulk RNA
sequencing (RNA-seq), and single-nucleus RNA-seq (snRNA-
seq) data suggested the dysregulation of the two modules across
multiple cerebral regions and extensive neuronal cell-types in
normal aging and AD. Considering the differential expressed
genes (DEGs) of the two modules as potential targets, we
proposed Gly-His-Lys acetate salt (GHK) as a drug candidate that
could probably restore the disordered DEGs toward health using
the Connectivity map (CMap) dataset. The neuroprotective effect
of GHK and its ability to reverse the dysregulated network was
finally verified in vitro.

MATERIALS AND METHODS

Data Collection and Processing
The public transcriptome datasets for this study were
downloaded from gene expression omnibus (GEO),1 Genotype-
Tissue Expression project version 8 (GTEx),2 and Synapse3

under corresponding accession numbers. The details of the
datasets are presented in Supplementary Table 1. For the
microarray data, gene-level expression was obtained by taking
the maximum expression values of multiple probes mapping
to the same gene. For the RNA-seq data, we filtered out
lowly expressed genes by retaining the gene with at least 10
counts in at least half of the samples. Count data were then
normalized using Trimmed Means of M values (TMM) of
edgeR R package (Robinson and Oshlack, 2010) to adjust for
sequencing library size difference. For the snRNA-seq data,
the filtered count matrix was normalized by first running the
quickCluster function of scran R package (Lun et al., 2016) with
the block parameter set to the sample identity of each cell, then
estimating size factors by using computeSumFactors function
with the parameter min. mean = 0.1 and cluster parameter

1https://www.ncbi.nlm.nih.gov/geo/
2https://www.gtexportal.org/
3https://www.synapse.org/
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FIGURE 1 | Schematic design on how to discover Alzheimer’s disease (AD)-related modules and anti-AD drug candidates.

set to clusters. The LogNormCounts function of scater R
package (McCarthy et al., 2017) was subsequently implemented
to compute normalized expression values for each cell using
size factors identified by computeSumFactors function. Only
protein-coding genes (human genome-version GRCh37) were
saved for subsequent analysis.

Construction of Modules Across Multiple
Cerebral Regions
The RNA-Seq transcriptional profile of 12 brain regions was
downloaded from GTEx (GTEx Consortium, 2013). We selected
samples with the following filtering criteria: (a) RNA integrity
number (RIN)>5, (b) mapping rate>0.7, (c) exonic mapping
rate>0.7, (d) age > 60. Principal component analysis (PCA)
analysis was performed using the prcomp function with scaling.
The transcriptomic data of each brain region was corrected
by applying linear mixed modeling for each gene using the
fitVarPartModel function of the variancePartition R package
(Hoffman and Schadt, 2016). The normalized data was used
as input data for co-expression modules construction using
weighted gene co-expression network analysis (WGCNA) R
package (Langfelder and Horvath, 2008) with the following
parameters: soft threshold power (β) = 6 (chosen based on the
scale-free topology model fit plot r2 > 0.8), type = “signed,”
corType = “bicor,” mergeCutHeight = 0.2, minModuleSize = 50.

Preservation of Co-expression Modules
in Other Datasets
The processed microarray data of multiple human brain regions
were downloaded from GEO under the accession number
GSE60862 (Trabzuni et al., 2013). Samples of the cerebellar cortex
were excluded. Only individuals with age over 60 were retained.
RNA-seq data of human blood tissue was downloaded from GTEx
(GTEx Consortium, 2013). Likewise, we selected individuals with
ages over 60. RNA-seq data of normal aging mouse cortex and
HIP (18 months old) was downloaded from GSE168137 (Forner
et al., 2021). Mouse genes were converted to human genes using
biomaRt R package (Durinck et al., 2009) and only the “one-
to-one” ortholog genes were saved. The modulePreservation
function (Langfelder et al., 2011) of the WGCNA R package was
used to calculate Zsummary values for each dataset.

Spatiotemporal Analysis of Gene Set
Expression
The expression data of 10 cerebral regions from GTEx were
classified into three age groups: 20–39, 40–59 and 60–79. To
assess the gene set activity of M3 and M8 for each sample,
gene set variation analysis (GSVA) with ssGSEA method was
implemented to calculate gene set enrichment scores using the
GSVA R package (Hänzelmann et al., 2013). GSVA scores of
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different age groups were compared using the Mann-Whitney
test with Benjamini-Hochberg correction.

DE Analysis Across Multiple Cerebral
Regions at the Tissue Level
Microarray datasets: The transcriptional profile of the DLPFC
was downloaded from GSE33000 (Narayanan et al., 2014). Three
independent transcriptional profiles of the EC were downloaded
from GSE118553 (Patel et al., 2019), GSE48350 (Cribbs et al.,
2012), and GSE5281 (Liang et al., 2008). Three independent
transcriptional profiles of the HIP were downloaded from
GSE29378 (Miller et al., 2013), GSE48350 (Cribbs et al., 2012),
and GSE5281 (Liang et al., 2008). Different microarray datasets of
the same brain region were merged using the ComBat algorithm
of sva R package (Johnson et al., 2007). The efficacy of batch effect
removal was examined by PCA. Differential expression (DE)
analysis for each brain region was performed using the limma
R package (Ritchie et al., 2015) with the age of death and sex
as covariates. Genes with q < 0.05 (q-values were determined by
p-values corrected with the Benjamini-Hochberg method) were
defined as significant genes.

RNA sequencing dataset: The read counts of four brain
regions: frontal pole (FP), superior temporal gyrus (STG), PHG,
and inferior frontal gyrus (IFG) were obtained from Synapse
under Synapse ID syn7391749 (Wang et al., 2018a). We removed
samples from Asian and unknown ancestry because of too few
samples. The samples were assigned with a clinical dementia
rating (CDR) score “0” as control and “2–5” as AD group. DE
analysis was performed using the DEseq2 R package (Love et al.,
2014), with batch, sex, race, age of death, RIN, postmortem
interval (PMI), and recombinant RNA (rRNA)-rate as covariates.
Genes with q < 0.05 were defined as significant genes.

Cell-Type Enrichment Analysis
Two snRNA-seq datasets were downloaded from Synapse under
Synapse ID syn18485175 (Mathys et al., 2019) and syn21788402
(Leng et al., 2021). On the basis of cell-types identified by Mathys
et al., marker genes for each cell-type against the rest of cell-types
were detected using the FindAllMarkers function of the Seurat R
package (Satija et al., 2015). Marker genes for each cell-type were
selected based on the cutoff criteria of absolute log2 fold change
(logFC) > 1, q < 0.05 and percentage of expressed cells >30%.
For cell-type enrichment analysis, a one-tailed Fisher’s exact test
(FET) with Benjamini-Hochberg correction was performed for
M3 and M8 against the cell-type marker gene lists.

Gene Set Modular Score Calculation and
DE Analysis at the Single-Cell Level
The gene set expression score of M3 and M8 for each neuronal
cell was defined as the average relative expression of the gene set
of M3 and M8 minus the average relative expression of a control
gene set, which was calculated using the AddModuleScore
function (Tirosh et al., 2016) of Seurat R package. Neuronal
subtypes containing fewer than 500 cells were excluded. DE
analysis for each cell type was performed between AD cells and
control cells using the MAST R package (Finak et al., 2015).

Only genes with a percentage of expressed cells >20% were used
for DE analysis. We fit a hurdle model modeling the disease
condition and gene detection rate (cngeneson) to adjust for the
cngeneson, and then ran a likelihood ratio test (LRT) to identify
genes differentially expressed due to the AD.

Kyoto Encyclopedia for Genes and
Genomes Enrichment Analysis
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis and network visualization were conducted on the
Metascape online platform (Zhou et al., 2019).4 Only terms
with p < 0.01, minimum network size >3, maximum network
size <500, and enrichment factor >1.5 were considered as
significant. The enrichment network was created by representing
each significant term as a node and connecting pairs of nodes
with Kappa similarities >0.3.

Protein-Protein Interaction Network
Construction
Protein-protein interaction (PPI) network of DEGs was
constructed on the STRING online tool (Szklarczyk et al., 2019)5

and visualized on the Cytoscape software (Shannon et al., 2003).
The network was created by representing each gene as a node
and connecting pairs of nodes with confidence >0.5.

Drug Repurposing Analysis
For drug repurposing using the CMap database (Lamb et al.,
2006), a preprocessing step was undertaken to convert DEGs
from gene symbols to the required HG-U133A (GPL96)
probes. We uploaded upregulated and downregulated probes
simultaneously for CMap query (build02).6 Drugs were ranked
by enrichment score and percent non-null after discarding drugs
with p > 0.05 and number of instances <2. Negative enrichment
values of the drug repurposing list meant that drugs could
possibly reverse the dysregulated genes.

Cell files from the PC3 cell line treated with GHK and matched
vehicle pairs were downloaded from CMap and pre-processed
using the Affymetrix RMA algorithm of the affy R package
(Gautier et al., 2004). Gene-level expression was obtained by
taking the maximum of the expression values of multiple probes
mapping to the same gene. DE analysis was performed using
the limma R package (Ritchie et al., 2015). Gene set enrichment
analysis (GSEA) (Subramanian et al., 2005) was applied for the
pre-ranked gene list using the clusterProfiler R package (Yu et al.,
2012). Significant GSEA pathways were selected with q < 0.05.

Reagents
Aβ25−35 peptide and all primer pairs were synthesized by
Sangon Biotech Co., Ltd. (Guangzhou, China). GHK and All-
trans retinoic acid were bought from Sigma-Aldrich (St. Louis,
MO, United States). DMEM/F12 medium and L-glutamine were
purchased from Gibco (California, United States). Neurobasal

4http://metascape.org/gp/
5https://string-db.org/
6https://portals.broadinstitute.org/cmap/
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medium and B-27 were obtained from Gibco (Invitrogen,
United States). Fetal bovine serum was purchased from Gibco
(Australia). Reverse Transcription Kit, and SYBR Green PCR Kit
were provided by Yeasen (Shanghai, China), and LDH Release
Assay Kit was purchased from Beyotime (Shanghai, China).

Amyloid-Beta and Gly-His-Lys Acetate
Salt Preparation
Aβ25−35 peptide was dissolved in sterile distilled water at a
concentration of 2 mM stock solution and incubated in a capped
vial at 37◦C for 7 days to allow the formation of the aggregated
form, which was then stored frozen at −20◦C before use. GHK
was dissolved in sterile distilled water at a concentration of 100
µM stock solution and was stored frozen at−20◦C before use.

Cell Culture and Treatment
Human neuroblastoma SH-SY5Y cells were cultured as described
previously (Lin et al., 2011). Undifferentiated SH-SY5Y cells
were first cultured in DMEM/F12 medium supplemented with
10% fetal bovine serum at a condition of 37◦C and 5% CO2
atmosphere. Cells were seeded at an appropriate density (5× 104

cells/mL) in 24-well plates. One day after seeding, the culture
medium was changed into a neurobasal medium, supplemented
with B-27, L-glutamine (500 µM), and all-trans retinoic acid
(RA, 10 µM) for 3 days to induce cells to fully differentiate
into human neuron-like cells. These cells were then used for
biochemical and molecular experiments. Differentiated SH-SY5Y
cells with different treatments were used: (a) control (cells treated
with vehicle for 24 h); (b) Aβ25−35 (cells treated with Aβ25−35
for 24 h); (c) GHK (cells treated with GHK for 24 h); and (d)
GHK + Aβ25−35 (cells pretreated with GHK for 6 h before the
addition of Aβ25−35 for another 24 h).

Lactate Dehydrogenase Release Assay
Lactate dehydrogenase (LDH) activity was determined using an
LDH cytotoxicity detection kit as done previously (Lin et al.,
2011). Briefly, the incubation medium harvested from the 24-well
plates was centrifuged at 13,000 rpm for 10 min at 4◦C and 120
µL of the cell-free supernatant was transferred to 96-well plates
for extracellular LDH activity measurement. After the removal of
the incubation medium, the remaining cells were washed twice
with phosphate-buffered saline (PBS). A 1% triton X-100 lysing
solution was then added to the cells and incubated for 15 min.
The cell lysates were also centrifuged at 13,000 rpm for 10 min
at 4◦C and 120 µL of the supernatant was transferred to 96-well
plates for intracellular LDH activity measurement. The activity
of extracellular and intracellular LDH was determined by a
colorimetric assay with the absorbance at a wavelength of 490 nm
according to the manufacturer’s instructions. The background
absorbance from the culture media and 1% triton X-100 lysing
solution was subtracted from extracellular and intracellular LDH
absorbance measurements, respectively. The ratio of released
LDH (extracellular) vs. total LDH (extracellular + intracellular)
was calculated as an indicator of cell injury.

RNA Isolation and Quantitative
Polymerase Chain Reaction Assay
The expression levels of hub genes were quantified by Real-time
quantitative polymerase chain reaction (qPCR) following the
methods described previously (Wang et al., 2018b). Briefly, the
total RNA was extracted from cells using a TRIzol reagent. A total
of 0.5 µg of the total RNA was used for reverse transcription
using a Reverse Transcription Kit according to the manufacturer’s
instructions. Subsequently, qPCR was carried out using SYBR
Green PCR Kit and performed on 480 LightCycler (Roche).
The mRNA level of GAPDH was used as an internal control.
Sequences of primer pairs used in reverse transcription are
available in Supplementary Table 2.

Statistical Analysis
Bioinformatics analyses and graphical visualizations were
performed on R 4.0.27 and online tools. Experimental statistical
analyses and graphical visualizations were performed using
GraphPad Prism. Experimental results were presented as
means ± SEM. Each experiment was repeated at least three
times. Experimental statistical analyses were performed using
ANOVA, followed by Dunnet’s post hoc analysis. P values
were defined as follows: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001,
∗∗∗∗p < 0.0001.

RESULTS

Construction of Co-expression Modules
Across Multiple Cerebral Regions
With the hypothesis that the functional pathways throughout the
brain are disrupted in AD, we used a large-scale transcriptomic
dataset of different brain regions from cognitively normal
individuals (GTEx Consortium, 2013) to identify gene co-
expression modules. The expression data comprised two
cerebellar regions: cerebellar hemisphere and cerebellum, and 10
cerebral regions: amygdala, anterior cingulate cortex, caudate,
cortex, frontal cortex, HIP, hypothalamus, nucleus accumbens,
putamen, and substantia nigra. Since age is the greatest risk
factor for the development of AD, we selected individuals with
age over 60 to construct co-expression modules for a normal
aging brain. We first performed PCA to visually evaluate the
differences in gene expression patterns between different brain
regions. As shown in Supplementary Figure 1A, samples from
the cerebellum were clearly separated from the rest of the
cerebral regions, indicating that the cerebellum had a different
gene expression pattern from the cerebrum. In addition, clinical
symptoms and transcriptomic evidence imply that the cerebellum
is relatively more rarely affected in AD pathogenesis (Andersen
et al., 2012; Tiwari et al., 2015). We, therefore, discarded samples
from the cerebellum in the subsequent analysis. To determine
the effect of covariates on gene expression, we calculated the
proportion of variance in RNA expression explained by covariates
including age, gender, RIN, center, and DTHHRDY (Hardy Scale)

7https://www.r-project.org
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for each cerebral region (Supplementary Figures 1B–K). Since
age, gender, and center showed little effect (less than 10% variance
explained by covariates) on most genes, the expression data of
each cerebral region was corrected for RIN and DTHHRDY by
fitting linear mixed modeling. WGCNA algorithm (Langfelder
and Horvath, 2008) was next applied to the corrected expression
data across 10 cerebral regions and identified 19 co-expressed
modules with sizes ranging from 68 genes to 3,192 genes, while
3,383 genes were not clustered into any module (Supplementary
Figures 2A,B).

We then tried to validate whether these modules were
reproducible in other transcriptomic datasets. For this purpose,
we used another microarray dataset across multiple cerebral
regions of aging human brains (Trabzuni et al., 2013), a
transcriptomic profile from aging human blood tissue (GTEx
Consortium, 2013), and a transcriptomic profile from aging
mouse HIP and cortex (Forner et al., 2021). Here, Zsummary
was used to evaluate module preservation (Langfelder et al.,
2011) and we chose the following thresholds: Zsummary > 10
indicating strong module preservation, Zsummary > 5 indicating
moderate module preservation, and Zsummary < 5 indicating
poor module preservation. We observed that the co-expression
modules were generally well preserved in another dataset of the
human cerebrum (14 out of 19 modules with Zsummary > 10;
5 out of 19 modules with Zsummary > 5; Figure 2A), but
poorly preserved in the blood tissue (2 out of 19 modules with
Zsummary > 10; 3 out of 19 modules with Zsummary > 5;
Figure 2B). As for module preservation across species, 5 out
of 19 modules were well preserved (Zsummary > 10) and 4
out of 19 modules were moderately preserved (Zsummary > 5)
in the mouse cerebrum dataset (Figure 2C). These results
suggest that human brain has a different expression pattern
from other tissues such as blood, and that mouse brain
only mimics the human brain to a certain extent in a
transcriptomic pattern.

To discover overall gene expression change for each module in
AD pathogenesis, we performed DE analysis between AD cases
and controls using a microarray dataset of the human DLPFC
(De Jager et al., 2018). As shown in Figure 2D, 5 modules were
generally downregulated and 8 were generally upregulated.

Identification of Alzheimer’s
Disease-Associated Co-expression
Modules
Alzheimer’s disease-correlated genes were collected from
a comprehensive review (Agrawal, 2017), as well as two
human disease databases including MalaCards (Rappaport
et al., 2017) and DisGeNet (Piñero et al., 2020). These
databases contain genes and variants identified by GWAS
and other large-scale association studies, animal models, and
scientific literature. Totally, 323 protein-coding genes were
retained as AD-correlated genes (Supplementary Table 3). By
integrating co-expression modules with AD-correlated genes
using one-tailed FET with Benjamini-Hochberg correction,
we identified two modules, M3 [q = 4.14 × 10−4, odds
ratio (OR) = 2.20] and M8 (q = 3.78 × 10−3, OR = 2.59),

which were significantly enriched with AD-correlated
genes (Figure 2E). These two modules contained 1,429
protein-coding genes in total.

To annotate M3 and M8 for certain cell-type expressions, we
took advantage of a published snRNA-seq dataset from human
PFC (Mathys et al., 2019) to determine marker genes for each
brain cell type. Marker gene lists of each cell type were then
used to assess cell type enrichment for each module by one-tailed
FET. As shown in Figure 3A, M3 and M8 were both significantly
enriched for excitatory neurons (M3: q = 4.92 × 10−26; M8:
q = 3.47× 10−24) and inhibitory neurons (M3: q = 6.45× 10−15;
M8: q = 3.81 × 10−7). Together with the similar expression
changes in AD pathogenesis, we merged the two modules for
subsequent analysis.

We next conducted a KEGG pathway enrichment analysis
to reveal a detailed biological function spectrum for M3 and
M8. Functionally, M3 and M8 were highly enriched in pathways
of synaptic vesicle cycle (q = 2.09 × 10−11), retrograde
endocannabinoid signaling (q = 1.17 × 10−10), biosynthesis of
amino acids (q = 3.09× 10−8), and tricarboxylic acid (TCA) cycle
(q = 2.19× 10−4) (Figure 3B). These pathways are closely related
to key biological processes in neurons, which is consistent with
the results of cell-type enrichment analysis.

To understand the influence of aging (the strongest risk factor
for AD) on the expression levels of M3 and M8, we divided
cognitively normal individuals from GTEx into three age stages:
20–39, 40–59 and 60–79. GSVA was implemented for the gene set
of M3 and M8 to yield single sample enrichment scores. As shown
in Figure 3C, M3 and M8 tended to decrease with normal aging
in most cerebral regions, which might relate to the age-dependent
increase in susceptibility to AD.

To elucidate whether M3 and M8 were also consistently
dysregulated in different AD brain regions, we collected
expression data from 7 cerebral regions, including EC, HIP,
DLPFC, FP, STG, PHG, and IFG. For HIP and EC, we
implemented the ComBat algorithm (Leek et al., 2012)
to merge the expression data from different microarray
platforms and examined the efficacy of batch effect removal
by PCA (Supplementary Figures 3A–D). DE analysis was
then performed between the AD cases and controls for each
brain region. We found that genes of M3 and M8 showed
similar expression changes in different brain regions, most of
which presented a downward trend (Figure 3D). DEGs of M3
and M8 were selected according to the criteria of absolute
logFC > 0.2 and q < 0.05 in at least four brain regions.
Among 1,429 genes of M3 and M8, 345 co-expression genes
were defined as DEGs, most of which were downregulated
(335 genes) (Supplementary Table 4). We next constructed the
curated PPI network for DEGs (Figure 3E) and identified the
first 10 hub genes including SNAP25 (synaptosome associated
protein 25), SYP (synaptophysin), NSF (N-ethylmaleimide
sensitive factor, vesicle fusing ATPase), SYT1 (synaptotagmin
1), NDUFAB1 (NADH: ubiquinone oxidoreductase subunit
AB1), VAMP2 (vesicle associated membrane protein 2), CYC1
(cytochrome c1), NDUFS3 (NADH:ubiquinone oxidoreductase
core subunit S3), MDH2 (malate dehydrogenase 2) and
RAB3A (member RAS oncogene family). These hub genes
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FIGURE 2 | Preservation of co-expressed modules and identification of AD-related modules. (A–C) Preservation scores for 19 co-expressed modules in other
expression datasets: (A) across multiple cerebral regions of aging human brains, (B) of human blood tissue, (C) across aging mouse cortex and hippocampus. Each
dot represents a weighted gene co-expression network analysis (WGCNA) module. Dashed red and blue lines represent Zsummary = 10 and Zsummary = 5,
respectively. (D) LogFC values of genes in each module between AD patients and controls. (E) Statistical significance of each module enriched with AD-correlated
genes. Q-values were determined by FET p-values corrected with the Benjamini-Hocheberg method. Each dot represents a module and a dashed line means FET
q = 0.05.

were critically involved in synaptic activity and oxidative
phosphorylation.

The obvious restriction of bulk tissue transcriptome profiling
is that it only represents an average of gene expression across
diverse cell types. SnRNA-Seq provides a powerful approach
for identifying cell-specific gene expression changes in brain
diseases. To investigate whether the expression changes of M3
and M8 were also present at the single-cell level, we calculated
the gene set expression scores of M3 and M8 for different
neuronal subtypes of two independent AD snRNA-Seq datasets
(Mathys et al., 2019; Leng et al., 2021). It was apparent that M3
and M8 were downregulated in most excitatory and inhibitory
neuronal subtypes of AD PFC (Figure 4A). Similar expression
downregulation was observed in most neuronal subtypes of
AD superior frontal gyrus (SFG) (Supplementary Figure 4A)
and EC (Supplementary Figure 4B). Notably, we observed
that the expression levels M3 and M8 were decreased with
increased Braak stage which marks the severity of tau-based
NFT pathology. DE analysis in a cell-type specific manner
also revealed that hub genes identified by the PPI network
were mostly downregulated in different neuronal cell-types of

AD PFC (Figure 4B), but rarely in non-neuronal cell-types,
basically because of low detection of genes in non-neuronal cell
populations (data not shown).

GLY-HIS-LYS ACETATE SALT WAS
PREDICTED TO BE AN ANTI-AD DRUG
CANDIDATE BY MOLECULAR NETWORK
MODELING

We hypothesized that DEGs from M3 and M8 represented a
potential target for treating AD and therefore aimed to identify
drug candidates whose effect on gene expression could restore the
dysregulation of DEGs toward health. CMap (Lamb et al., 2006)
is a library containing genome-wide transcriptional expression
profiles from human cell lines treated with over 1,300 small
molecules. We took advantage of this database to explore new
indications of existing drugs that could reverse the DEGs and
found that Gly-His-Lys acetate salt (GHK) was on the top
of the drug list (enrichment score = −0.853). To screen the
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FIGURE 3 | Functional enrichment and expression changes of M3 and M8 in normal aging and AD across multiple cerebral regions. (A) Brain cell-type enrichment
for M3 and M8. The heatmap shows the one-tailed Fisher’s exact test (FET) results with BH correction for each brain cell type. Exc, excitatory neurons; Inh, inhibitory
neurons; Ast, astrocytes; Mic, microglia; OPC, oligodendrocyte progenitor cell; Oli, oligodendrocytes; End, endothelial cells; Per, pericytes. (B) Kyoto encyclopedia of
genes and genomes (KEGG) pathway enrichment analysis for M3 and M8. The enrichment network shows the intra-cluster and inter-cluster similarities of enriched
KEGG terms. Color code represents the cluster annotations. (C) Comparison of sample-wise gene set enrichment scores of M3 and M8 in three different age groups
of different cerebral regions. Kruskal-Wallis test with Benjamini-Hochberg correction was used to determine statistical significance. The black circle and bar represent
median and quartiles (25th and 75th percentile), respectively. ∗q < 0.05, ∗∗q < 0.01, ∗∗∗q < 0.001. ACC, Anterior cingulate cortex; HIP, hippocampus; NAc, nucleus
accumbens. (D) Violin plots of logFC values for genes of M3 and M8 between AD cases and controls in 7 cerebral regions. EC, entorhinal cortex; HIP, hippocampus;
DLPFC, dorsolateral prefrontal cortex; PCG, postcentral gyrus; FP, frontal pole; STG, superior temporal gyrus; PHG, parahippocampal gyrus; IFG, inferior frontal
gyrus. (E) PPI network of 345 DEGs with absolute logFC > 0.2 and q < 0.05 in at least 4 brain regions. The network was created by representing each gene as a
node and connecting pairs of nodes with confidence >0.5. Node size is proportional to the degree. Hub genes with the highest degrees are labeled in black.
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FIGURE 4 | Expression change of M3 and M8 in AD at single-cell resolution. (A) Comparison of gene expression scores of M3 and M8 between AD cases and
controls in different neuronal subtypes of the prefrontal cortex (PFC). Mann-Whitney test with Benjamini-Hochberg correction was used to determine statistical
significance. The black circle and bar indicate median and quartiles (25th and 75th percentile), respectively. *q < 0.05, **q < 0.01, ***q < 0.001, ****q < 0.0001.
(B) Differential expression analysis of hub genes between AD patients and controls in different neuronal subtypes. Blue and red colors indicate downregulation and
upregulation respectively. Only genes with absolute LogFC > 0.14 are shown. *q < 0.05. Exc, excitatory neuron; Inh, inhibitory neuron.

potential effects of GHK on cells, we carried out DE analysis
and GSEA (Subramanian et al., 2005) to identify GHK-induced
transcriptomic change. As indicated in Figure 5, treatment with
GHK affected multiple signaling pathways, including citrate cycle
(q = 2.88 × 10−3, NES = 2.21), biosynthesis of amino acids
(q = 0.028, NES = 1.78), glutathione metabolism (q = 0.029,
NES = 1.82), and autophagy (q = 0.018, NES = 1.67). A more
complete description of the pathways induced by GHK was
shown in Supplementary Table 5.

We next used Aβ25−35-induced neurotoxicity in differentiated
human neuroblastoma SH-SY5Y cells as an in vitro model of
AD to verify the neuroprotective effect of GHK against AD.
Differentiated SH-SY5Y cells provide a closer approximation
of human neuronal cells compared to their undifferentiated
state. To determine the optimal dose of Aβ25−35 in cytotoxicity
induction, differentiated SH-SY5Y cells were treated with
Aβ25−35 at different doses (5, 10, 20 and 40 µM) for 24 h.

As shown in Figure 6A, Aβ25−35 induced a concentration-
dependent increase in LDH release. Exposure to 20 µM Aβ25−35
resulted in sufficient cytotoxicity, which would be used in
the subsequent experiments. Treatment with GHK showed no
increase in LDH release at different doses (0.1, 0.5, 1, 2 and 4 µM)
(Figure 6B), which implied that a certain concentration of GHK
had no neurotoxic effect on differentiated SH-SY5Y cells.

Next, GHK was added at different doses for 6 h prior to
the incubation with 20 µM Aβ25−35 for an additional 24 h to
determine the neuroprotective effect of GHK. We found that
LDH release was significantly decreased in cells pre-incubated
with GHK compared with cells treated with Aβ25−35 alone
(Figure 6C). Pretreatment with 2 µM GHK showed the most
decrease in LDH release and was used to verify the ability to
reverse the dysregulated hub genes identified previously.

We finally examined the effects of GHK on restoring the
dysregulation of 10 hub genes using qPCR. As shown in
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FIGURE 5 | Representative GSEA enrichment pathways of GHK-induced transcriptional responses. The pathways shown in the picture are citrate cycle (TCA cycle)
(hsa00020); glutathione metabolism (hsa00480); biosynthesis of amino acids (hsa01230); and autophagy-animal (hsa04140).

Figure 6D, the relative expression levels of hub genes including
NSF, SYP, SYT1, MDH2, NDUFS3, CYC1, RAB3A, and VAMP2
(8 out of 10) were significantly decreased in SH-SY5Y cells
treated with 20 µM Aβ25−35 for 24 h as compared with the
control group. When SH-SY5Y cells were pretreated with 2
µM GHK for 6 h before Aβ25−35 treatment, downregulation
of NSF, SYP, MDH2, NDUFS3, and CYC1 (5 out of 10) were
reversed. These findings suggest that GHK protects SH-SY5Y
cells against Aβ25−35-induced injury and reverses part of the
dysregulated network in AD.

DISCUSSION

In this study, we identified two modules, M3 and M8,
susceptible to AD by integrating co-expressed modules across
multiple cerebral regions and AD-correlated genes. The DE
analysis of the microarray, bulk RNA-seq, and snRNA-seq data
revealed the dysregulation of M3 and M8 across different
cerebral regions in both normal aging and AD. Cell-type
enrichment and DE analysis of snRNA-seq implied the extensive
neuronal vulnerability of M3 and M8 in AD pathogenesis. Drug
repurposing analysis prioritized GHK to probably restore the
dysregulated network toward health. In vitro experiments further
verified the neuroprotective effect of GHK and its ability to
reverse the dysregulated hub genes.

Since aging is the most important risk factor for AD, a critical
unsolved problem is whether the gene expression changes in the
AD brain have been initiated during aging. For decades, Aβ is
the primary target for exploring AD therapies, but to date, anti-
Aβ approaches have not yet produced positive results in clinical
trials (Ayton and Bush, 2021). The trial failures cast doubt on
the validity of the Aβ hypothesis. Meanwhile, extensive research
has demonstrated that the dysfunction of cellular pathways such
as energy metabolism, synaptic transmission, and myelin-axon
interaction appear before neuropathological changes in PFC,
EC, and HIP (Blalock et al., 2004; Miller et al., 2008; Patel
et al., 2019; Stefanova et al., 2019b). These studies emphasize
abnormal synaptic activity and energy metabolism as early
events in AD. By analyzing multiple transcriptome datasets, our
study further highlights the critical roles of synapse activity and
energy metabolism across multiple cerebral regions and extensive
neuronal subtypes in normal aging and AD pathogenesis. Overall,
our findings support the possibility that AD might be a disorder
further dysregulated from normal aging across different brain
regions. The dysfunctional regulatory network in extensive
neuronal cells of different brain regions might be related to
cognitive impairment and diverse NPS of AD.

In our study, there were a large number of genes related
to synapse in AD-related modules, which were enriched in
the pathways of synaptic activity, retrograde endocannabinoid
signaling, ion transport, and cytoskeleton organization. Synaptic
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FIGURE 6 | The neuroprotective effect of tripeptide GHK against Aβ25−35-induced cytotoxicity in differentiated human SH-SY5Y cells. (A–C) Statistical data showing
LDH release from cells treated with (A) different concentrations of Aβ25−35 for 24 h, (B) different concentration of GHK for 24 h, (C) different concentrations of GHK
for 6 h before addition of Aβ25−35 (20 µM) for another 24 h. (D) mRNA expression level of 10 hub genes in cells of control group, Aβ25−35 group, Aβ25−35 + GHK
group. Values represent mean ± SEM (n = 9) and are normalized to the control group (black column). ANOVA with Dunnet’s post-hoc test was used to determine
statistical significance. ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001, compared to control group, #p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 0.0001, compared to
Aβ25−35 treatment group.

activity and plasticity are the basis of memory and cognition.
Synaptic vesicles trafficking and neurotransmitters release are
strictly regulated by a group of highly-conserved proteins,
collectively called soluble N-ethylmaleimide-sensitive fusion
protein attachment protein receptors (SNAREs) (Margiotta,
2021). We found that many SNAREs and SNARE accessory
proteins such as SNAP25, VAMP2, NSF, and SYP exhibited
downregulated expression in multiple brain regions of
aging and AD. A previous microarray study also revealed
the decrease of synaptic gene expression in multiple brain
regions of aging and AD brain (Berchtold et al., 2013).
The downregulation or mutation of these vesicle transport
genes were found to greatly cause synaptic dysfunction
and cognitive impairment (Schmitt et al., 2009; Hoerder-
Suabedissen et al., 2019; Salpietro et al., 2019), which reveals

the altered expression of synaptic genes linked to cognitive
deficits.

Oxidative phosphorylation was another enriched pathway
of DEGs in AD-related modules. Mitochondrial oxidative
phosphorylation is the primary source of cellular ATP
synthesis. Neuronal cells rely heavily on the high-efficiency
of ATP production to maintain various basic functions,
such as (a) maintaining the electrical and concentration
gradients of multiple ions, which is necessary for the axon and
synaptic membrane potential; (b) synaptic vesicles anchoring,
releasing and recovering; (c) maintaining intracellular calcium
homeostasis (Ly and Verstreken, 2006). Our results showed
that multiple genes involved in oxidative phosphorylation were
downregulated in AD, which might lead to decreased ATP
production. ATP shortage in neurons results in disorders of
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neurotransmission, oxidative stress, and calcium homeostasis,
and finally leads to cell death (Ly and Verstreken, 2006). In
rodents, senescence-accelerated OXYS rats at the preclinical
stage were reported to exhibit characteristic changes in
hippocampal mitochondria, including age-dependent
ultrastructural differences, mitochondrial gene expression
changes, and decreased activity of several electron transport
chain enzymes (Complexes I, IV, and V) (Tyumentsev et al.,
2018; Stefanova et al., 2019b). A key finding was that treatment
with mitochondria-targeted antioxidants reduced hippocampal
Aβ protein and tau hyperphosphorylation levels (Stefanova
et al., 2019a), which demonstrates a possible causal relationship
between mitochondrial function and AD.

Our results of drug repositioning and in vitro experiments
preliminarily indicated the neuroprotective effect of GHK against
AD. GHK, a natural tripeptide, was found to decline rapidly with
aging in human serum (Pickart and Margolina, 2018). Several
in vitro studies indicated that GHK had multiple biological effects
on cultured cells, such as stimulating angiogenesis and nerve
outgrowth, increasing collagen, elastin, and glycosaminoglycan
synthesis (Alberghina et al., 1992; Ahmed et al., 2005; Arul
et al., 2005; Pollard et al., 2005). A notable feature of GHK
is the selective and high-binding affinity toward metal ions
Cu2+ (Pickart and Lovejoy, 1987). Multiple clinical studies have
demonstrated the important role of Cu2+ in the pathogenesis
of AD. An increased level of plasmatic Cu unbound to
ceruloplasmin (nCp-Cu, also known as “free copper”) was
found to be correlated with brain atrophy, CSF levels of Aβ

and p-tau, and more severe clinical courses in patients with
AD (Squitti et al., 2006; Strozyk et al., 2009; Diouf et al.,
2020). Abnormal interaction between Aβ peptides and Cu2+

promoted Aβ aggregation and neurotoxicity (Zou et al., 2001;
Bellingham et al., 2004; Innocenti et al., 2010). However, it is
interesting that DEGs between GHK treatment and vehicle were
not enriched in copper metabolism or Aβ-related pathways.
Together with our functional experiments of GHK reversing
the downregulation of hub genes, we, for the first time,
verify that GHK also provides a neuroprotective effect through
regulating cellular metabolism and synaptic activity besides
Cu2+ metabolism. In addition to GHK, previous studies have
discovered other tripeptides exhibiting neuroprotective effects
against AD. KED (Lys-Glu-Asp) (Khavinson et al., 2021), EDR
(Glu-Asp-Arg) (Khavinson et al., 2020), and GPE (Gly-Pro-
Glu) (Turkez et al., 2021) were found to prevent dendritic
spines loss and neuroplasticity impairments in both in vitro
and in vivo models of AD although they have different amino
acid compositions. Compared with other tripeptides, GHK was
screened by its ability to restore the dysregulated co-expression
network of LOAD, which might be more conducive to clinical
translation. These studies consistently suggest that tripeptides
can act as modulators of multiple cellular pathways involved
in AD pathogenesis. Therefore, peptide bioregulators appear to
be a group of potential drug candidates for the treatment of
AD.

The blood-brain barrier (BBB) penetration capability of
therapeutic agents is a crucial problem in the central nervous
system drug discovery process, but there is currently no study

about the ability of GHK to penetrate the BBB. Recent evidence
suggests that short peptides may enter the brain through
carrier-mediated transport, receptor-mediated transcytosis, or
adsorptive-mediated transcytosis (Zhou et al., 2021). Whether
GHK can cross the BBB through these approaches requires
further investigations. If not, drug delivery systems (DDS)
can be considered for delivering short peptides across the
BBB, such as polymeric nanoparticles, liposome, metal-based
nanoparticles, and cyclodextrins. Xiao et al. (2016) previously
designed a new nanomaterial, graphene quantum dots (GQDs)
conjugated neuroprotective peptide Gly-Pro-Glu and found that
it could improve the learning and memory capability of APP/PS1
transgenic mice by intravenous injection.

Our study also has some limitations. Firstly, CMap collects
transcriptional profiles from human cell lines treated with small-
molecule compounds and we cannot exclude the possibility
that restoration of dysregulated gene expression after being
treated with drug candidates may not apply to human
disease tissues, especially in non-cancerous diseases. Even
so, Cmap has been proved useful in predicting potential
drug candidates for subsequent experimental validation in
some brain diseases including Parkinson’s disease (Gao et al.,
2014), ischemic stroke (Luo et al., 2019), and perioperative
neurocognitive disorder (Wu et al., 2021). Secondly, since
GHK was predicted by network-based drug discovery, we
cannot exclude the possibility that GHK may show reactivity to
additional off-targets besides primary targets, perturb unintended
signaling pathways and finally cause side effects. Thus, it is
critical to explore whether GHK affects the activity of other
pathways. The application of network-based approaches to
predict computational drug-target interaction networks (DTNs)
can identify the potential molecular pathways affected by
GHK (Agamah et al., 2020). High-throughput sequencing
technologies such as transcriptome, proteome, and metabolome
sequencing also provide potent approaches to describe the
comprehensive map of molecular targets of GHK (Dai and
Zhao, 2015). Thirdly, our experimental results suggested that
pretreatment with GHK protected against Aβ-induced injury,
but only reversed half of the dysregulated gene networks in
differentiated SH-SY5Y cells, possibly because this in vitro
model cannot simulate the whole pathological processes of
AD. Human-induced pluripotent stem cell (hiPSC)-derived
neuronal cells from AD patients might be a better choice
for functional experiments validation (MacDougall et al.,
2021). On the other hand, even though transgenic and
senescence-accelerated mouse models cannot perfectly simulate
the pathogenesis of LOAD, it is still valuable to explore
the ameliorating effect and potential side effects of GHK in
in vivo research.
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