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Abstract: This study examines how the high-fat diet (HFD) affects mitochondrial dynamics and
biogenesis, and also whether combining it with low-intensity endurance exercise adds to these effects.
Six 8-week-old male Sprague–Dawley (SD) rats were put on control (CON; standard chow diet),
HF (HFD intake), and HFEx (HFD + low-intensity treadmill exercise) for 6 weeks. As a result,
no change in body weight was observed among the groups. However, epididymal fat mass increased
significantly in the two groups that had been given HFD. Blood free fatty acid (FFA) also increased
significantly in the HF group. While HFD increased insulin resistance (IR), this was improved
significantly in the HFEx group. HFD also significantly increased mitochondrial biogenesis-related
factors (PPARδ, PGC-1α, and mtTFA) and mitochondrial electron transport chain proteins; however,
no additional effect from exercise was observed. Mitochondrial dynamic-related factors were also
affected: Mfn2 increased significantly in the HFEx group, while Drp1 and Fis-1 increased significantly
in both the HF and HFEx groups. The number of mitochondria in the subsarcolemmal region,
and their size in the subsarcolemmal and intermyofibrillar regions, also increased significantly in
the HFEx group. Taken overall, these results show that HFD in combination with low-intensity
endurance exercise has no additive effect on mitochondrial biogenesis, although it does have such
an effect on mitochondrial dynamics by improving IR.
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1. Introduction

Endurance exercises lead to enhanced respiratory ability in skeletal muscles due to increases in
mitochondrial enzymes [1,2] such as peroxisome proliferator-activated receptor (PPAR) γ-coactivator
1α (PGC-1α), which plays an integral role in muscular respiration [3,4]. PGC-1α transcription is
regulated by various factors [5–8], including myocyte enhancer factor 2, cAMP response element,
and reactive oxygen species that reside in its promoter area. According to recent studies, it is also
regulated by PPARδ [9,10].

PPARδ is a ligand-activated nuclear receptor that activates the transcription of fatty acid oxidation
enzymes [11,12], and is increased by free fatty acids (FFAs) [13]. In the case of specific PPARδ activation or
PPARδ overexpression within skeletal muscles using transgenic mice, muscular mitochondria increase
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without the post-transcriptional mechanism or an increase in PGC-1α mRNA expression [12,14].
However, PGC-1α mRNA can also be increased in skeletal muscles by short bursts of intensive exercise
or by low-intensity long-term endurance exercise [15–18].

Hence, an additional effect was expected to result from combining high-fat diet (HFD) with
exercise, along with their respective individual effects, due to post-transcriptional and transcriptional
gene regulatory mechanisms. This hypothesis is supported by a study of Fillmore et al. [19] that
has shown additive effects between HFD and chronic activation of AMP-activated protein kinase
(AMPK) on mitochondrial biogenesis, compared to HFD alone. In other words, since exercise activates
AMPK in conjunction with HFD it affects mitochondrial biogenesis in skeletal muscles via different
mechanisms. However, Fillmore et al. [19] have activated AMPK using aminoimidazole-4-carboxamide
ribonucleoside (AICAR), which mimics the effects of physical exercise by increasing glucose uptake
in vivo [20] and suppressing Acetyl-CoA carboxylase (ACC) and fatty acid oxidation in vitro [21,22].

AICAR is not only listed as a prohibited substance by the World Anti-Doping Agency (http:
//www.wada-ama.org/), but it also cannot act as a substitute for the effects of actual exercise due to its
side effects, such as its promotion of protein degradation via increased expression of E3 ligases [23,24].

Since exercise and nutrient stimuli regulate specific mitochondrial dynamics (biogenesis, fission,
fusion, and mitophagy) [25,26], it is important to examine how physical exercise, rather than drugs that
mimic their effects, in combination with HFD affects mitochondrial-specific dynamics in skeletal muscles
in terms of health or performance enhancement. This is because mitochondria perform a variety of
functions, including energy homeostasis [26], reactive oxygen species signaling, apoptosis-programmed
cell death [27], immune signaling [28], and cellular metabolism regulation [29], while mitochondrial
dysfunction is related to many diseases, such as type 2 diabetes and muscular dystrophy [26].
Additionally, in cases where performing effective exercises to enhance mitochondrial function is
difficult, due to muscular atrophy from aging or musculoskeletal damage, a parallel HFD treatment
regime can serve as an effective alternative.

Accordingly, this study examines whether the combination of HFD and exercise affects specific
mitochondrial dynamics, and whether these effects are caused by different mechanisms, by investigating
the effects of HFD in combination with exercise in comparison to the effects of HFD only.

2. Materials and Methods

The 8-week-old (approximately 250 g) male Sprague–Dawley (SD) rats (Damul Science Inc.,
Daejeon, South Korea) were used in this study. All of the rats were given a week-long period to
acclimatize to their new environment, during which they had unlimited access to food (carbohydrate,
58.9%; fat, 12.4%; protein, 28.7%; Purina corp., St. Louis, MO, USA) and water. The colony was
maintained at a temperature of 21 ◦C and a humidity level of 40–60%. Light and dark periods alternated
every 12 h.

Following acclimatization, rats were randomly assigned to three groups: control (CON; n = 6),
normal diet and sedentary; HF (n = 6), 45% HFD intake; HFD + low-intensity treadmill exercise (HFEx;
n = 6), 45% HFD intake and low-intensity endurance treadmill exercise. HFD chow was purchased
from Research Diets Inc. (carbohydrate, 35%; fat, 45%; protein, 20%; D12451, New Brunswick, NJ,
USA). Low-intensity endurance exercise was performed on a motor treadmill at a speed of 5–10 m/min
for 30–45 min for 3 times/week for the first week and 15 m/min for 60 min/day for the subsequent
five weeks. After 6 weeks of the HFD and exercise regime, rats were anesthetized using sodium
pentobarbital (50 mg/kg of body weight; Fort Dodge Animal Health, Overland Park, KS, USA) and
tissues were collected. The extensor digitorum longus (EDL) and soleus muscles were extracted at
18 h after the final training session. The left-side muscle was rapid frozen and stored at −80 ◦C until
analysis by Western blotting, while the right-side muscle was fixed for mitochondrial size and number
analysis using transmission electron microscopy (TEM). Epididymal fat pads were excised and the
weight was measured to determine body fat mass. The present study received approval from the
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Institutional Animal Care and Use Committee of Jeonbuk National University (IACUC approval no.
CBNU-2017-0008).

2.1. Blood Lipids

Blood samples were separated by centrifugation at 3000 rpm for 15 min at 4 ◦C. Plasma levels of
free fat acid (FFA), glucose, and insulin were measured using ELISA kit (MyBioSource Inc., San Diego,
CA, USA).

Based on fasting insulin and glucose levels the homeostasis model assessment as an index of
insulin resistance (HOMA-IR) was calculated using the following formula [30]:

HOMA-IR = Fasting insulin [µU/mL] × Fasting glucose [mg/dL]/405

2.2. Western Blotting

The frozen tissues were ground into powder with homogenization after adding RIPA buffer
containing protease and phosphatase inhibitors. Protein concentrations were determined using the
BCA method with bovine serum albumin as a standard. Of the protein samples 20µg were separated by
8–12% SDS-PAGE and then transferred to nitrocellulose membranes. The membranes were incubated
overnight at 4 ◦C in 5% skim milk with the following primary antibodies: β-actin (Sigma, St. Louis, MO,
USA); NADH ubiquinone oxidoreductase (NADH-UO), Cytochrome C (Cyto C) (Invitrogen, Waltham,
MA, USA); PPARδ, mitochondrial transcription factor A (mtTFA), mitofusin 2 (Mfn2), dynamin-related
protein-1 (Drp1), mitochondrial fission 1 (Fis1; Santa Cruz Biotechnology, Dallas, TX, USA); cytochrome
c oxidase subunit-I (COX I), COX IV, and PGC-1α (ABCam, Cambridge, UK). After extensive rinsing
with PBST, the blots were incubated with secondary goat anti-rabbit or goat anti-mouse antibody at
room temperature for 1 h. Band visualization was performed using an ECL Western Blotting Detection
Reagent (GE Healthcare, RPN2232, Chalfont St Giles, UK) and ChemiDoc XRS + (BIO RAD, Hercules,
CA, USA).

2.3. TEM

For TEM, the extracted EDL muscle was immediately fixed in a solution containing 2.5%
glutaraldehyde and 4% formaldehyde in 0.1 M phosphate buffer [31] at pH 7.4 for 2-h. The muscle
were post-fixed for two hours in 1% osmium tetroxide, dehydrated in a graded series of ethanol,
and embedded in Epon-812 resin mixed by Luft’s method [32]. Semithin sections, cut in both transverse
and longitudinal planes, were stained with 0.1% toluidine blue for light microscopy. Thin sections
(around 80 nm thick) for transmission electron microscopy were cut in both transverse and longitudinal
planes with a NOVA ultramicrotome (LKB, Vienna, Austria), and picked up on 100-mesh grids.
After staining with uranyl acetate and lead citrate, the specimens were viewed with an electron
microscope (H7650, accelerating voltage, 80 kV, Hitachi, Japan). Mitochondrial number and size were
measured using image analysis computer software (Analysis pro ver. 3.2, Soft Imaging System GmbH,
Hamburg, Germany).

2.4. Statistical Analysis

Statistical analysis was performed using Sigma Stat software (SigmaPlot 12.0, San Jose, CA,
USA). Data are presented as mean ± standard error of the mean (SEM). The change in body weight
was analyzed by two-way ANOVA with repeated measures. One-way ANOVA comparison of
fat mass, blood parameters, expression patterns of proteins related to mitochondrial biogenesis,
and function. A Bonferroni’s (two-way) or LSD (one-way) post hoc test was conducted to determine
the significance when appropriate. All data were checked for normality and equal variances between
groups. Statistical significance level was set at p < 0.05.
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3. Results

3.1. Body Weight and Epididymal Fat Mass

Figure 1 shows changes in body weight and epididymal fat mass over a 6-week treatment.
While the body weights of all the rats increased over the course of the experiment, there was no
difference among groups (Figure 1A). HFD and HFEx groups increased post-treatment epididymal fat
mass per body weight significantly compared to CON group (all p < 0.05; 0.054 ± 0.004 vs. 0.034 ±
0.002; 0.047 ± 0.004 vs. 0.034 ± 0.002, respectively), with no significant differences between HFD and
HFEx groups (Figure 1B).
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Figure 1. The impact of high-fat diet (HFD) or HFD and exercise. Changes in body weight (A) and
epididymal fat pad mass (B) over 6-week treatment. Data are presented as means ± SEM. Data was
analyzed by a two-way ANOVA with repeated measures (A) and one-way ANOVA (B). * p < 0.05
vs. control (CON), ** p < 0.001 vs. CON. CON, control; HF, HFD intake; HFEx, high-fat diet with
low-intensity endurance exercise.

3.2. Blood Parameters

Table 1 shows changes in blood lipid components due to the 12-h food deprivation period after the
final exercise session during a 6-week treatment. FFA increased significantly (p < 0.05) in HF compared
to CON. While it decreased somewhat in the HFEx group compared to HF, there was no significant
difference. Insulin increased in HF compared to CON, but there were no significant differences across
the groups overall. Glucose and HOMA-IR increased significantly (p < 0.05) in HF but decreased
significantly (p < 0.05) in the HFEx group compared to the HF group.

Table 1. Average level of blood parameters at conclusion of 6 weeks treatment.

Variables CON HF HFEx

FFA (µEq/L) 508.2 ± 36.5 806.3 ± 87.3 * 618.8 ± 55.1

Insulin (µg/L) 0.30 ± 0.002 0.37 ± 0.03 0.32 ± 0.02

Glucose (mg/dL) 93.7 ± 4.5 117.1 ± 6.2 * 99.8 ± 5.9 #

HOMA-IR 1.48 ± 0.11 2.36 ± 0.28 * 1.71 ± 0.24 #

Data are presented as means ± SEM. Data was analyzed by one-way ANOVA. * p < 0.05 vs. CON, # p < 0.05 vs. HF.
CON, control; HF, HFD intake; HFEx, high-fat diet with low-intensity endurance exercise.
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3.3. Mitochondrial Biogenesis-Related Protein Content

Figure 2 shows changes in expression levels of protein involved in mitochondrial biogenesis over
6-week treatment. In the HF and HFEx groups, PPARδ, PGC-1α, and mtTFA increased significantly
compared to the CON group (p < 0.05), with no significant differences between HFD and HFEx groups.
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3.5. Mitochondrial Dynamic-Related Protein Content

Figure 4 shows changes in expression patterns of protein related to mitochondrial fusion and fission
over the 6-week treatment. Mfn2, a protein that induces mitochondrial fusion, increased significantly
(p < 0.05) only in the HFEx group compared to the CON group. Drp1 and Fis-1 increased significantly
(p < 0.05) in the HF and HFEx groups compared to the CON group, with no significant differences
between HFD and HFEx groups.
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3.6. Mitochondria Number and Size

Figure 5 shows whether HFD and low-intensity endurance exercises cause differences in the
mitochondrial number and size patterns over and above differences in protein expression patterns
related to mitochondrial dynamics. Figure 5A shows a recording of mitochondria within skeletal
muscles using TEM, on which the mitochondrial number and size are based, as shown in Figure 5B.
The mitochondrial number increased significantly (p < 0.05) in the subsarcolemmal region of the HFEx
group compared to that of the CON group. The mitochondrial size increased significantly (p < 0.05)
in the subsarcolemmal and intermyofibrillar regions of the HFEx group compared to the CON and
HF groups.
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Figure 5. Effects of HFD or HFD and exercise on mitochondrial number and size in the EDL muscle.
(A) Representative transmission electron micrograph (TEM) images of the rat EDL muscle. Scale bar =

2 µm. (B) Summary data of mitochondrial number per area and the size of individual mitochondria.
Data are presented as means ± SEM. Data was analyzed by a one-way ANOVA. * p < 0.05 vs. CON,
# p < 0.05 vs. HF. CON, control; HF, HFD intake; HFEx, high-fat diet with low-intensity endurance
exercise; EDL, extensor digitorum longus.

4. Discussion

We investigated whether HFD increases the number and function of mitochondria in EDL muscles
via PGC-1α and PPARδ and, if the mitochondrial biosynthesis mechanisms caused by exercise and HFD
are not the same, whether combining a HFD with exercise induces additive effects on the mitochondria
in skeletal muscles, compared to the individual effects of HFD. As a result, 6-week HFD increased IR,
this was improved in the HFEx group. Additionally, in the HF and HFEx groups, expression of genes
related to mitochondrial biogenesis and mitochondrial dynamic was increased, with no significant
differences between HFD and HFEx groups. However, the mitochondrial number and size by TEM
were only increased in the HFEx group.

A long-term HFD induces insulin resistance (IR). Since people with IR have been found to have
30% reduced skeletal muscle mitochondria [33], this reduction due to HFD [34] has been posited as
the cause of IR [35–37]. However, numerous studies have shown that reduced mitochondria is not in
itself a direct cause of IR [13,38–40]; rather, HFD or a high plasma fatty acid concentration increases
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expression of mitochondrial enzymes related to the fatty acid oxidation pathway, the citrate cycle,
and the respiratory chain in skeletal muscles and PPARδ and PGC-1α [13,19,40]. Contrary to the
common belief that HFD is always undesirable and that its effects are exclusively negative, it can be
used as a means of increasing mitochondrial activity within skeletal muscles.

Since mitochondria play a central role in cell life and death, they are related to fatality rates in
certain diseases [41]. For this reason, maintaining and managing both the number and functioning
of mitochondria are highly important in healthcare. Increasing the number and functioning of
mitochondria can be achieved via expression and activation regulation of the transcription and
co-transcription factors related to mitochondrial dynamics or biogenesis. These processes are regulated
by numerous factors, including exercise, nutrition, and cold [42–44]. In particular, certain forms of
endurance exercise, such as running or swimming, and HFD increase PGC-1α expression [40,45],
a co-transcription factor that plays an integral role in mitochondrial biosynthesis, as well as PPARδ,
a transcription factor [13,46]. However, the mitochondrial biosynthesis mechanisms resulting from
combining exercise with HFD do not clearly overlap with one another [47].

First, our study found that 6-week of an HFD regime did not increase weight, but visceral fat
increased significantly in 8-week-old rats. However, while the amount of increased visceral fat due to
HFD did not differ greatly between the HF and HFEx groups, there was a tendency for the degree
of increase to decrease once exercise was added. Hence, it is postulated that negative changes in
body composition due to an HFD can be avoided by calibrating the intensity, duration, and amount
of exercise in relation to the quantity and duration of the diet. Mitochondrial function is related to
IR [48–51]. In order to test whether different treatments lead to IR, HOMA-IR was computed based on
blood glucose and insulin concentrations. While it increased significantly in the HF group, it decreased
significantly in the HFEx group. These results show that the low-intensity treadmill exercise performed
in this study improved HFD-induced IR; this is in line with a previous study on humans [52] that
showed that low-intensity and low-volume exercises also improve IR. However, IR was calculated
using the formula from Matthews et al. [30] in this study. Therefore, it is desirable to present the result
by insulin tolerance test and/or intraperitoneal glucose tolerance test, not by the formula, in order to
reach a more conclusive conclusion.

PPARδ, which is related to PGC-1α and known to play an integral role in mitochondrial biogenesis,
is increased by FFA [13,47]. The HFD used in this study also increased FFA concentration. In order
to examine whether this increase in FFA also increases PPARδ, protein expression was measured
in skeletal muscles, and was found to have increased by 2.5 times. HFD is also known either to
decrease or have no effect on the mRNA [19,53] or protein expression of PGC-1α [54]. However, in this
study, however, HFD increased PGC-1α protein, a result that has been replicated in several other
studies [19,40,55]. It is thought that PPARδ increased due to a post-transcriptional mechanism or
PGC-1α protein degradation, as described in Koh et al. [47]. PGC-1α activates nuclear respiratory
factor (NRF), which in turn increases expression of mitochondrial transcription factor A (mtTFA),
thereby increasing expression of mitochondrial enzymes such as ATP synthetase and cytochrome c
oxidase (COX) subunits (COX-I and COX-IV) [56].

Based on the findings of this study, it is thought that the increased expression of mtTFA and
mitochondrial enzymes led to increased expression of mitochondrial enzymes in HFD mice via the
PPARδ–PGC-1α–mtTFA axis in the fast-twitch muscle EDL, but not in slow-twitch muscle soleus
(data not shown). A similar increase was observed in the HFEx group, which means that adding
exercise to the HFD regime does not produce any additive effect on mitochondrial biogenesis via the
PPARδ–PGC-1α–mtTFA axis, in comparison with HFD treatment alone. In other words, exercise had
no effect on mitochondrial biogenesis. Since the present study posited a case in which exercise to
improve mitochondrial function cannot be effectively performed, because of muscular atrophy or
musculoskeletal damage due to aging, a treadmill program was designed with a very low intensity and
volume (5–10 m/min for 30–45 min for the first week and 15 m/min for 60 min/day for the subsequent
five weeks, three times/week). It remains a possibility that the intensity and/or duration of the exercise
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regime were insufficient to meet the minimum requirements for mitochondrial biogenesis enhancement.
Therefore, further research is required to set the minimum exercise frequency, intensity, and time for
mitochondrial biogenesis to occur.

Mitochondria are highly dynamic organelles in which constant movement, fusion, and fission
occur [57,58]. Their morphology is maintained by the balance between mitochondrial fusion and
fission [59].

While mitofusins (Mfn1 and Mfn2) and optic atrophy-1 (OPA1) are key actors in fusion,
dynamin-related protein-1 (Drp1), mitochondrial fission 1 (Fis-1) induces fission [60–62]. HFD regulates
the expression of these factors. According to Liu et al. [63], a four-week HFD decreases Mfn1 and 2
and increases Fis1 and Drp1 to reduce mitochondrial function. Another study found differences based
on the type of fat involved: whereas a saturated fat increased Drp1 and Fis1 to reduce mitochondrial
functioning, an unsaturated fat increased Mfn1 and 2 to enhance mitochondrial functioning [50,64].

By contrast, Silvestri et al. [55] have shown that while a four-week HFD decreases Mfn2,
it produced no change in the activity of the mitochondrial respiratory complexes (I, II, and IV).
Additionally, Leduc-Gaudet et al. [65] have shown that a short-term HFD consisting primarily of lard
increases both Mfn1 and Fis1 and enhances mitochondrial FA-oxidation ability, without altering
mitochondrial content. While there is a difference in the duration of the HFD regime in the study by
Leduc-Gaudet et al. [65] compared to the present one, the results are similar: Mfn2 was not increased
significantly by HFD, but it was increased in the HFEx group, while Drp1 was increased in both the
HF and HFEx groups. Moreover, Fis1 was increased in both the HF and HFEx groups, leading to
increases in fusion and fission with HFD. However, image analysis using TEM showed that the
number of intermyofibrillar mitochondria increased in the HFEx group, while the sizes of both the
subsarcolemmal and intermyofibrillar mitochondria increased in the HFEx group. Therefore, it is
thought that combining HFD with low-intensity exercise induces more positive results in mitochondrial
dynamics than results with HFD alone. According to a recent study, mitochondrial dynamics are
reduced in HFD-induced IR [48–51].

However, when the duration of HFD was short enough to avoid IR, not only do Mfn2 and
Fis1 increase but Drp1 content also increases, without affecting the Mfn2 and OPA1 content,
thereby enhancing mitochondrial function [65]. Therefore, it is thought that HFD-induced IR was
improved by treatment with HFD in combination with exercise, inducing positive effects on the
mitochondrial dynamics of the HFEx group.

5. Conclusions

In conclusion, a six-week HFD induces IR by increasing visceral fat, rather than body
weight. However, an HFD increased mitochondrial biosynthesis via the PPARβ-PGC-α-mtTFA
axis. Although combining an HFD with low-intensity endurance exercise did not produce
an additive effect on mitochondrial biosynthesis, it nonetheless did improve HFD-induced IR by
increasing mitochondrial fusion and fission (dynamic) and enhancing mitochondrial functioning.
Therefore, performing low-intensity endurance exercises in the absence of IR, which can be facilitated
by adjusting the HFD treatment period, method (intermittently), or fat type (saturated or unsaturated
fatty acids), can provide an alternative when an effective exercise of moderate-to-high intensity
cannot be performed to ameliorate reduced mitochondrial function due to muscular atrophy or
musculoskeletal damage.
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