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Dendritic cells (DCs) play a central role in the regulation of the balance between CD8T

cell immunity vs. tolerance to tumor antigens. Cross-priming, a process which DCs

activate CD8T cells by cross-presenting exogenous antigens, plays a critical role in

generating anti-tumor CD8T cell immunity. However, there are compelling evidences

now that the tumor microenvironment (TME)-mediated suppression and modulation

of tumor-infiltrated DCs (TIDCs) impair their function in initiating potent anti-tumor

immunity and even promote tumor progression. Thus, DC-mediated cross-presentation

of tumor antigens in tumor-bearing hosts often induces T cell tolerance instead of

immunity. As tumor-induced immunosuppression remains one of the major hurdles for

cancer immunotherapy, understanding how DCs regulate anti-tumor CD8T cell immunity

in particular within TME has been under intensive investigation. Recent reports on

the Batf3-dependent type 1 conventional DCs (cDC1s) in anti-tumor immunity have

greatly advanced our understanding on the interplay of DCs and CD8T cells in the

TME, highlighted by the critical role of CD103+ cDC1s in the cross-priming of tumor

antigen-specific CD8T cells. In this review, we will discuss recent advances in anti-tumor

CD8T cell cross-priming by CD103+ cDC1s in TME, and share perspective on future

directions including therapeutic applications and memory CD8T cell responses.

Keywords: CD103+ cDC1s, CD8 T cell immunity, anti-tumor immunity, cross-priming, tumor microenvironment,

cancer immunotherapy

INTRODUCTION

Cancer is characterized by the accumulation of genetic mutations and the loss of normal cellular
regulatory functions (1). The identification of tumor-associated antigens (TAAs) that separated
cancerous cells from non-transformed healthy cells, and the observation of tumor antigen-specific
CD8T cells in cancer patients have greatly advanced our understanding on tumor immunology
and formed the basis for antigen-specific immunotherapy (2). The first human tumor antigen
recognized by CD8 cytotoxic T lymphocytes (CTL) was identified in melanoma and was designated
melanoma-associated antigen (MAGE)-1 (3). The isolation of tumor-specific CTL from peripheral
blood or tumor tissue of patients from various cancer patients provided evidence for existence
of CD8T cell-mediated anti-tumor immunity (4–7). The detection of TAA-specific CD8T cells in
spontaneously regressing tumors further supported the importance of tumor-specific CD8T cell
responses (5). It is well accepted now that CD8T cells play a central role in mediating anti-tumor
immunity, and their effector CTLs eliminate tumor cells by recognizing tumor-associated antigens
presented on major histocompatibility complex class I (MHCI) by their expressed T cell receptor
(TCR). Indeed, studies have shown that infiltration of T cells, especially CD8T cells into tumor
microenvironment, correlates with better prognosis in multiple malignancies such as breast,
lung, melanoma, colorectal, and brain cancer (8, 9). However, even when tumor-specific CD8
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T cell responses were observed, they rarely provided protective
immunity as tumors often evade immune surveillance by
dampening T cell effector and memory functions (10, 11).
Promising cancer immunotherapies that aim to boost CD8T
cell-mediated anti-tumor immunity include DC cancer vaccines,
adaptive cell transfer (ACT) of tumor-reactive T cells, either
native (CTL clones or Tumor infiltrated lymphocytes–TIL) or
engineered to express tumor antigen-specific TCR or chimeric
antigen receptors (CAR), and immune checkpoint blockade
(ICB) such as anti-PD-1, anti-PD-L1, and anti-CTLA-4 (2).
Among them, immunotherapies with ICB and CAR T cells have
achieved unprecedented clinical efficacy leading to a number
of drugs being approved by the FDA. However, a majority
of patients still fail to respond to these checkpoint or CAR
T cell therapies, and many patients that do respond often
experience relapse (12). While direct presentation of tumor
antigens onto their MHCI by tumor cells play an important
role in effector function of CD8T cells, cross-presentation
by professional antigen presenting cells in particular DCs are
required for prime naive CD8T cells and sustaining the cytotoxic
immune responses (13). Thus, increasing efforts has been made
to repair and enhance insufficient T cell priming by DCs to
further improve the efficacy of immunotherapies with ICB and
CAR T cells due to DCs’ critical role in priming and directing
CD8T cells to target tumor cells (12, 14). Indeed, the ability of
DCs to cross-present exogenous tumor-associated antigens onto
MHCI molecule to prime CD8T cells is the foundation of the
“Cancer-Immunity cycle” proposed by Chen and Mellman (11).
Thus, better understanding the interaction of CD8T cells and
DCs would be critical to improve the efficacy of current cancer
immunotherapies.

DENDRITIC CELLS AND TUMOR
MICROENVIRONMENT

Ralph Steinman was awarded the 2011 Nobel Prize for Medicine
or Physiology for his pioneering work on DCs (15). As the
sentinel of the immune system, DCs play a central role in
linking innate and adaptive immune responses (16). Known as
the most potent professional antigen presenting cells (APCs),
DCs initiate all adaptive immune responses by uptaking,
processing and presenting antigens including tumor antigens
to activate naive antigen-specific CD4 and CD8T cells (17).
Since their identification in 1973 (18), DC development and
the regulation of their function have been under intensive
study. DCs originate in bone marrow from macrophage/DC
progenitors (MDP) that give rise to common DC progenitors
(CDP), which then differentiate into two major DC subsets:
classical/conventional DCs (cDCs) and plasmacytoid DCs
(pDCs) (19–26). Murine cDCs consist of two subtypes currently
described as cDC1s (XCR1hiCD24hiCD26hiCD11chiMHCIIhi

CD11bloCD172aloF4/80loCD64loLinlo, type 1 cDCs)
and cDC2s (CD11bhi CD172ahiCD26
hiCD11chiMHCIIhiXCR1loF4/80loCD64loLinlo, type 2 cDCs),
and their human counterparts are CD141+ DCs (also known
as BDCA3+) and CD1c+ DCs (also known as BDCA1+),

respectively (27, 28). These two subtypes of cDCs differ in their
transcriptional factor dependency, function and phenotypes
(23, 24). cDC1 cells include lymphoid tissue CD8α+ cDC1s
and migratory CD103+ cDC1s (29). cDC1 cells rely on
interferon regulatory factor 8 (IRF8) and basic leucine zipper
transcriptional factor ATF-like 3 (Batf3) for their development,
and are specialized in presenting internalized exogenous antigens
onto MHCI to prime CD8T cells by cross-presentation (30).
cDC2s depend on interferon regulatory factor 4 (IRF4) for their
development and comprise a heterogeneous population that are
very efficient in presenting internalized antigens on MHCII to
activate CD4T cells (31–34).

pDCs are a multifunctional population best known for their
specialized ability in producing and secreting large amount of
type I interferons (IFNs) (35–37). pDCs also express high level
of IRF8 similar to cDC1s, but require the E2-2 transcription
factor for their development (38). E2-2, encoded by TCF4, is a
member of the E family of basic helix–loop–helix transcription
factors (39). In both mice and humans, E2-2 is required for
the differentiation of pDCs from CDPs (38). Induced deletion
of E2-2 in mature pDCs results in the acquisition of cDC-like
properties, such as dendritic morphology, MHCII and CD8α
expression, and the ability to induce proliferation of allogeneic
CD4T cells (40). Deletion of E2-2 in pDCs also induces the
expression of ID2, which is required for cDC1 development.
Murine pDCs express Siglec-H, B220, Ly6c, PDCA1 (CD317) and
intermediate level of CD11c, and human pDCs express HLA-DR,
CD123, BDCA2 (CD303), and BDCA4 (CD304) but not CD11c
(36, 41). Initially reported as IFN-producing cells (IPCs), pDCs
have been extensively studied for their function in sensing viral
RNA and DNA by toll-like receptor (TLR)-7 and−9 (42, 43). In
addition to their function in producing IFNs, pDCs have also
been shown to play an important role in immune tolerance.
In autoimmune diseases, aberrant activation of pDCs has been
implicated in the pathogenesis of psoriasis, systemic lupus
erythematosus (SLE), and IFN-related autoimmune diseases
(36, 44, 45).

Monocytes that arise from MDPs could also differentiate
into another DC subset named Monocyte-derived inflammatory
DCs (inf-DC) under conditions such as inflammation, cancer
and infection (46). The inf-DCs have been shown to both
activate antigen-specific CD4T cells and cross-present tumor
antigens to activate CD8T cells, and their presence has
been found to be important for the efficacy of cancer
immunotherapy (47–49). Recently, TNF/iNOS-producing DCs
(TIP-DCs), a novel type of inf-DCs that produce TNF-α and
nitric oxide (NO) was shown to be critical for tumor growth
control upon treatment with adaptive CD8T cell transfer
(50).

The TME is a specialized niche composed of tumor
cells, fibroblasts, endothelial cells, infiltrating leukocytes, and
extracellular matrix components. TIDCs have been found in
many cancer types including breast, lung, renal, head and
neck, gastric, colorectal, bladder and ovarian cancers (51).
However, in general within the TME tumor cells are able
to adapt their environment to favor tumor growth, evade
immune surveillance and confer resistance to immunotherapies

Frontiers in Immunology | www.frontiersin.org 2 December 2018 | Volume 9 | Article 3059

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Fu and Jiang DC-Mediated Cross-Priming in the TME

(52, 53). A key mechanism in achieving tumor immune
evasion is through modulation of DC function by tumors and
tumor-associated cells/factors in the TME. Thus, despite the
presence of DCs in TME and their potential in generating anti-
tumor immunity, TIDCs often exhibit impaired or defective
function, thus might mediate immunosuppression instead (41,
54). Indeed, the TME employs a variety of mechanisms to
modulate DCs to suppress their ability to induce anti-tumor
responses.

DC-SUPPRESSIVE MOLECULES IN TME

A number of factors such as IL-6, Macrophage colony-
stimulating factor (M-CSF), IL-10, Vascular endothelial growth
factor (VEGF), and Transforming growth factor beta (TGF-β)
that are present in TME have been shown to negatively regulate
DC functions (55, 56). IL-6 and M-CSF, cytokines secreted
by tumor cells, have been shown to switch the differentiation
of CD34+ progenitors from DCs to CD14+ monocytes that
failed to mediate allogeneic T cell proliferation (57, 58).
Tumor-derived IL-6 has been shown to negatively regulate DC
function by inhibiting their maturation and migration, affect
the differentiation of hematopoietic progenitor cells from DCs
to macrophage, and induce tolerogenic phenotypes of DCs
(59–61). In the TME, a variety of cells such as tumor cells,
myeloid-derived suppressor cells (MDSCs), tumor-associated
macrophages (TAMs), DCs, and Tregs, have been shown to
produce IL-10 (62). IL-10 has been shown to suppress DC
function by inhibiting different aspects of DC biology, such
as DC maturation, their ability to secret IL-12, their capacity
in antigen presentation and priming of T cells (63, 64).
IL-10 has also been shown to convert immunogenic DCs
into tolerogenic DCs leading to the induction of anergic
cytotoxic CD8T cells (65). In addition, IL-10 derived from
tumors has also been shown to switch differentiation from
monocytic precursors to immunosuppressive TAMs rather than
DCs (66). VEGF has been shown to inhibit differentiation
and maturation of DCs (67, 68). Tumor-derived TGF-β
significantly suppresses DC function and their ability to initiate
anti-tumor immune responses by inhibiting DC maturation
(69, 70).

Several factors such as VEGF, TGFβ, IL-1β, IL-13,
Granulocyte-macrophage colony-stimulating factor (GM-CSF)
and prostaglandins, that are produced by tumor cells and other
cells in the TME, have been shown to inhibit DC differentiation
from progenitors and promote their differentiation into
immunosuppressive cells such as MDSCs and TAMs
(71).

Another mechanism used by TME to evade immune detection
is by modulating DC function to skew T cell differentiation.
Factors in TME, such as Matrix metalloproteinase 2 (MMP-2)
and Thymic Stromal Lymphopoietin (TSLP) have been shown
to modulate DC function to induce detrimental Th2 responses
(72, 73). Tumor-produced TSLP has been shown to up-regulate
OX40L expression on DCs, thus inducing the generation of
Th2 cells that produce IL-4 and IL-13 that have been shown

to promote tumor growth in breast and pancreatic cancer
(74, 75).

Several signaling pathways such as β-catenin, MAPK and
STATs that are active in cancers also play critical roles in
crosstalk between tumor cells and DCs in the TME (76, 77).
β-catenin signaling in melanoma cells has been shown to
inhibit the recruitment of T cells and DCs into tumors
(78). Melanoma-derived Wnt ligand Wnt5α has been shown
to increase the production of Indoleamine 2,3-dioxygenase
(IDO) by TIDCs via β-catenin signaling, leading to increased
generation of Treg cells (79). Conditional knockout of Wnt
co-receptors LRP5 and LRP6 on DCs, on the other hand,
enhanced DC-mediated anti-tumor immunity leading to delayed
tumor growth (80). In addition, activation of β-catenin in
DCs from tumor-bearing mice exhibited a more tolerogenic
phenotype and mediated the suppression of DC vaccine-
induced cross-priming of anti-tumor CD8T cells through IL-10
(81, 82).

REGULATORY T CELLS

Regulatory T cells (Tregs), working in concert with tolerogenic
DCs, play critical roles in the establishment and maintenance of
an immunosuppressive TME to inhibit anti-tumor immunity
(83). Tregs are comprised of a heterogeneous population of T
lymphocytes that have shared the ability to suppress immune
responses, with the CD4+CD25+Foxp3+ Tregs being most
studied. These Tregs express the inhibitory receptors CTLA-
4, Tim-3, PD-1, GITR, LAG3, and BTLA that exert their
suppressive function on DCs through different mechanisms.
For example, Tregs have been shown to inhibit DC maturation
by down-regulating the expression of co-stimulatory molecules
such as CD80 and CD86 through CTLA-4 (84). Engagement
of CTLA-4 on Treg by CD80/CD86 on DCs has been shown
to up-regulate both human and murine DCs’ production of
IDO (85), which then activate antigen-specific regulatory T cells
to induce potent suppressor activity (86, 87). In turn, IDO-
activated Tregs have been shown to induce the up-regulation
of the inhibitory PD-L1 on DCs (88). In addition, Tregs secrete
IL-10 and TGF-β, two of the main immunosuppressive
cytokines that are known to induce DC dysfunction
(89, 90).

EXPRESSION OF INHIBITORY LIGANDS

The expression of inhibitory molecules, such as PD-L1, PD-L2,
Tim3, LAG3 contributes to the suppressed function of DCs in
tumors and tumor-draining LNs. It has been reported that tumor-
derived factors up-regulate Tim3 expression in tumor DCs (91).
TIM-3 on DCs then inhibits anti-tumor responses and reduces
the efficacy of cancer treatments by binding to high-mobility
group box 1 protein (HMGB1), a damage-associated molecular
pattern molecule involved in cytosolic nucleic acid recognition
in the TME. In addition, signaling via TIM-3 on both BMDCs
and splenic DCs has been shown to inhibit DC activation and
maturation (92). For PD-L1, CD103+ DCs from tumor-draining
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LNs have recently been shown to have increased expression of
PD-L1 compared to non-draining LN DCs (93). PD-L1 and PD-
1 blockade has been shown to reverse DC dysfunction leading to
enhanced T cell immunity (94, 95), suggesting that PD-L1/PD-1
signaling negatively regulates DC function.

INHIBITION OF ANTIGEN PRESENTATION
FUNCTION OF TIDCs

Tumor cells escape immune surveillance by disabling the process
of tumor antigen presentation. Recent studies have shown
that DCs in TME often exhibited impaired capacity in cross-
presentation (25, 96). The TME can specifically modulate DCs’
antigen presentation function by targeting the molecules and
machinery directly involved in antigen presentation, for example,
decreasing the expression of their MHCI and MHCII molecules
and their regulators such as CIITA, down-regulation of genes
such as ER-resident aminopeptidases (ERAP) and transporter
associated with antigen processing (TAP) (97). Abnormal
accumulation of lipids in DCs has emerged as an important
mechanism for DC dysfunction, as TIDCs from multiple tumor
models and cancer patients exhibited reduced capacity in cross-
presentation because of lipid accumulation (98, 99). Supporting
this notion, a recent study has shown that the accumulation of
lipids in TIDCs was involved inplay arole in blunting inhibiting
anti-tumor T cell responses in ovarian cancer (100).

pDCs IN TME

Recruitment of pDCs to the tumor microenvironment has been
reported in a variety of cancers, however, these tumor-infiltrated
pDCs are often tolerogenic, favoring tumor progression. High
tumor infiltration by pDCs has been associated with poor
prognosis in melanoma, head and neck, breast, and ovarian
cancers (45, 101–103). pDCs have been shown to induce the
generation of Tregs in the TME and tumor-draining LNs (88,
104). pDCs can also stimulate the generation of Tregs by their
expression of ICOS-L, and ICOS-L expression on pDCs has also
been shown to be associated with breast cancer progression (105,
106). On the other hand, pDCs have also been shown to promote
immunogenic anti-tumor responses if properly stimulated, as
therapeutic activation of pDCs have shown efficacy in melanoma,
basal cell carcinoma, and T cell lymphoma (25, 41, 103, 107).

DENDRITIC CELLS IN CROSS-PRIMING OF
ANTI-TUMOR CD8T CELLS AND BEYOND

Cross-priming, a process which DCs activate CD8T cells
by cross-presenting exogenous antigens (108, 109), plays a
critical role in generating anti-tumor CD8T cell immunity
(110–115). Anti-tumor CD8T cell responses are induced in
three sequential steps: (1) tumor antigen uptake and cross-
presentation; (2) tumor antigen-specific CD8T cell priming
by DCs, and (3) elimination of tumor cells by effector CTLs
(116). However, TME-mediated suppression and modulation
of TIDCs often leads to their dysfunction, resulting in failure

in cross-priming (step 1 and 2) and suppressed anti-tumor
CD8T cell immunity. Indeed, DC-mediated cross-presentation
of tumor antigens in tumor-bearing hosts often induces T cell
tolerance instead of immunity (110). However, not all TIDCs
within TME exhibit suppressive and/or regulatory functions.
For example, the infiltration of BDCA3+ cDC1s in the TME
has been shown to correlate with increased T cell infiltration
and improved prognosis in cancer patients and better efficacy
of cancer immunotherapies, highlighting the critical positive
role of cDC1 in generating anti-tumor immunity in the TME
(78, 117). Thus, recent discoveries on the critical role of
cDC1s in particular CD103+ cDC1s in CD8T cell cross-
priming in tumors have generated much interest, and have
offered opportunities for improved cancer immunotherapies
(96).

The generation of Batf3−/− mice that selectively lack cDC1s
has greatly advanced our understanding of their function
in CD8T cell cross-priming in tumors (30). Batf3−/− mice
exhibited defective cross-presentation and impaired anti-
tumor immunity, suggesting that cDC1s play a critical role
in initiating CD8T cell-mediated anti-tumor immunity
through cross-presentation (30). The mechanisms that
make cDC1s superior in cross-presentation are only being
uncovered recently. While cDC1s exhibit high efficiency at
endocytosis of cell-associated antigens, their superior capacity
in cross-presentation is thought to due to their specialized
capability in processing antigens (96). In addition, the cross-
presentation capacity of cDC1s is further enhanced by their
expression of Clec9A, which facilitate the cross-presentation
of antigens from dead cells by binding filamentous actin
(118–120).

Examining the TME, Broz et al. have identified CD103+

cDC1s as the only population with the capability to induce
proliferation of both naive CD8T cells and established CTLs,
suggesting that CD103+ cDC1s are the APCs that cross-
prime CTLs in the TME (117) (Figure 1). More importantly,
analysis of The Cancer GenomeAtlas (TCGA) database indicated
that the CD103+/CD103− gene ratio correlates strongly with
increased patient survival across 12 different cancer types
(117). Consistently with cDC1s’ critical role in anti-tumor
immunity, a recent study has shown that activation of β-
catenin signaling in melanoma cells reduces the numbers of
intratumoral CD103+ cDC1 cells, thus preventing tumor-specific
T cell priming, suggesting that CD103+ cDC1s might not
only promote anti-tumor immunity but also be suppressed by
cancer cells for immune evasion (78). In both B16 and Braf-
mutant mouse melanoma models, CD103+ cDC1s have been
shown to play a critical role in the efficacy of immunotherapy
with PD-L1 and Braf inhibition (93). A combined treatment
of systemic FMS-like tyrosine kinase 3 ligand (FLT3L) and
poly I:C at the tumor sites, which induced the expansion
and maturation of CD103+ cDC1s, improved the efficacy of
BRAF and PD-L1 blockade, suggesting that combined FLT3L
and poly I:C therapy might be a promising approach that
could improve the efficacy of current ICB immunotherapy in
cancer patients (93). Similarly, efficacy of immunotherapy using
PD-1 and CD137 blockade has been shown to depend on
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FIGURE 1 | cDC1s and priming of tumor-antigen-specific CD8T cells in the tumor microenvironment (TME) and tumor-draining lymph nodes (tdLNs). Migratory

CD103+ cDC1s in the TME take up tumor antigens (black dots), and transport tumor antigens to tdLN by migrating to the tdLN in a CCR7-dependent mechanism.

Once in the tdLN, cross-presenting CD103+ cDC1s prime naive tumor antigen-specific CD8T cells to become effector CD8T cells. Cross-presenting CD103+

cDC1s also transfer tumor antigens to other resident myeloid cells including CD8α+ cDC1s that are also likely involved in priming naive CD8T cells in tdLN. cDC1s in

the TME produce CXCL9/10 to recruit primed effector CD8T cells into TME, where they are re-stimulated by CD103+ cDC1s leading to the efficient killing of tumor

cells. The function of other DCs such as pDCs and cDC2s in CD8T cell priming is less understood.

CD103+ cDC1s, likely due to their function in cross-priming
(121).

Recent studies have also shown that CD103+ cDC1s are
the only population that mediates the transport of solid
tumor antigens from TME to tumor draining lymph nodes
for cross-priming of CD8T cells (93, 122) (Figure 1). DC
migration to LNs is mediated by the CCR7 chemokine receptor
expressed on CD103+ cDC1s, as CCR7−/− CD103+ cDC1s
exhibited reduced function in migration and T cell priming
(122). In addition, intratumoral CD103+ cDC1s also play
a critical role in the trafficking of tumor-specific effector T
cells into tumors, as effector T cell recruitment into tumors
depends on the presence of CXCL9/10-producing CD103+

cDC1s (123, 124) (Figure 1). Importantly, the expression
of Batf3-dependent DC transcripts in human melanoma
tumors correlates with CXCL9/10 expression and CD8T cell
infiltration, suggesting that Batf3-dependent cDC1s might
regulate T cell recruitment to tumors in both mice and human
(124).

The role of cDC2s and pDCs in CD8T cell cross-priming
in tumors are less well understood. cDC2s isolated from the
TME have been shown to engulf tumor antigens and induce T
cell proliferation in vitro, suggesting cDC2s may play a role in
cross-priming CD8T cells in TME (117). Given the dominant
role of cDC1s as described above, however, cDC2s likely play
a minor role in promoting anti-tumor immunity. pDCs can
present antigens to activate CD4T cells as well as activate CD8T
cells through cross-presentation (125, 126). Recruitment of pDCs
to the TME has been reported in a number of cancers, although

high tumor infiltration of pDCs has been shown to correlate with
poor prognosis in melanoma, head and neck, breast, and ovarian
cancers (45, 101–103). Activation of pDCs has been shown to
promote anti-tumor immunity, likely through the production of
type 1 IFNs (127, 128). The role of tumor infiltrated pDCs in the
cross-priming of tumor-specific CD8T cells, however, remains
underinvestigated and poorly understood. Interesting, several
recent reports have shown the cooperation of pDCs and cDCs
in achieving optimal cross-priming (129, 130), suggesting that
pDCs could play a positive role in generating anti-tumor CD8T
cell immunity.

STRATEGIES TARGETING DC FUNCTION
IN CD8T CELL PRIMING TO IMPROVING
THE EFFICACY OF CANCER
IMMUNOTHERAPIES

It’s worth noting that the best efficacy for anti-CTLA-4 blockade
was achieved in combination with GM-CSF+ tumor cell
vaccination two decades ago by the lab of the newly Nobel
laureate Dr. James Allison (131, 132). In the 1998 PNAS
paper, the authors suggested that “the most effective and
synergistic vaccine strategy targets treatments that enhance T
cell priming at the level of host-derived antigen-presenting
cells” (131), which quite accurately predicted the direction of
cancer immunotherapy as combining ICB with DC-based cancer
immunotherapy. In light of the recent discovery of the critical
role of cDC1s in priming tumor-specific CD8T cells, repairing
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and/or enhancing DC-mediated CD8T cell priming represents
an exciting approach to improve the efficacy of current T cell-
based cancer immunotherapies including ICB and ACT (12,
14, 96). Indeed, Spranger et al. have shown that vaccination
with in vitro-generated DCs improved the efficacy of anti-PD-
L1 and anti-CTLA-4 immunotherapy (78). Similarly, treatment
of FLT3L/poly I:C, which expands and induces the maturation
and activation of CD103+ cDC1s at the tumor sites, has been
shown to enhance anti-tumor responses and improve efficacy
when combined with BRAF and PD-L1 blockade (93). Recently,
we have genetically engineered tumor-specific CD8T cells with a
second T-cell receptor (TCR) that recognizes a Listeria antigen.
And we have shown that Listeria infection led to the eradication
of primary tumors and development of immunological memory
against tumor re-challenge in combination with adoptive cell
transfer (ACT) of these dual-specific T cells, likely due to the
substantially enhanced T cell priming involving DCs (133).
In vivoDC-targeted vaccines that deliver tumor antigens to cross-
presenting DCs with monoclonal antibodies carrying tumor
antigens is another attractive approach to enhance cross-priming
of tumor-specific CD8T cells. As multiple clinical trials with
human anti-DEC-205 monoclonal antibody fused with antigens
such as tumor antigen NY-ESO-1 have shown promising results
(134–137), it will be interesting to combine in vivo DC-targeted
vaccines with T cell-based cancer immunotherapies such as ICB
and ACT to further improve their efficacy. Another intriguing
approach is the manipulation of pDCs. While tumors are known
to prevent the infiltration of cDCs exemplified by recent reports
involving β-catenin signaling pathway (78), accumulation of
pDCs has been reported inmultiple tumors includingmelanoma,
head and neck, breast, and ovarian cancers (45, 101–103), thus
offering an opportunity to manipulate these pDCs to generate
anti-tumor immunity in the tumor microenvironment (TME).
Indeed, therapeutic activation of pDCs have been reported to
induce immunogenic anti-tumor responses and shown efficacy
in multiple human cancers (25, 41, 103, 107). While the roles
of cross-priming by pDCs in vivo are still under debate (29,
138–140), recent studies have shown that the co-operation of
pDCs and cDCs was required to achieve optimal cross-priming
of CD8T cells (129, 130, 141). Thus, studies are warrantied
to further understand the contribution of other DC subsets
including pDCs and cDC2s in CD8T cell priming in TME and
tumor-draining LN, which will help develop better strategies to
improve efficacy of cancer immunotherapies by enhancing DC
function in CD8T cell priming.

MEMORY CD8T CELLS

Generation of durable memory CD8T cells responses that
are capable of protection from recurrence and relapse is the
ultimate goal of cancer immunotherapy. Memory CD8T cells
are heterogeneous populations that include both circulating
memory CD8T cells and non-circulating tissue resident memory
CD8T cells (Trm) (142). Circulating memory CD8T cells can be
further divided into stem cell memory (Tscm), central memory
(Tcm) and effector memory (Tem). Tumor infiltrated Tcm
and Tem cells have been reported in multiple cancers such

as colorectal and breast cancer (143–145). However, memory
CD8T cells in tumors often exhibit dysfunctional phenotypes
and their dysfunction correlates with cancer progression (142).
Highlighting their role in anti-tumor immunity, intratumoral
expansion of Tem cells in patient samples have been associated
with improved responses to anti-PD-L1 therapy (146). For the
recently identified Trm cells, tumor infiltrated CD8+CD103+

Trm cells have been reported in tumor samples of ovarian,
endometrial, breast and lung cancer patients, and their number
correlates with prolonged survival and better prognosis (147–
152). While the presence of the memory CD8T cells in tumors
is clear, whether and how TIDCs in particular CD103+ cDC1s
regulate the generation and function of memory CD8T cells
remains largely unexplored. Under certain conditions, cross-
priming of CD8T cells by CD103+ cDC1s in TME does lead
to memory CD8T cell responses. For instance, Salmon et al.
have shown that FLT3L/poly I:C treatment synergized with
PD-L1 blockade to prevent the secondary melanoma lesions
after Braf inhibition, as well as provide protection against
tumor re-challenge, indicated the generation of memory CD8T
cell responses after CD8T cell priming (93). Thus, further
studies on memory CD8T cells in TME are warrantied to
understand how to better achieve memory CD8T cell responses
in TME.

CONCLUSION

DC-mediated cross-priming of tumor-specific CD8T cells plays
a critical role in initiating and sustaining anti-tumor immunity
(110–115). TME employs an array of mechanisms to modify
the phenotype and function of TIDC to transform them into
immunosuppressive DCs. Insufficient T cell priming likely
contributes to cold tumors (no T cell infiltration in TME) and
unresponsiveness to immune checkpoint blockade (ICB) therapy,
and is under intensive investigation (12). Recently, a number
of studies have shown that CD103+ cDC1s in TME are critical
in cross-priming CD8T cells to generate anti-tumor immunity.
These CD103+ cDC1s mediate cross-presentation and transport
tumor antigens from tumors to draining LN to prime naive
CD8T cells, have the capacity to prime tumor-reactive CTLs in
TME, play a critical role in trafficking of effector CD8T cells
to tumors, thus impact all three steps of anti-tumor CD8T cell
responses required for tumor eradication (78, 93, 117, 121–
124, 153). In addition, the presence of CD103+ cDC1s has
been shown to be critical for efficacy of multiple ICB therapies
(93, 121). Thus, manipulating CD8T cell cross-priming by
cDC1s, by employing strategies to increase the number of cDC1s
and enhancing their capacity of cross-priming in tumors and
tumor draining LNs, represents an exciting approach to enhance
anti-tumor CD8T cell immunity and improve the efficacy of
current cancer immunotherapies including ICB and ACT (see
reference 13 for an excellent recent review on DC-based cancer
immunotherapy). Of note, combination treatment of FLT3L/poly
I:C, which expands and induces the maturation and activation
of CD103+ cDC1s at the tumor sites, has already been shown
to enhance anti-tumor responses to BRAF and PD-L1 blockade
(93).
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