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Abstract

Motivation: The classic multispecies coalescent (MSC) model provides the means for theoretical justification of in-
complete lineage sorting-aware species tree inference methods. This has motivated an extensive body of work on
phylogenetic methods that are statistically consistent under MSC. One such particularly popular method is ASTRAL,
a quartet-based species tree inference method. Novel studies suggest that ASTRAL also performs well when given
multi-locus gene trees in simulation studies. Further, Legried et al. recently demonstrated that ASTRAL is statistically
consistent under the gene duplication and loss model (GDL). GDL is prevalent in evolutionary histories and is the
first core process in the powerful duplication-loss-coalescence evolutionary model (DLCoal) by Rasmussen and
Kellis.

Results: In this work, we prove that ASTRAL is statistically consistent under the general DLCoal model. Therefore,
our result supports the empirical evidence from the simulation-based studies. More broadly, we prove that the
quartet-based inference approach is statistically consistent under DLCoal.

Contact: alexey.markin@usda.gov

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The accurate inference of evolutionary histories of species is a grand
challenge in evolutionary biology due to the fact that the true evolu-
tionary histories are rarely known (Bininda-Emonds, 2004).
Consequently, the common strategy in the phylogenetic community
is to rely on established statistical models of evolution when evaluat-
ing phylogenetic inference methods. One of the most prominent
such models is the multispecies coalescent model (Rannala and
Yang, 2003) that accounts for incomplete lineage sorting (ILS), also
known as deep coalescence. ILS is a prevalent factor that causes dis-
cordance between the observed gene tree topologies and the host
species tree (Allman et al., 2018). In fact, a large body of work in
phylogenetics is dedicated to the design of species tree inference
methods that are statistically consistent under MSC. Statistical con-
sistency implies that as the number of observed gene trees grows, the
species tree estimate converges to the true species tree that ‘gener-
ated’ the observed data. Multiple phylogenetic inference methods
have been demonstrated to be statistically consistent, cf. GLASS
(Mossel and Roch, 2010), R� (Degnan et al., 2009), STEM
(Kubatko et al., 2009), MP-EST (Liu et al., 2010), BUCKy (Larget
et al., 2010), STAR/USTAR (Allman et al., 2016; Liu et al., 2009),
NJst (Liu and Yu, 2011), ASTRID (Vachaspati and Warnow, 2015),
ASTRAL (Zhang et al., 2018), other rooted triplet and unrooted

quartet methods (Ewing et al., 2008; Rhodes, 2020; Yourdkhani
and Rhodes, 2020) and others.

In recent years ASTRAL became one of the most popular species
tree inference methods by practitioners. Note that ASTRAL’s object-
ive function is built on the notion of quartets (see Fig. 1). In particu-
lar, the proof that ASTRAL is statistically consistent under MSC
stems from two observations. First, Allman et al. (2011) demon-
strated that if a species tree displays a quartet q then q is also the
most likely observed (unrooted) gene tree topology. Second, it can
be seen that every species tree clade will eventually appear in at least
one of the observed gene trees.

More recently, Legried et al. (2020) studied two natural exten-
sions of ASTRAL that enable processing the multi-locus gene trees.
Multi-locus gene trees can have multiple leaves with the same spe-
cies label (that is, the respective species has multiple copies of the
same gene). These extensions allow one to apply ASTRAL to a
much broader class of phylogenetic gene trees and are referred to as
ASTRAL-one and ASTRAL-multi. Given four species (e.g.
fA;B;C;Dg) a multi-locus gene tree can have multiple copies of
each of the species and therefore can suggest multiple (conflicting)
quartets on fA;B;C;Dg. In that case, ASTRAL-one chooses a single
random copy for each species label and considers the respective
quartet type, whereas ASTRAL-multi considers all gene copies and
all the respective quartets.
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Focusing on these two extensions of ASTRAL, Legried et al.
proved that both ASTRAL-one and ASTRAL-multi are statistically
consistent under the gene duplication and loss model (GDL)
(Legried et al., 2020). Note that GDL is a part of the broader and
well-recognized unified duplication-loss-coalescence (DLCoal)
model of gene tree evolution by Rasmussen and Kellis (Rasmussen
and Kellis, 2012). DLCoal simultaneously accounts for three crucial
types of evolutionary factors that shape gene family evolution.
Namely, duplications, losses and incomplete lineage sorting. The
DLCoal process involves two steps, (i) a birth/death process within
the branches of the species tree creates a locus tree (i.e. the GDL pro-
cess), and (ii) a bounded multispecies coalescence process acting on
the locus tree generates the observed gene tree. See Figure 2 for an
example.

In this work, for the first time, we prove that ASTRAL-one is
statistically consistent under the general DLCoal model. First, we
derive gene tree probabilities (constrained to quartets) under the
bounded multispecies coalescent model and draw core observations
from that analysis. Second, we build on an idea from Legried et al.
to systematically separate different duplication-loss scenarios. Then,
for each such scenario, we prove that a random quartet from the
gene tree is more likely to agree with the species tree quartet rather
than any of the two other quartets. Finally, we extend our result for
ASTRAL-one to ASTRAL-multi and demonstrate that ASTRAL-
multi is also consistent under DLCoal (Our extension of the consist-
ency result to ASTRAL-multi was developed independently from
Hill et al., 2020.).

Our results provide a theoretical justification to the findings in
Du et al. (2019), which showcased the accuracy of ASTRAL-one in
the presence of duplications, losses and incomplete lineage sorting.

2 Preliminaries

We denote a rooted (phylogenetic) tree by P ¼ ðT;xÞ. Here T is the
tree topology and is a binary rooted tree with the designated root
vertex, qðTÞ, of degree two, all internal nodes of degree three and
with leaves bijectively labeled by elements of set LeðTÞ. For conveni-
ence, we identify leaves with their labels. Further, tree topologies are
planted, implying that an additional root edge is attached to the root
vertex. Then, x specifies the lengths of edges in T in coalescent units
[i.e. the number of generations normalized by the effective popula-
tion size (Allman et al., 2011)]. More formally, x : EðTÞ ! Qþ.

In particular, we assume that all edge lengths are strictly positive.
When the phylogenetic tree P is not clear from the context, we will
often use the notation TP and wP to refer to its tree topology and its
edge-length function, respectively.

An unrooted (phylogenetic) tree topology T is similar to the
rooted tree topology, but without a designated root and the root
edge. That is, in unrooted tree T all non-leaf vertices have degree
three.

We say that an edge e is external if it is incident with a leaf ver-
tex, and otherwise we call e internal. Further, given a set Y � LeðTÞ,
tree topology TjY is obtained from T by restricting the leaf-set to Y.
A restricted phylogenetic tree PjY ¼ ðTjy;wjYÞ is then obtained by
choosing the function wjY that maintains the same leaf-to-root path
lengths as in P (in respect to the leaves in Y).

A rooted topology T defines a partial order on its nodes: given
two nodes x and y we say x � y if x is a descendant of y (and x � y
if additionally x 6¼ y). We say that two edges in a rooted tree are par-
allel if neither edge is located on the path from the other edge to the
root.

Quartets. A quartet is an unrooted tree topology with exactly
four leaves. Assuming that the leaves are a, b, c and d, we denote the
quartets in Figure 1(left), (middle) and (right) as abjcd; acjbd and
adjbc respectively (based on the two cherries separated by the in-
ternal edge).

We say that a quartet q is displayed in a phylogenetic tree P, if
the unrooted tree topology of P restricted to the leaves in q (i.e.
TPjLeðqÞ) is equivalent to q. In this case, we write q 2 P.

2.1 Unified DLCoal model
We now overview the unified duplication-loss-coalescence (DLCoal)
model (Rasmussen and Kellis, 2012).

Species tree. A species tree S ¼ ðTS;xSÞ represents an evolution-
ary history of species. Leaves of TS are labeled by the extant species
names.

Locus tree. A locus tree L ¼ ðTL;xLÞ represents a duplication/
loss history of a fixed gene. A locus tree is obtained from a species
tree by running the duplication/loss process (Legried et al., 2020;
Rasmussen and Kellis, 2012) top-down along the edges of the spe-
cies tree. More specifically, the duplication/loss process is a birth-
death process with a fixed birth (duplication) rate k and death (loss)
rate l (Arvestad et al., 2003). The birth-death process starts in the
root edge of the species tree; whenever it reaches a speciation point,
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Fig. 1. All three possible quartets on a; b; c; d leaves
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Fig. 2. An example of a gene tree G, locus tree L and species tree S. Note that the arrows in the locus tree represent the duplication events, and the cross represents a loss event.

Further, the red circles on the gene tree represent the duplication-points. As coalescent (b-MSC) runs on the locus tree, the coalescence of the new and the original loci is likely

to happen above a duplication event; therefore, the duplication-points can appear in the middle of gene tree edges, as shown in the figure
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the process splits into two copies and continues independently in the
children edges. See Figure 2 for an example. Note that locus tree
leaves are labeled by gene names.

A locus tree node is always one of the following two types:

i. Speciation. Such node corresponds to a speciation event/node

from the species tree.

ii. Duplication. Such node corresponds to a new locus creation

event.

Remark. A duplication event is asymmetric, as one child (the
mother duplicate) follows the parent locus, and the other child (the
daughter duplicate) corresponds to a novel locus (Rasmussen and
Kellis, 2012). To account for that, we will often depict duplications
as red dots on the locus tree edges immediately below the duplica-
tion nodes, shifted toward a daughter duplicate. That is, a red dot
on an edge will indicate that this point is a start of a new locus (see
Fig. 3 for an example). This will ensure a consistent depiction of
duplications for Section 3. Further, we will refer to these points as
duplication-points.

Gene tree. A gene tree G ¼ ðTG;xGÞ represents a gene family’s
evolutionary history. The gene tree is obtained from a locus tree by
running the bounded multispecies coalescent (b-MSC) process
bottom-up along the edges of the locus tree (Rasmussen and Kellis,
2012) (see Section 2.3 for a more detailed description of that pro-
cess). Figure 2 provides an example of that process.

2.2 Multispecies coalescent (MSC) model
In the standard multispecies coalescent model (Rannala and Yang,
2003) gene lineages are followed backwards in time (from the leaves
to the root).

For simplicity, we assume that there is exactly one gene lineage
starting in every extant locus tree leaf. If two or more lineages enter
the same locus tree edge, then the coalescence history of these line-
ages is determined by an exponential distribution.

In particular, for any two lineages a, b that entered the same
edge the probability that they coalesce within time x (specified in
terms of coalescent units) is as follows:

P½a;bcoalescedwithintimex� ¼ 1� e�x:

More generally, we denote the probability that i lineages co-
alesce into j lineages within time x (j � i) by gi;jðxÞ: This value can
be computed using the following formula (Tavaré, 1984):

gi;jðxÞ ¼
Xi

k¼j

ðexp
�
� k

2

� �
x
� ð2k� 1Þð�1Þk�j

j!ðk� jÞ!ðjþ k� 1Þ

	
Yk�1

m¼0

ðjþmÞði�mÞ
iþm

Þ:

Further, note that if at any given moment in time multiple line-
ages co-exist in the same edge, then any pair of these lineages have
an equal probability of coalescing in the next Dt time. That is, the
process is symmetric.

2.3 Bounded MSC (b-MSC) model
The constraints on MSC in the unified DLCoal model appear due to
the duplication points. In particular, all lineages originating below a
daughter duplicate must coalesce below the respective duplication
node. For example, in Figure 3, the gene tree lineages corresponding
to leaves a2, c2 and c3 must coalesce below the root node.

More formally, assume that a duplication occurred at time-point
d. Note that, for convenience, we assume that all leaves are aligned
in time and are associated with time-point 0; further, we consider
time to increase as we go up the trees away from leaves. Now, let a
and b be locus tree leaves that are located below the duplication,
which is at time-point d (i.e. a and b belong to the new locus created
by the duplication). Then we know that lineages a and b must co-
alesce prior to time-point d. Therefore, generally, the probability
that any two lineages a, b, which entered the same edge below a du-
plication dup at time d, coalesce within time x is as follows (see
Fig. 4 for a respective locus tree example):

P½a; bcoalescedwithintimexja; bcoalescedpriortodup�
¼ 1� e�x

P½a; bcoalescedpriortodup� ;

where P½a; bcoalescedpriortodup� is determined by the original, un-
bounded MSC model.

3 Quartet probabilities under b-MSC

To obtain our main result we need to compute the probabilities of
each quartet appearing in the gene tree based on a fixed locus tree
topology. Note that Allman et al. (2011) explicitly computed these
probabilities for unbounded MSC. In our case we need to incorpor-
ate cases, when duplications (locus creation events) appear along the
edges of the locus tree.

Remark. From now on, for convenience, we restrict locus trees
to four leaves sampled from different species. That is, choosing
(any) four genes fa; b; c; dg from distinct species A;B;C;D, we con-
sider the tree Ljfa;b;c;dg. Note that considering only four leaves may
suppress other duplication nodes along the locus tree edges.
Therefore, we need to allow for additional duplication-points along
the locus tree edges. Further, if there are multiple duplication-points
along a single edge of Ljfa;b;c;dg, it is sufficient to only consider the
lowest duplication-point on that edge since it indicates the lowest
point, below which gene lineages must coalesce.

Without loss of generality assume that the locus tree L displays the
quartet abjcd. Then there are two cases: either (i) L is a balanced rooted
tree or (ii) L is a caterpillar tree. We now explore both those cases.

Throughout this section, we sometimes use abbreviations ‘coal.’
for ‘coalesce(d)’ and ‘dup.’ for ‘duplication’. Further, we abbreviate
‘obtained in time t’ as simply ‘in t’.

3.1 L is balanced
For convenience, we set x :¼ xLðXÞ; y :¼ xLðYÞ to be the lengths of
edges X and Y, respectively (see Fig. 5A). We now explore all possi-
bilities of duplication placements on edges of L.

a1 b1 c1 a2 c2 c3

Fig. 3. An alternative depiction of a locus tree from Figure 2 with red dots represent-

ing duplication-points slightly shifted toward a novel locus

a b

.
.
. x

L

dup

d

Fig. 4. An example of a locus tree that illustrates the b-MSC constraints for Section

2.3
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3.1.1 No duplications (unbounded MSC)

In this case, quartet probabilities are given by Allman et al. (2011).
That is,

P½abjcd 2 G� ¼ 1� 2

3
e�ðxþyÞ;

P½acjbd 2 G� ¼ P½adjbc 2 G� ¼ 1

3
e�ðxþyÞ:

3.1.2 Duplications along the X or Y edges

Assume that a duplication has occurred along the X and/or Y edge
(see Fig. 5C). Recall that a duplication point indicates that gene line-

ages below it in the locus tree must coalesce prior to the duplication
(when looking backwards in time). Therefore, if there is a duplica-

tion along the X edge, then lineages corresponding to genes a and b
must coalesce on that edge. That is, the gene tree must display quar-
tet abjcd. Similarly, the same is true if a duplication is located on the

Y edge. Hence,

P½abjcd 2 G� ¼ 1;
P½acjbd 2 G� ¼ P½adjbc 2 G� ¼ 0:

3.1.3 Root edge duplications

Assume that a duplication occurred on the root edge as shown in

Figure 5(D), and no duplications appear on X and Y edges. Then the
following holds.

P½abjcd 2 G� ¼ P½abjcd 2 Gja; b; c;dcoalescedbeforez�

¼ 1� P½
a;b didnotcoal: on X;
c; d didnotcoal: on Y;
acjbdoradjbcint

ja; b; c;d coal: before z�

¼ 1�
2

3
e�xe�yP½4lineagescoalescedwithintimet�

P½a;b; c;dcoalescedbeforez�
¼ 1� 2

3
e�ðxþyÞ g4;1ðtÞ

P½a;b; c;dcoalescedbeforez� ;

P½acjbd 2 G� ¼ P½adjbc 2 G�
¼ 1

3
e�ðxþyÞ g4;1ðtÞ

P½a;b; c;dcoalescedbeforez� :

3.1.4 Duplication at the root vertex

In Sections 4 and 5 we mainly consider cases when the locus tree

root corresponds to a locus creation event (i.e. there is a duplication-
point on one of the X or Y edges right below the root). In that case
the gene tree quartet probabilities are given by Lemma 3.1.

Lemma 3.1. Let L be a balanced locus tree displaying a quartet q with

the root of L corresponding to a duplication. Then P½q 2 GjL� ¼ 1.

Proof. Since the root of L is a duplication, we place a duplication-point

immediately below the root on one of the children edges (i.e. the edge

that corresponds to a novel locus). Therefore, quartet probabilities for L

are described in Section 3.1.2. That is, P½q 2 GjL� ¼ 1. h

Remark. Note that potential duplications along the external edges do

not affect the coalescence process.

3.2 L is a caterpillar
As above, we set x :¼ xLðXÞ; y :¼ xLðYÞ to be the lengths of edges
X and Y respectively (see Fig. 6A). We now similarly explore all pos-

sible duplication placements on the edges of L.

3.2.1 No duplications (unbounded MSC)

In this case, the quartet probabilities are given by Allman et al.
(2011). In particular,

P½abjcd 2 G� ¼ 1� 2

3
e�x;

P½acjbd 2 G� ¼ P½adjbc 2 G� ¼ 1

3
e�x:

3.2.2 X edge duplication

Assume that there is a duplication on the X edge (and
potentially more duplications on other internal edges) as shown in
Figure 6B. Then, similarly to the balanced case, it is not difficult to

see that

P½abjcd 2 G� ¼ 1;

P½acjbd 2 G� ¼ P½adjbc 2 G� ¼ 0:

3.2.3 Y edge duplication

Assume that there is a duplication on Y and there are no duplica-
tions on X as shown in Figure 6C.

P½abjcd 2 G� ¼ P½abjcd 2 Gja; b; c coal: before duplication�

¼ 1� P½
a;bdidnotcoalesceonX;

acjbdoradjbcint
ja; b; c coalesced beforedup:�

¼ 1� 2

3
e�x g3;1ðtÞ

P½a; b; ccoalescedbeforeduplication� ;

P½acjbd 2 G� ¼ P½adjbc 2 G� ¼ 1

3
e�x g3;1ðtÞ

P½a; b; c coal: beforedup:� :

3.2.4 Root edge duplication

Assume that a duplication occurred on the root edge and no duplica-
tions occurred along the X and Y edges (see Fig. 6D).

A

a b c d

X Y

B

a b c d

X Y

C

a b c d

X Y

D

a b c d

X Y

z

t

Fig. 5. (A) The balanced quartet representing the locus tree and displaying quartet abjcd. The dotted circles indicate potential duplication locations that can affect gene tree

probabilities. (B–D) Specific duplication scenarios corresponding to Sections 3.1.1, 3.1.2 and 3.1.3, respectively
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We start with computing the probability of the acjbd quartet.

P½acjbd 2 G� ¼

P½
a;bdidnotcoalesceonX;

a; ccoalescedonYfirst;

remaininglineagescoalescedbeforez

�

P½a;b; c;dcoalescedbeforetheduplication�

þ

P

" a; bdidnotcoalesceonX;

nocoalescenceonY;

acjbdobtainedintimet

�

P½a; b; c; dcoalescedbeforetheduplication�

¼
1

3
e�xðg3;2ðyÞg3;1ðtÞ þ g3;1ðyÞg2;1ðtÞ þ g3;3ðyÞg4;1ðtÞÞ

P½a; b; c; dcoalescedbeforetheduplication� :

Further, by symmetry P½acjbd 2 G� ¼ P½adjbc 2 G�. Therefore,
P½abjcd 2 G� equals

1� 2

3
e�x g3;2ðyÞg3;1ðtÞ þ g3;1ðyÞg2;1ðtÞ þ g3;3ðyÞg4;1ðtÞ

P½a;b; c; dcoalescedbeforetheduplication�

� �
:

3.3 Core observations
It is not difficult to see from the above derivations that for a fixed
locus tree topology that displays abjcd (balanced or caterpillar), if
one increases the length of edge X then the probability P½abjcd 2 G�
grows. More formally, see Lemma 3.2.

Lemma 3.2. Let L1 and L2 be two caterpillar trees displaying abjcd
with xL1

ðXÞ < xL2
ðXÞ and xL1

ðYÞ ¼ xL2
ðYÞ as shown in Figure 7.

Further, let L1 and L2 have identical locations of duplication-points on

the internal edges. That is, a duplication-point d1 on L1 always has a

counterpart duplication-point d2 on L2 with the same distance to the

root and vice versa (see Fig. 7). Then

P½abjcd 2 GjL1� ¼ P½abjcd 2 GjL2� ¼ 1;

if L1 (and L2) have a duplication-point on edge X, and

P½abjcd 2 GjL1� < P½abjcd 2 GjL2�;

otherwise.

Further, from the above derivations we observe the following lemma.

Lemma 3.3.For a locus tree L that displays abjcd (regardless of duplica-

tion locations) we have P½abjcd 2 GjL� > P½acjbd 2 GjL� ¼
P½adjbc 2 GjL�.

The proofs of Lemmas 3.2 and 3.3 are given in Supplementary Section

S1 of Supplementary Material.

4 Consistency of ASTRAL-one

We now prove ASTRAL-one is statistically consistent under the
DLCoal model.

Theorem 4.1. Let S ¼ ðTS;wSÞ be a fixed species tree and let G be a col-

lection of gene trees that independently evolved within S according to

the DLCoal process. Then, as the number of trees in G goes to infinity,

the probability that T̂ , the unrooted tree estimate by ASTRAL-one, is

equal to the unrooted tree topology TS goes to 1.

For this result, it is sufficient (see Legried et al., 2020) to prove the

following:

Theorem 4.2. Let S be a species tree with four leaves that displays quar-

tet ABjCD, and let G be a gene tree that evolved in S according to the

DLCoal process. If one picks genes a; b; c; d (that correspond to species

A;B;C;D respectively) uniformly at random (assuming they exist) from

G, then P½abjcd 2 G� > P½acjbd 2 G� ¼ P½adjbc 2 G�.

Theorem 4.2 is sufficient to prove Theorem 4.1, because ASTRAL, as a

distance-minimization method, ‘prefers’ the most dominant quartets

among the input trees. Then, by Theorem 4.2, as the number of input

trees goes to infinity, the most dominant quartet among input trees for

each 4-tuple of species becomes (almost surely) the true species tree

quartet; hence, it is almost surely picked by ASTRAL-one (see Legried

et al., 2020 for a formal proof). Therefore, the remainder of the section

is dedicated to the proof of Theorem 4.2. We first prove the theorem for

S being balanced and then for S being a caterpillar.

Remark. To prove Theorem 4.2, we will use some of the results from

Legried et al. (2020), who proved that ASTRAL is consistent under the

duplication/loss process. To see how their result relates to our problem,

observe that a ‘gene tree’ in Legried et al. (2020) notation is equivalent

to the locus tree in the broader DLCoal process. Therefore, below we
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B

a b

c

d
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Y

C

a b

c

d
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Y
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c

d
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Y

z
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Fig. 6. (A) The caterpillar quartet representing the locus tree and displaying quartet abjcd. (B–D) Specific duplication scenarios corresponding to Sections 3.2.2, 3.2.3 and

3.2.4, respectively
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c
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Y
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c

d

L1 L2

Fig. 7. Locus trees L1 and L2 with equal lengths of the Y edges and different lengths

of the X edges. The dashed lines highlight that the duplication-points are located

identically on the two trees relatively to their roots
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explicitly use some of Legried et al. results to draw conclusions about

the locus tree probabilities.

4.1 S is balanced
Similarly to Legried et al. (2020), we first implicitly condition our
probability space on the event that at least one of each a, b, c and d
genes must be present in G. Further, we condition our probability
space on a fixed number of locus tree lineages existing at the speci-
ation point at the root of S. That is, consider the duplication/loss
(birth/death) process occurring within the root branch of S. Then,
let RL be the random variable denoting the number of locus lineages
at the speciation point (see Fig. 8). We are going to prove that

P½abjcd 2 GjRL ¼ l� > P½acjbd 2 GjRL ¼ l�
¼ P½adjbc 2 GjRL ¼ l�

for any fixed value of l ¼ f1; 2; . . .g. Therefore, for convenience, we
do not explicitly write the condition RL ¼ l in probability equations
throughout the rest of the proof. Further, we refer to the set of these
l locus lineages as root lineages.

Now let ia 2 f1; . . . ; lg be the index of a root lineage, from which
gene a has descended. Similarly, we define ib, ic and id. For better
readability of the remainder of the proof, we introduce the notation
to describe scenarios of the type ia ¼ ib ¼ ic 6¼ id. In particular, we
write (abc, d) for that scenario, we write (ab, cd) to denote the scen-
ario ia ¼ ib 6¼ ic ¼ id, and we write ða; b; c; dÞ to denote the scenario,
where all ix are distinct.

Then, by the law of total probability, we have

P½abjcd 2 G� ¼
X

I

P½I; abjcd 2 G�;

where I is one of the above scenarios (i.e. a partition of set
fa; b; c; dg or a combination of such partitions). In particular
I 2 fða;b; c; dÞ; ðab; cdÞ _ ðac;bdÞ; ðab; c; dÞ _ ðcd; a;bÞ _ ðac; b;dÞ _ ðbd;

a; cÞ; ðabc; dÞ_ ðabd; cÞ _ ðacd; bÞ _ ðbcd; aÞ_ ðabcdÞ; ðad; bcÞ_
ðad;b; cÞ _ ðbc; a;dÞg. Observe that we cover all possible scenarios/
partitions here.

Our goal is to prove that P½abjcd 2 G� > P½acjbd 2 G�. Note
that P½adjbc 2 G� ¼ P½acjbd 2 G� follows from the fact that swap-
ping c and d leaf labels does not affect the probabilities. Let us carry
out the proof by considering different values of I. That is, our strat-
egy is to prove that P½I; abjcd 2 G� 
 P½I; acjbd 2 G� for all of the
above I, and at least in one case the strict inequality holds.

To facilitate the proofs in each case, first consider the following
observations:

Observation 4.1. Random variables ix and iy are independent for
any x 2 fa; bg and y 2 fc;dg.

However, ia can be dependent on ib and ic can be dependent
on id.

Proof. Observe that the duplication/loss process runs independ-
ently in the parallel branches of the species tree. Therefore, once we
condition the probability space on a fixed number of lineages at the
divergence point (i.e. fixed l), the random variables ix and iy become

independent. In particular, consider any specific realization of the
duplication/loss process below the root lineages and let i be a root
lineage that a randomly picked locus a belongs two (i.e. ia ¼ i).
Then, we can swap the ‘left’ subtrees below two distinct root line-
ages i and j (the subtrees that lead to species A and B) so that ia ¼ j
and the probability of that event is not altered due to symmetry.
Note that ic in that case remains the same. Since we can always re-
shuffle root lineages like that, we can think of a as ‘choosing’ one of
the l root lineages uniformly at random, regardless of a realization
of ic. The same is also true for all other pairs of x 2 fa; bg and
y 2 fc; dg.

However, since a and b develop (at least partially) in the same
species tree branch random variables ia and ib can be dependent.
Similarly for ic and id. h

Observation 4.2. Due to the symmetry of the duplication/loss
process, we have

P½ix ¼ k� ¼ 1=l

for any x 2 fa; b; c; dg and k 2 f1;2; . . . ; lg. Then, by Claim 4.1,

P½ix ¼ iy� ¼
Xl

k¼1

P½ix ¼ k�P½iy ¼ k� ¼ l
1

l2
¼ 1=l

for any x 2 fa; bg and y 2 fc;dg.

Lemma 4.1 (Due to Lemma 1 in Legried et al., 2020). P½ia ¼ ib� and

P½ic ¼ id � are greater than or equal to 1
l .

4.1.1 Case I ¼ (a,b,c,d)
By the symmetry of the duplication/loss process, reshuffling
the ia; ib; ic; and id labels will not change the probability of a fixed
duplication/loss history in the root edge. Therefore, we have
P½abjcd 2 GjI� ¼ P½acjbd 2 GjI�. Hence, P½abjcd 2 G; I� ¼
P½acjbd 2G; I�.

4.1.2 Case I ¼ ðab; cdÞ _ ðac;bdÞ
We need to show that

P½abjcd 2 G; I� ¼ P½abjcd 2 Gjðab; cdÞ�P½ðab; cdÞ�
þP½abjcd 2 Gjðac; bdÞ�P½ðac;bdÞ�

 P½acjbd 2 Gjðab; cdÞ�P½ðab; cdÞ�
þP½acjbd 2 Gjðac; bdÞ�P½ðac;bdÞ�
¼ P½acjbd 2 G; I�:

Observe the following.

Lemma 4.2. P½abjcd 2 Gjðab; cdÞ� ¼ P½acjbd 2 Gjðac; bdÞ� ¼ 1.

Proof. Consider the locus trees Lðab;cdÞ and Lðac;bdÞ for the (ab, cd) and

(ac, bd) cases respectively (see Fig. 9). Note that we only consider the

part of the locus tree restricted to the four selected genes a; b; c; d. It is

not difficult to see that both Lðab;cdÞ and Lðac;bdÞ are balanced. Therefore,

by Lemma 3.1, P½abjcd 2 Gjðab; cdÞ� ¼ P½acjbd 2 Gjðac; bdÞ� ¼ 1. h

Corollary 4.1. P½acjbd 2 Gjðab; cdÞ� ¼ P½abjcd 2 Gjðac;bdÞ� ¼ 0.

Lemma 4.3. P½ðab; cdÞ� 
 P½ðac; bdÞ�.

Proof. Our proof is similar to the proof of Lemma 1 in Legried et al.

(2020). In particular, let Ni 2 f0; 1; . . .g be the number of locus lineages

that descended from a root lineage i 2 f1; . . . ; lg and that existed imme-

diately after the speciation into species A and B. Similarly, we define var-

iables Mi denoting the number of lineages that existed immediately after

the speciation at the parent of C and D. See Figure 10 for an example of

Ni variables. By N ¼ ðN1; . . . ;NlÞ and M ¼ ðM1; . . . ;MlÞ we denote the

vectors of Ni and Mi variables, respectively.

A B C D

a b c d

Fig. 8. An example of the partial embedding of a locus tree into balanced S. The

blue lineages correspond to the locus tree. Note that the five locus lineages crossing

the dashed speciation line are root lineages
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Observe that P½ðab; cdÞ� ¼ P½ia ¼ ib; ic ¼ id� � P½ðabcdÞ� and

P½ðac;bdÞ� ¼ P½ia ¼ ic; ib ¼ id � � P½ðabcdÞ�. Further, note that when con-

ditioned on specific values of N and M, ia ¼ ic and ib ¼ id events become

independent. That is, similarly to Claim 4.1, conditioning on the number

of lineages at the divergence point for species A and B eliminates the de-

pendency between ia and ib (and similarly for ic and id). After condition-

ing on N and M, random variables ia; ib; ic and id are all independent. In

particular, we can think of lineages a and b as choosing one of the
P

Ni

lineages independently and uniformly at random. Similarly, c and d

choose one of the
P

Mi lineages independently and uniformly at

random.

Then, for fixed values of the N and M vectors we have

P½ia ¼ ib; ic ¼ idjN;M� ¼
Xl

j¼1

ðP½ia ¼ jjN�P½ib ¼ jjN�Þ

	
Xl

j¼1

ðP½ic ¼ jjM�P½id ¼ jjM�Þ

¼
P

jðN2
j Þ

ð
P

j NjÞ2

P
jðM2

j Þ
ð
P

j MjÞ2
:

The last equality is due to P½ia ¼ jjN� ¼ NjPl

i¼1

Ni

. That is, as mentioned

above, due to the symmetry of the duplication/loss process a has a uni-

form probability of being ‘sampled’ from any of the lineages existing at

the divergence point of species A and B. Similar relations can then be

easily derived for ib, ic and id.

Further, following the same idea, we have

P½ia ¼ ic; ib ¼ idjN;M� ¼
P

jðNjMjÞ
ð
P

j NjÞð
P

j MjÞ

P
jðNjMjÞ

ð
P

j NjÞð
P

j MjÞ
:

Then, by Cauchy-Schwartz, ð
P

jðNjMjÞÞ2 �
P

jðN2
j Þ
P

jðM2
j Þ and there-

fore P½ia ¼ ib; ic ¼ id jN;M� 
 P½ia ¼ ic; ib ¼ id jN;M� for any realization

of vectors N and M. That is, P½ðab; cdÞ� 
 P½ðac; bdÞ�. h

Using the above results, we have

P½abjcd 2 G; I� ¼ P½ðab; cdÞ� 
 P½ðac; bdÞ� ¼ P½acjbd 2 G; I�:

4.1.3 Case I ¼ ðab; c;dÞ _ ðcd; a;bÞ _ ðac;b;dÞ _ ðbd;a; cÞ
For convenience, from now on we denote the event ðab; c; dÞ _
ðcd; a; bÞ by AB and the event ðac; b; dÞ _ ðbd; a; cÞ by AC.

We prove that

P½abjcd 2 G; I�
¼ P½abjcd 2 GjAB�P½AB� þ P½abjcd 2 GjAC�P½AC�

 P½acjbd 2 GjAB�P½AB� þ P½acjbd 2 GjAC�P½AC�
¼ P½acjbd 2 G; I�:

Consider the following results.

Lemma 4.4. P½abjcd 2 GjAB� 
 P½acjbd 2 GjAC�.

Proof. Note that fixing the number of root lineages allows us to treat the

duplication/loss processes independently for the root edge and for the

lower edges. Let Lr be a duplication/loss scenario (i.e. a fixed realization

of the duplication/loss process) in the root edge conditioned on RL ¼ l.

Then, without loss of generality assume that in case (ab, c, d), we have

ia ¼ ib ¼ 1, ic ¼ 2 and id ¼ 3; in case (cd, a, b) we assume ic ¼ id ¼ 1, ia
¼ 2 and ib ¼ 3. Similarly, under (ac, b, d) we assume ia ¼ ic ¼ 1; ib ¼
2; id ¼ 3 and under (bd, a, c) we assume that ib ¼ id ¼ 1; ia ¼ 2; ic ¼ 3.

Then, a fixed Lr scenario forces the same ‘top’ structure of the locus

trees in all four cases.

Given that (ab, c, d) and (cd, a, b) cases are virtually identical for
the remainder of the proof (since they are symmetric), for simplicity,
we will only consider the (ab, c, d) case. Similarly, under the AC
event, we will only consider case (ac, b, d).

Then, Figures 11 and 12 depict two possible topologies of the Lr

scenario when acting on the root lineages 1, 2 and 3. Observe that
the third topology, where root lineages 1 and 3 form a cherry, is
identical in terms of analysis to the topology depicted in Figure 11,
and therefore is not considered.

Note that in Figure 11, the resulting locus trees Lðab;c;dÞ
and Lðac;b;dÞ are both caterpillars, while in Figure 12, the locus trees
are both balanced. This separation is achieved because we condition
on a fixed Lr scenario. We now consider these two cases
individually.

(i) Lðab;c;dÞ and Lðac;b;dÞ are caterpillars (see Fig. 11). Let xab be the

distance (in coalescent units) from the root speciation event to

the divergence of a and b in the locus tree under the (ab, c, d)

case (as shown on the figure). Note that xab 
 0. There are two

cases to consider.

• There is a duplication along the xab lineage. Then, as shown in

Section 3.2.2, P½abjcd 2 GjAB;Lr� ¼ 1. That is, P½abjcd 2
GjAB;Lr� 
 P½acjbd 2 GjAC;Lr�.
• No duplications along the xab lineage. Since Lðab;c;dÞ and

Lðac;b;dÞ are both caterpillars, we denote their edges by X and Y as

shown in Figure 6A. In particular we denote the X edge in

a b c d a b c d

Fig. 9. Left: the embedding of a locus tree Lðab;cdÞ. Right: the embedding of a locus tree Lðac;bdÞ

A B

N1=3 N2=2

. . .

Fig. 10. An example of a partial locus tree embedding in the left part of the species

tree below the root speciation. The two shown root lineages expand (through dupli-

cation) into N1 ¼ 3 and N2 ¼ 2 lineages at the moment of A/B speciation,

respectively

4070 A.Markin and O.Eulenstein



Lðab;c;dÞ by Xðab;c;dÞ and the X edge in Lðac;b;dÞ by Xðac;b;dÞ. Then,

wðXðab;c;dÞÞ ¼ x0 þ xab, whereas wðXðac;b;dÞÞ ¼ x0 (note that x0 is

as depicted in Fig. 11). Further, the two locus trees are identical

in terms of the duplication locations in their internal edges.

Then, by Lemma 3.2, it is not difficult to see that P½abjcd 2
GjLr; ðab; c; dÞ� 
 P½acjbd 2 GjLr; ðac; b; dÞ� for any fixed Lr.

Therefore, the lemma holds.

(ii) Lðab;c;dÞ and Lðac;b;dÞ are balanced (see Fig. 12). By Lemma 3.1,

P½abjcd 2 GjAB;Lr� ¼ 1 and P½acjbd 2 GjAC;Lr� ¼ 1. Note

that we can apply Lemma 3.1, since the roots of the locus trees in

these cases must be duplications. h

Lemma 4.5. P½abjcd 2 GjAC� 
 P½acjbd 2 GjAB�.

Proof. This result follows from Lemma 4.4 (i.e. P½abjcd 2 GjAB� 

P½acjbd 2 GjAC�) and the following relations:

2P½abjcd 2 GjAC� þ P½acjbd 2 GjAC� ¼ 1;
2P½acjbd 2 GjAB� þ P½abjcd 2 GjAB� ¼ 1:

h

Observation 4.3. By Lemma 3.3, we have P½acjbd 2 GjAC� 

P½abjcd 2 GjAC�. Then, combining this with Lemma 4.5, we have
P½acjbd 2 GjAC� 
 P½acjbd 2 GjAB�.

Lemma 4.6. P½AB� 
 P½AC�.

Proof. We give the proof in Supplementary Section S2 of Supplementary

Material. h

Summarizing the above results we have.

P½abjcd 2 GjAB�P½AB� þ P½abjcd 2 GjAC�P½AC�

 P½acjbd 2 GjAC�P½AB� þ P½acjbd 2 GjAB�P½AC�

 P½acjbd 2 GjAC�P½AC� þ P½acjbd 2 GjAB�P½AB�:

Note that the first inequality is due to Lemmas 4.4 and 4.5. The last in-

equality is due to Lemma 4.6 and Claim 4.3.

That is, our main statement holds.

4.1.4 Case I ¼ ðabc;dÞ _ ðabd; cÞ _ ðacd; bÞ _ ðbcd; aÞ _ ðabcdÞ
In all five cases locus tree L displays the quartet abjcd. Therefore, by
Lemma 3.3 P½abjcd 2 GjI� > P½acjbd 2 GjI�. Observe that we ob-
tain the strict inequality in this case.

4.1.5 Case I ¼ ðad;bcÞ _ ðad;b; cÞ _ ðbc;a;dÞ
In this case it is not difficult to see that L displays quartet adjbc.
Therefore (as can be seen from the derivations in Section 3),
P½abjcd 2 GjI� ¼ P½acjbd 2 GjI�.

This concludes the proof for balanced S.

4.2 S is a caterpillar
Without loss of generality assume that S is as it appears in Figure 13.
Similarly to the balanced case, we implicitly condition the probabil-
ity space on a fixed number of loci (lineages) existing at the moment
of speciation as shown in the figure. Note that, while in the balanced
case we considered root lineages, in the caterpillar scenario we con-
sider lineages at the least common ancestor of A, B and C. That is,
we refer to these lineages/loci as ABC-lineages. Finally, as in the bal-
anced case, we denote the number of ABC-lineages by l.

We then use the ia; ib; ic notation in the same way as in the previ-
ous section (while referring to indices of ABC-lineages). Further,
I ¼ fða; b; cÞ; ðab; cÞ; ðac; bÞ; ðbc; aÞ; ðabcÞg scenarios describe rela-
tions between ia, ib and ic.

We now prove that P½abjcd 2 G; I� 
 P½acjbd 2 G; I� for all I in
fða;b; cÞ; ðab; cÞ _ ðac; bÞ; ðbc; aÞ; ðabcÞg. Moreover, for at least one
such I, the strict inequality holds; in particular, see case 4.2.4 below.

4.2.1 Case I ¼ ða;b; cÞ
By the symmetry of the duplication/loss process, reshuffling the
ia; ib; ic labels will not affect the probability of a fixed duplication/
loss history in the root edge. Therefore, we have
P½abjcd 2 GjI� ¼ P½acjbd 2 GjI� ¼ P½adjbc 2 GjI�.

Then, P½abjcd 2 G; I� ¼ P ½abjcd 2 GjI�P½I� ¼ P½acjbd 2 GjI�
P½I� ¼ P½acjbd 2 G; I�.

4.2.2 Case I ¼ ðab; cÞ _ ðac;bÞ
The proof in this case is similar to case 4.1.3 for balanced S. In par-
ticular, observe the following.

x
′

a b c d

x a
b

x
′

a b c d

Fig. 11. Caterpillar locus trees Lðab;c;dÞ (left) and Lðac;b;dÞ (right) embedded into the species tree. The red circles represent the potential duplication locations that could influence

the gene tree probabilities. Note that the Lr scenarios in the root edges are identical. That is, x0 lengths are equal, and the duplication locations above the dashed speciation

lines are identical

a b c d a b c d

Fig. 12. Balanced locus trees Lðab;c;dÞ (left) and Lðac;b;dÞ (right) embedded into the species tree
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Lemma 4.7. P½ðab; cÞ� 
 P½ðac; bÞ�.

Proof. It is sufficient to show that P½ia ¼ ib� 
 P½ia ¼ ic�. By Claim 4.2,

P½ia ¼ ic� ¼ 1=l. Further, Legried et al. (2020) showed that P½ia ¼ ib� 

1=l (see Lemma 1 in Legried et al. (2020)). h

Lemma 4.8.The following holds.

i. P½abjcd 2 Gjðab; cÞ� 
 P½acjbd 2 Gjðac;bÞ�;
ii. P½abjcd 2 Gjðac; bÞ� 
 P½acjbd 2 Gjðab; cÞ�;
iii. P½acjbd 2 Gjðac; bÞ� 
 P½acjbd 2 Gjðab; cÞ�.

Proof. The proofs of these statements are similar to the proofs of
the respective statements in Section 4.1.3. In particular, (i) corre-
sponds to Lemma 4.4, (ii) corresponds to Lemma 4.5 and (iii) corre-

sponds to Claim 4.3 from Section 4.1.3. h

Then, similarly to Section 4.1.3 we have

P½abjcd 2 G; I� ¼ P½abjcd 2 Gjðab; cÞ�P½ðab; cÞ�
þP½abjcd 2 Gjðac;bÞ�P½ðac;bÞ�


 P½acjbd 2 Gjðac;bÞ�P½ðab; cÞ�
þP½acjbd 2 Gjðab; cÞ�P½ðac;bÞ�


 P½acjbd 2 Gjðac;bÞ�P½ðac;bÞ�
þP½acjbd 2 Gjðab; cÞ�P½ðab; cÞ�

¼ P½acjbd 2 G; I�:

4.2.3 Case I ¼ ðbc; aÞ
In this case P½abjcd 2 GjI� ¼ P½acjbd 2 GjI�, since the locus tree dis-
plays the third quartet, adjbc.

4.2.4 Case I ¼ ðabcÞ
The locus tree displays quartet abjcd; therefore, by Lemma 3.3 and

the law of total probability, we have P½abjcd 2 GjI� > P½acjbd 2
GjI�.

5 Consistency of ASTRAL-multi

We now extend our consistency result for ASTRAL-one to another

variant of ASTRAL adapted to multi-locus input trees, called
ASTRAL-multi.

Theorem 5.1. Let S ¼ ðTS;wSÞ be a fixed species tree and let G be a col-

lection of gene trees that independently evolved within S according to

the DLCoal process. Then, as the number of trees in G goes to infinity,

the unrooted tree estimate by ASTRAL-multi converges almost surely

to TS.

Let S be a species tree with 4 leaves that displays ABjCD, and let G be a

gene tree that evolved in S according to the DLCoal process. Let Gabjcd
(respectively Gacjbd and Gadjbc) be the number of abjcd (respectively

acjbd and adjbc) quartets in G. Then, to prove Theorem 5.1 it is suffi-

cient to show that the following result holds (Legried et al. (2020)):

Theorem 5.2. E½Gabjcd� > maxðE½Gacjbd�;E½Gadjbc�Þ.

The remainder of the section is dedicated to the proof of Theorem 5.2.

In fact, due to symmetry, it is sufficient to show that

E½Gabjcd� > E½Gacjbd�. The general structure of the proof is similar to the

proof of consistency for ASTRAL-one in the previous section. We pre-

sent the proof for balanced S, and then briefly discuss the proof for cater-

pillar S.

Remark. Some results in this section hold almost surely. Since this

is sufficient for the proof of the theorem, we do not specify this

explicitly.

5.1 Proof of Theorem 5.2
As mentioned above, we assume that S is balanced. As before, we
implicitly condition the probability space (and the expected values)
on a fixed number of root lineages l. That is, we claim that Theorem
5.1 holds for any fixed value of l.

We now introduce our core notation for the proof. Similarly to
the Gabjcd notation, we let Labjcd (respectively Lacjbd and Ladjbc) de-
note the number of abjcd (respectively acjbd and adjbc) quartets in
the locus tree L. Further, for a fixed scenario I (e.g. scenario
ia ¼ ib ¼ 1; ic ¼ 2; id ¼ 3) let LI

abjcd be the number of abjcd quartets
in the locus tree that follow the scenario I. Further, GI

abjcd be the
number of abjcd quartets in G that ‘appeared’ from one of the LI

abjcd
quartets. Similarly we define LI

acjbd;L
I
adjbc;G

I
acjbd; and GI

adjbc.
Consider any I 6¼ ðabcdÞ. Note that the root of locus tree

Ljfa;b;c;dg must be a duplication for such I (because I involves at least
two root lineages). Then, if I always defines balanced quartets, we
have GI

q ¼ LI
q for any q 2 fabjcd;acjbd;adjbcg by Lemma 3.1. In

particular, we note the following:
Observation 5.1. For any q 2 fabjcd;acjbd;adjbcg we have

Gðab;cdÞ
q ¼ Lðab;cdÞ

q ;

Gðac;bdÞ
q ¼ Lðac;bdÞ

q :

Further, we will only consider scenarios that uniquely determine
the quartet types in the locus tree; therefore, we will typically omit
the subscript in the LI

q notation. For example, we write Lðab;cdÞ in-
stead of L

ðab;cdÞ
abjcd , since abjcd is the only type of quartets that can ap-

pear under scenario (ab, cd).
Given a fixed root lineage i, let Ai be the random variable denot-

ing the number of a leaves generated by that lineage. Similarly, we
define random variables Bi; Ci; and Di. By symmetry, E½A1� ¼
E½A2� ¼ 	 	 	 ¼ E½Al� (with similar relations holding for Bi; Ci;Di).
Then, observe the following:

Observation 5.2. Since the duplication/loss process runs
independently in the parallel branches of the species tree, X i is
independent from Yj for any X 2 fA;Bg; Y 2 fC;Dg and
i; j 2 f1; . . . ; lg.

Observation 5.3. By the symmetry of the duplication/loss pro-
cess, we have

E½X i� ¼ E½X j�

for all X 2 fA;B; C;Dg and i; j 2 f1;2; . . . ; lg.
Further, the following lemma is due to Legried et al.
Lemma 5.1 (Lemma 2 in Legried et al. (2020)).

E½A1B1� 
 E½A1�E½B1�;
E½C1D1� 
 E½C1�E½D1�:

We now outline several key corollary statements.

A B C

D

a b c

d

Fig. 13. An example of the locus tree embedding into a caterpillar species tree. The

three locus lineages crossing the dashed speciation line are the ABC-lineages
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Corollary 5.1.

E½Lðab;cdÞ� 
 E½Lðac;bdÞ�;
E½Lðab;c;dÞ� 
 E½Lðac;b;dÞ�;

E½Lia¼ib¼1; ic¼2; id¼3� 
 E½Lia¼ic¼1; ib¼2; id¼3�:

Proof. To prove the first relationship, note that the duplication/
loss process occurs independently below distinct root lineages.
Then, we have

E½Lðab;cdÞ� ¼ lðl � 1ÞE½A1B1�E½C1D1�

 lðl � 1ÞE½A1�E½B1�E½C1�E½D1�
¼ lðl � 1ÞE½A1C1�E½B1D1� ¼ E½Lðac;bdÞ�:

The other two relationships can be established similarly. h

We now consider the following comprehensive set of scenarios:
I 2 fða; b; c; dÞ; ðab; cdÞ_ ðac;bdÞ; ðab; c; dÞ_ ðac; b;dÞ; ðcd; a; bÞ_
ðbd; a; cÞ; ðabc;dÞ _ ðabd; cÞ _ðacd;bÞ _ ðbcd; aÞ _ ðabcdÞ; ðad; bcÞ_
ðad;b; cÞ _ ðbc; a;dÞg. For each I we will prove that E½GI

abjcd� 

E½GI

acjbd� and for at least one I the strict inequality holds.

5.1.1 Case I ¼ ða;b; c;dÞ
By the symmetry of the duplication/loss process in the root edge, we
have

E½Gða;b;c;dÞ
abjcd � ¼ E½Gða;b;c;dÞ

acjbd � ¼ E½Gða;b;c;dÞ
adjbc �:

5.1.2 Case I ¼ ðab; cdÞ _ ðac;bdÞ
By Claim 5.1, GI

abjcd ¼ Lðab;cdÞ and GI
acjbd ¼ Lðac;bdÞ.

Then, combining this with Corollary 5.1, we have

E½GI
abjcd� ¼ E½Lðab;cdÞ� 
 E½Lðac;bdÞ� ¼ E½GI

acjbd�:

5.1.3 Case I ¼ ðab; c;dÞ _ ðac; b;dÞ
Consider a fixed duplication-loss scenario, Lr, in the root edge of S.
In this section we implicitly condition the probability space on Lr.
That is, we prove that E½GI

abjcd� 
 E½GI
acjbd� for each Lr.

Due to symmetry, we consider the following two core scenarios:
AB :¼ ðia ¼ ib ¼ 1; ic ¼ 2; id ¼ 3Þ and AC :¼ ðia ¼ ic ¼ 1; ib ¼
2; id ¼ 3Þ. It is then sufficient to show the following:

Lemma 5.2.

E½GAB
abjcd� þ E½GAC

abjcd� 
 E½GAB
acjbd� þ E½GAC

acjbd�:

Proof. Due to Lemma 4.4, it is not difficult to see that for any
quartet on fa; b; c; dg that evolved according to scenario AB or AC,
we have P½abjcd 2 GjAB� 
 P½acjbd 2 GjAC�. Therefore, we have

E½GAB
abjcd� 
 E½LAB�P½acjbd 2 GjAC�:

Similarly, due to Lemma 4.5, we know that
P½abjcd 2 GjAC� 
 P½acjbd 2 GjAB�. Therefore,

E½GAB
acjbd� � E½LAB�P½abjcd 2 GjAC�:

Further, note that P½acjbd 2 GjAC� and P½abjcd 2 GjAC� do not
depend on the choice of the fa;b; c;dg lineages, but only depend on
the scenario Lr (see Figs 11 and 12 (right)). Hence,

E½GAC
acjbd� ¼ E½LAC�P½acjbd 2 GjAC�;

E½GAC
abjcd� ¼ E½LAC�P½abjcd 2 GjAC�

Combining all of the above relations we have

E½GAB
abjcd� þ E½GAC

abjcd� 
 E½LAB�P½acjbd 2 GjAC�
þE½LAC�P½abjcd 2 GjAC�;

E½GAC
acjbd� þ E½GAB

acjbd� � E½LAC�P½acjbd 2 GjAC�
þE½LAB�P½abjcd 2 GjAC�:

We can now conclude the proof by noting that E½LAB� 
 E½LAC�
(by Corollary 5.1) and P½acjbd 2 GjAC� > P½abjcd 2 GjAC� (by
Lemma 3.3). h

5.1.4 Case I ¼ ðcd; a; bÞ _ ðbd;a; cÞ
This case is symmetric to I ¼ ðab; c; dÞ _ ðac; b;dÞ. Therefore, the
proof is similar.

5.1.5 Case I ¼ ðabc;dÞ _ ðabd; cÞ _ ðacd; bÞ _ ðbcd; aÞ _ ðabcdÞ
All quartets in the locus tree under each of these scenarios are abjcd.
Then, by Lemma 3.3, P½abjcd 2 GjI� > P½acjbd 2 GjI� for each of
the LI

abjcd quartets. Therefore,

E½GI
abjcd� > E½GI

acjbd�:

5.1.6 Case I ¼ ðad;bcÞ _ ðad;b; cÞ _ ðbc;a;dÞ
All quartets in the locus tree under each of these scenarios are adjbc.
It is then not difficult to see that E½GI

abjcd� ¼ E½GI
acjbd�.

5.2 Caterpillar species tree
We now briefly discuss the proof strategy for Theorem 5.2 when S is
a caterpillar. Similarly to Section 4.2, we condition the duplication/
loss process on a fixed number of ABC-lineages (l)—see Figure 13.
Adapting a similar notation to Section 5.1, let Ai;Bi; Ci denote the
random variables for the number of a, b and c genes, respectively,
below the ith ABC-lineage (in the locus tree). Further, let D denote
the total number of d leaves. It is then not difficult to show that D is
independent from X i for any X 2 fA;B; Cg. Further, Ai and Bi are
independent from Cj for any i; j 2 f1; 2; . . . ; lg (analogously to Claim
5.2). Claim 5.3 also upholds when we restrict X to fA;B; Cg.
Finally, Lemma 5.1 is applicable in the caterpillar case as well; i.e.
E½A1B1� 
 E½A1�E½B1�.

We now need to consider the following scenarios: I 2
fða;b; cÞ; ðab; cÞ _ ðac; bÞ; ðbc; aÞ; ðabcÞg and prove that GI

abjcd 

GI

acjbd for all such I. It is then not difficult to do so, since I ¼ ða; b; cÞ
is analogous to Case 5.1.1 from Section 5.1, I ¼ ðab; cÞ _ ðac;bÞ is
analogous to Case 5.1.3, I ¼ ðbc; aÞ is analogous to Case 5.1.6, and
I ¼ ðabcÞ is analogous to Case 5.1.5. Further, under I ¼ ðabcÞ the
inequality GI

abjcd > GI
acjbd is strict, similarly to Case 5.1.5. That is,

Theorem 5.2 holds.

6 Conclusion

For the first time, we investigated and established statistical properties
of a popular species tree inference method under the powerful
duplication-loss-coalescence model. We proved that two natural ver-
sions of ASTRAL (adapted for the duplication-loss shaped gene fami-
lies) are statistically consistent under DLCoal. Our result reinforces
the practical value of ASTRAL and other quartet-based methods in
the area of evolutionary inference. In addition to our work, Hill et al.
(2020) studied the rate of convergence of ASTRAL under DLCoal. In
the future, we anticipate that other statistically consistent methods
under DLCoal will be discovered, and the methods will be compared
based on their theoretical rate of convergence and simulation studies,
advancing the accuracy of evolutionary inference.
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