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Abstract

Collective cell migration plays a major role in embryonic morphogenesis, tissue remodeling, wound repair and cancer
invasion. Despite many decades of extensive investigations, only few analytical tools have been developed to enhance the
biological understanding of this important phenomenon. Here we present a novel quantitative approach to analyze long
term kinetics of bright field time-lapse wound healing. Fully-automated spatiotemporal measures and visualization of cells’
motility and implicit morphology were proven to be sound, repetitive and highly informative compared to single-cell
tracking analysis. We study cellular collective migration induced by tyrosine kinase-growth factor signaling (Met-Hepatocyte
Growth Factor/Scatter Factor (HGF/SF)). Our quantitative approach is applied to demonstrate that collective migration of
the adenocarcinoma cell lines is characterized by simple morpho-kinetics. HGF/SF induces complex morpho-kinetic
coordinated collective migration: cells at the front move faster and are more spread than those further away from the
wound edge. As the wound heals, distant cells gradually accelerate and enhance spread and elongation –resembling the
epithelial to mesenchymal transition (EMT), and then the cells become more spread and maintain higher velocity than cells
located closer to the wound. Finally, upon wound closure, front cells halt, shrink and round up (resembling mesenchymal to
epithelial transition (MET) phenotype) while distant cells undergo the same process gradually. Met inhibition experiments
further validate that Met signaling dramatically alters the morpho-kinetic dynamics of the healing wound. Machine-learning
classification was applied to demonstrate the generalization of our findings, revealing even subtle changes in motility
patterns induced by Met-inhibition. It is concluded that activation of Met-signaling induces an elaborated model in which
cells lead a coordinated increased motility along with gradual differentiation-based collective cell motility dynamics. Our
quantitative phenotypes may guide future investigation on the molecular and cellular mechanisms of tyrosine kinase-
induced coordinate cell motility and morphogenesis in metastasis.
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Introduction

Collective cell migration is prevalent in many physiological

phenomena and is the most common motility pattern in living

organisms [1]. In morphogenesis, large clusters of cells travel long

distances to reach their ultimate biological destination. In tissue

repair, sheets of cells move coordinately to repair damaged tissue.

In cancer, cells invade the extracellular matrix and traverse across

normal tissue with extreme efficiency to form metastases.

Extensive research has been carried out for many years in

various experimental model systems to investigate, describe,

analyze, model and simulate collective cell migration. There are

several theories concerning the mechanisms behind collective

motility [2,3]. A relatively common one regarding the physical

interactions is "Follow the Leader" [4], were cells at the leading

edge are assumed to produce force to pull passive followers from

cells located further away from the front [5,6,7,8,9]. For example,

Inaki et al. [9] recently demonstrated that directionality can be

encoded within a group of cells by the constituents attaining

different signaling levels.

However, accumulating evidence implies that the behavior is

more complex. Modern microscopy [10] revealed that distant cells

extend in what is referred to as ‘cryptic’ lamellipodia against the

substratum beneath their preceding cells, evidence that the cells

further behind the leading edge do not simply act as naı̈ve

followers. Recent measurements of distributions of traction- and

intercellular-forces within the monolayer also suggest that the

"follow the leader" paradigm is too simplistic [11,12,13,14] and

argue that cells further away from the front are also self-propelled

in the collective motility process. Several mathematical models

have been devised to describe collective migration based on single

cell motility and cell-cell interactions [15,16,17].

Another theory assumes that cell proliferation expands the

colony and thereby generates pressures that cause the leading cells

to move [5,18,19,20], but earlier studies demonstrated that cell

migration in mucosal healing is largely independent of pro-
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liferation [20]. Moreover, Poujade et al. [5] showed that pro-

liferation can occur almost exclusively in the void regions and

hence cannot provide complete explanation for the general

phenomenon.

In the standard in-vitro wound healing assay, collective migration

of cells toward the wound is induced by a sudden injury created by

removal of a sheet of cells from the monolayer [21]. Traditionally,

the assay is applied to measure the change in healing rate caused

by chemicals, other environmental conditions or cell types.

The epithelial to mesenchymal transition (EMT) activated by

alternations in gene expression regulates epithelial plasticity during

morphogenesis, tissue repair and cancer invasion [22]. During

EMT, epithelial cells become motile and invasive, a process that is

characterized by an elongated and more spread morphology

throughout [23]. Cancer metastasis consists of a sequential series

of events, and the EMT and mesenchymal-epithelial transition

(MET) are recognized as critical events for metastasis of

carcinomas [24]. A current area of focus is the histopathological

similarity between primary and metastatic tumors, and MET at

sites of metastases has been postulated as part of the process of

metastatic tumor formation [24].

Understanding collective cell motility and how it may lead to

metastatic formation is an important task since the vast majority of

cancer deaths result of progression from a localized lesion to

distant metastases [25]. In vitro collective migration is common in

breast cancer, as well as in many other cancer types [26]. Several

signal transduction pathways and proteins that are related to

collective processes in morphogenesis contribute to cancer pro-

gression, but their molecular action mechanisms remain mostly

unknown [1]. Many efforts are invested in targeting the tyrosine

kinase growth factor receptor Met and its ligand HGF/SF, the

master regulators of cell motility in normal and malignant

processes [27,28,29,30].

Here, we investigate the link between cells’ morpho-kinetic

dynamics and collective migration of tumor cells using mammary

adenocarcinoma cells expressing high levels of Met, image them

using a time-lapse microscopy wound healing assay, and study the

effect of HGF/SF-Met signaling on morphology and collective

motility patterns.

We devised a novel approach to analyze wound healing in vitro

using bright field, time-lapse microscopy, based on the combina-

tion of a fully automated algorithm that extracts motility

measurements from all cells in the monolayer with indirect

cellular morphology measures using image-texture descriptors,

and single cells’ morphology measurements extracted semi-

manually. Recording these as a function of location over

prolonged periods allows a coherent and concise depiction of the

essence behind three collective motility modes of cancerous cells,

and to reveal that Met-activation by HGF/SF induces elaborated

collective cell motility that is correlative to the EMT-MET

morphological transition.

Materials and Methods

Cell Lines/Growth
DA3 cells, derived from the mouse mammary adenocarcinoma

cell line D1-DMBA-3, induced in BALB/C mice by dimethyl-

benzanthracene [31] were grown in DMEM supplemented with

10% heat-inactivated FCS (Gibco 6 BRL).

Wound Healing Assay
DA3 cells expressing the fluorescent protein mCherry were

grown to 90% confluence in wells of 2 cm2 diameter and treated

with or without the Met inhibitor PHA665752 [32] (2.5 mM) for

2 hours. A scratch of approximately 300 mm in width was

generated using a 200 ml tip, and the cells were incubated with

or without HGF/SF (80 ng ml21) and subjected to time lapse

confocal laser scanning microscopy (CLSM-510, Zeiss, Germany)

for approximately 26 hours, at frequency of once every 14.5

minutes. The position of each scratch was predefined, and

a macro that repetitively positions the microscope on each point

was executed. The acquired differential interference contrast

(DIC) channel of the time-lapse sequence was used for the multi-

cellular analysis; the red fluorescence channel was exploited for

single cell tracking.

Phases in the healing process. Three phases were defined

(Figure 1). Phase 1, from the scratch formation until first contact

between cells from opposing wound edges; Phase 2, from first

contact until full closure of the wound - the wound area is

completely covered by one layer of cells; Phase 3, post wound

closure. The effect of HGF/SF on cellular motility patterns,

morphology and multi-cellular texture were evaluated according

to the three healing phases. Dividing the healing process to phases

is important since the duration of each phase varies between the

treatments.

Velocity Magnitude Map – Fully Automated, Objective,
Multi-Cellular Motility Visualization and Representation

Motility measurements were extracted via a fully-automated

algorithm that quantifies local motion estimation from the time-

lapse bright field (DIC) channel. The algorithm includes segmen-

tation to partition a DIC image to multi-cellular- and background-

regions, followed by local-motion estimation and quantification of

the extracted motion fields’ magnitude (which resembles cells’

local speed) at different distances from the wound edge.

Continuous quantitative description of cells’ velocity magnitude

as a function of distance from the wound throughout the healing

process is achieved by constructing a ‘‘velocity magnitude map’’:

Given two consecutive DIC frames t, t+1 from the time-lapse

sequence.

N Partition the current image (at time t) to a grid of sub-cellular

sized local patches.

N Apply motion estimation to retrieve velocity fields estimations

for each patch (Figure 2, top rows).

N Segment the image to cellular and background regions, and

use the segmented image to define strips, mask containing all

pixels at a given distance from the wound edge (Figure 2,

bottom rows).

N For a given distance d from the wound edge, calculate the

speed of the "average" cell located at d by averaging the

velocity magnitude of all pixels in the corresponding strip. This

step is repeated for every d.

Examples of two representative velocity magnitude maps, of

HGF/SF-treated and untreated cells are presented in Figure 3a;

the two vertical lines define the partition to the three healing

phases. Detailed description of each step in velocity magnitude

map’s construction is found in the Methods S1.

Multi-Cellular Texture Representation
Similarly to the velocity map, each image is represented by the

histogram of texture-descriptors in its cellular regions (defined by

the segmented image). The Local-Binary Patterns (LBP), known to

perform well in face-recognition [33], were applied as the texture

descriptor. It is a gray-scale invariant texture measure: for every

pixel, a code is generated based on the number and location of
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neighboring pixels with higher and lower intensities than that

pixel. There are ten possible codes, and their histogram over all

cellular pixels is used to describe the image’s texture (Figure S1),

an implicit measure for cells’ morphology that is similar to the one

for cell scattering [34]. Thus, a time-lapse experiment is again

represented by a two-dimensional map: the x-axis represents time,

whereas the y-axis is the LBP histogram.

Treatment Prediction for Wound Healing Time-Lapse
Experiments

To enable automatic prediction whether a full DIC time

lapse wound healing experiment was or was not treated with

HGF/SF, the 3-dimensional time-lapse (image space and time)

was "compressed" to a 2-dimensional representation, the

velocity magnitude map described above. This compact de-

scription was further represented by a one-dimensional de-

scriptor vector as follows: distances from the wound were

partitioned to 6 intervals, and the average speed of all cells in

any given interval during the 3 phases in the healing process

were used to define a vector representation of a time lapse

wound healing experiment (Figure S2a). To cancel out the effect

of the general increased motility induced by HGF/SF, a second

representation was achieved similarly, by normalizing these

vectors to be of norm 1. Similar predictions were performed

with multi-cellular texture representation (Figure S2b), using the

average texture-descriptor (described above) from first contact

between cells from opposing edges of the wound until full

closure is achieved (Phase 2).

Results

Motility Analysis
Qualitative comparison of the velocity magnitude maps

visualization between untreated and treated cells revealed the

unique motility patterns induced by HGF/SF (Figure 3a). Front

layers of untreated DA3 cells move faster than those located

behind, demonstrating a homogeneous motility pattern during the

wound healing process (Phases 1 and 2). During post wound closure

(Phase 3), all cells decelerate regardless of their position. HGF/SF

treatment leads to emergence of dramatic different cell motility

patterns: at the beginning, front cells move faster than distant cells.

Throughout Phase 1, distant cells gradually join the rapid motion

by accelerating layer by layer. This gradual acceleration continues

during Phase 2, where distant cells maintain a significantly higher

motility toward the wound than cells located closer to the wound

edge (data not shown). Finally, post wound closure (Phase 3), front

cells halt, while distant cells gradually decelerate. These results

demonstrate that Met-activation via HGF/SF induces complex

motility patterns indicating cell-cell coordination and dynamic

signaling that generates micro-differentiation in the healing

wound.

To further demonstrate these phenomena, an alternative

visualization is presented in Figure 4a–b, taking into account the

direction perpendicular to (toward) the scratch. "Average" cells

(calculated as indicated in Materials & Methods) at several

locations (25–335 mm from the wound edge) were selected and

"tracked" throughout the healing process. The distance that an

"average" cell travels in each frame (retrieved from the velocity

Figure 1. Three phases in the healing process. Phase 1: From the first frame in the time-lapse sequence, until first contact between cells from
opposing edges of the wound. Phase 2: until full closure of the wound. Phase 3: post wound closure.
doi:10.1371/journal.pone.0044671.g001
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fields’ estimation) was accumulated to define its displacement as

function of time. Indeed, this measure is not exactly the actual

displacement, as it contains algorithmic "noise", cells deformations

and proliferation. Nevertheless, since the errors and noise occur in

all "directions", we assume that this measure is an approximated

representation of the true dynamics. Figure 4a–b displays this

Figure 2. Motion estimation. Given two consecutive frames from the DIC time-lapse sequence (upper row), local-motion estimation is performed
at the patch level (of size ,18.5 mm618.5 mm each) to produce the velocity-estimation vector fields. In the right part of the middle row, dx, dy are
the partition to the two motion-components (dy – toward the wound, dx – parallel to the wound), the velocity fields are explicitly represented in the
large image in the middle row. The segmented image (lower-left corner) displays the contours extracted by the MultiCellSeg algorithm over the DIC
image. The wounded regions are used to define strip, a mask containing all pixels in a given distance from the wound (bottom-right). To quantify the
"average" cell’s motility at a given distance from the wound, velocity magnitude is averaged over the corresponding mask.
doi:10.1371/journal.pone.0044671.g002

Figure 3. Velocity Magnitude Maps. (a) A two-dimensional depiction of the average motility of all cells at a given distance from the wound edge
(y-axis) at a given time (x-axis). Each bin (t,d) represents the average motility (mm hour21) of all cells at distance d from the wound at time t. Examples
of two representative velocity magnitude maps are shown: untreated and HGF/SF-treated. The two vertical lines in each map define the partition to
the three phases in the healing process. (b) The maps constructed from single-cell tracking. Examples of untreated and HGF/SF-treated cells are
displayed. Comparison with the corresponding multi-cellular maps reveals that this approach provides a significant advantage over single-cell
analysis. (c) Single cell tracking at several distances from the wound. Only the velocity component toward the wound is considered.
doi:10.1371/journal.pone.0044671.g003
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displacement measure (denoted R) as a function of time until full

closure (Phases 1 and 2). It is shown (Figure 4a) that untreated cells

express a "fan-like" dynamics, where front cells expand a physical

gap from cells behind, a gap that grows steadily during healing. As

for treated cells (Figure 4b): during Phase 1, a gap is formed

between front and distant cells, but cells from behind progressively

accelerate so that this displacement-gap shrinks or at least remains

constant during Phase 2 for cells located about 10 cell-layers behind

the leading edge. Figure 4c–d plots the average velocity

component toward the wound over time. Untreated cells exhibit

roughly constant velocity, front cells being faster than farther cells

(Figure 4c). The gradual acceleration of distant HGF/SF-treated

cells throughout Phase 1, and the higher velocity maintained by

distant cells compared to front cells is displayed in Figure 4d.

These conclusions referring to an estimation of the "average" cells’

velocity over time are supported by single-cell tracking experi-

ments as shown in Figure 3c.

To validate the local motion-estimation, which is a fundamental

component in our analysis, we compared manually-validated

fluorescence-based semi-automated single cells tracking to fully-

automated single-cell trajectory estimation extracted using these

local motion-fields (as described in Methods S1). These trajectories

are highly correlative to the manually-validated trajectories

(Figure 5a). Moreover, examinations of corresponding multi-

cellular versus single-cell based velocity maps (Figure 3a-b) clearly

demonstrate a significant qualitative advantage of the former

approach: using noisy estimation of all cells (Figure 5b) enables an

enhanced and a more coherent representation of the true nature of

the process.

Single-Cell Morphology Analysis
Figure 6a illustrates the average cell’s area as function of

distance from the wound over the different healing phases for

untreated (left) and treated (right) cells (as described in Methods

Figure 4. Motility patterns. (a–b) ‘‘Average’’ cell tracking toward the wound, and the displacement gap mystery. An ‘‘average’’ cell’s velocity at
a given time and distance from the wound is defined as the average velocity component toward the wound in the strip that corresponds to the
relevant location. The distance that an "average" cell travels in each frame (retrieved from the corresponding velocity fields) was accumulated to
define its displacement as function of time. The x-axis represents time; the y-axis represents the ‘‘average’’ cell’s displacement toward the wound at
several spatial locations. For untreated cells (a) it is demonstrated that front cells accumulate an expanding displacement gap over distant cells
during healing. For HGF/SF-treated ‘‘average’’ cell tracking (b). A gap is formed between front and distant cells; however, during Phase 2 it is shown
that cells from behind progressively accelerate so that the displacement-gap formed at Phase 1 shrinks for distant cells. (c–d) Untreated cells (c)
exhibit roughly constant velocity toward the wound, whereas close cells are faster than farther cells. Distant HGF/SF-treated cells (d) exhibit gradual
acceleration until they maintain higher velocity toward the wound than close cells in Phase 2.
doi:10.1371/journal.pone.0044671.g004
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S1). In addition to the predefined three healing phases, a fourth

time point was added, which represents the last frame in the time-

lapse and is used to demonstrate the final stages of the healing

process. The x-axis consists of 4 different distance intervals from

the wound edge, the y-axis is the average cells’ area at a given

phase and distance-interval. Until full closure (Phases 1 and 2)

untreated cells that are close to the wound are larger than distant

cells. Front cells shrink upon wound closure, and after the wound

has healed all cells in the monolayer shrink to maintain

approximately the same size independently of their location.

Similarly to its effect on cells’ speed, HGF/SF treatment induces

dramatic changes in the dynamics of cellular morphology. At the

initial stage, close cells are larger than distant cells. During Phase 2,

front cells begin to shrink while farther cells grow. In Phase 3, only

the most distant cells continue to grow while the rest shrink. After

the wound has healed, all cells have shrunk to approximately the

same size. A bar graph that compares treated and untreated cells’

area for every distance interval over time demonstrates that the

main differences occur in Phases 2 and 3, when treated cells that

are located far from the leading edge grow dramatically in

a progressive manner (Figure S3a). Similar patterns of morphology

alteration are depicted using cell eccentricity. Untreated cells that

are close to the wound are more elliptical than distant cells

throughout the healing, while front treated cells begin as more

elliptical than distant cells, that in turn, during the later stages,

become more elliptical than these front cells (Figure S4).

Cells Density and Motility
Next, the relation between cell motility and density was

examined. Cells density was estimated based on cell size

measurements as detailed in Methods S1. Throughout the healing

Figure 5. Multi-cellular DIC based single cell trajectory estimation. (a) Visual comparison of manually tracked cells (green) and automated
trajectories extracted from local DIC-based motion estimation (red). It is shown that the automated trajectories are highly correlated to the manually-
validated trajectories. Examples of untreated (left pane) and HGF/SF-treated (right pane) are illustrated. (b) Visual illustration of the advantage in
using all cells’ information in comparison to part of the cells. Green trajectories are the manually-validated trajectories, red are trajectories extracted
by our method. Left pane - untreated cells, right pane - treated cells.
doi:10.1371/journal.pone.0044671.g005
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process, untreated cells that are close to the wound’s edge

(,248 mm) are consistently spread sparsely compared to distance

cells (.248 mm) (Figure S3b, left). Treated cells maintain similar

location-dependent characteristics to those described for untreated

cells during Phase 1. However, upon Phase 2, treated cells "switch" -

distant cells become sparsely distributed compared to front cells

(Figure S3b, right). Investigating cells’ density and motility reveals

that, as expected, sparser regions are highly correlated with faster

Figure 6. Single cell morphology (area) as function of time and distance from the wound. (a) ‘‘Average’’ cell’s area at different distances
over time. Untreated (left), and HGF/SF-treated (right) cells. The x-coordinates represent discrete distance-intervals from the wound edge, the y-
coordinates are the average cells’ size at a given distance interval and at a given phase in the healing process. Color markers represent the phase in
the healing process: from the initial scratch until first contact between cells from opposing borders of the wound (Phase 1, red), until full closure
(Phase 2, green), post wound closure (Phase 3, pale blue), and last frame in the time lapse sequence (,26 hours after the initial scratch, dark blue). The
analysis demonstrates that HGF/SF induces dramatic morphological changes at the single cell level. (b) Relation between cells density and speed for
untreated (left) and treated (right) cells. The cells’ density is estimated at two spatial location ,248 mm (marked red), and .248 mm (marked green)
from the wound edge. Based on the single cell’s area statistical analysis, speed was calculated in the same distance intervals from the velocity
magnitude map. Correlation significance between velocity and density was calculated with the non-parametric Spearman’s rank correlation
coefficient. This analysis demonstrates a significant correlation between density and velocity with no dependency on the spatial location. This
correlation is less prominent for treated cells (p,0.003, compared to p,0.0001 for untreated cells) although still statistically significant.
doi:10.1371/journal.pone.0044671.g006
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velocities, as was recently shown [8,12], independently of cells’

location, and is more prominent for untreated cells (Figure 6b).

Generalization: Prediction of Treatment Based on Motion
and Texture Patterns

To generalize these findings, we tested whether cells in wound

healing assays can be automatically classified as HGF/SF-treated

or -untreated based solely on the DIC time-lapse images. To this

end, we defined a new measure to quantify the collective motility

patterns: each of the 11 time lapse experiments (6 untreated, 5

treated with HGF/SF) was represented by a vector containing

average speed for each healing phase as described in the Materials

and Methods section (Figure S2a). An SVM classifier was trained

and tested using "leave one out" validation (due to the small

number of experiments obtained), and a 100% accuracy rate was

achieved. Hence, an accurate prediction can be reached based on

the DIC time lapse velocity-estimation alone. It is not surprising,

since there is a clear visual separation between the motility

patterns for treated and untreated cells (Figure 7a). To examine

the motility patterns, these vectors were normalized to rule out

the general increase in velocity magnitude due to HGF/SF,

a perfect prediction was achieved when considering Phases 1 and 2

in the healing process (until full closure), implying that there is

a true-general change in the motility patterns and not only in its

magnitude. This means that given a time lapse experiment and

two time points that represent the partitioning to the three phases,

one can determine with high accuracy whether it was treated with

HGF/SF or not (p,0.0043, using the a-parametric test Wilcoxon

rank sum). Similar predictions were performed with multi-cellular

texture descriptor (as described in the Materials and Methods

section). It was shown (Figure 7b) that perfect classification is

achieved by considering cellular texture at Phase 2 (from first

contact to full healing, where most morphological changes occur),

applying an SVM classifier using "leave one out" validation

(p,0.0043, the same a-parametric test).

Effect of Met Inhibition on Velocity Magnitude Patterns
To investigate the molecular mechanism underlying collective

motility and to examine the robustness of our measures, we

examine the effect of Met-inhibition on the quantitative

measure described above. Velocity magnitude maps of cells

treated with the Met inhibitor and HGF/SF were extracted

(e.g., Figure 7c), and two SVM-classifiers was trained and tested

using "leave-one-out" validation to separate between (6 repeats

of) cells treated with the Met inhibitor + HGF/SF and (1)

untreated or (2) HGF/SF-treated cells. Since some of the

experiments treated with the Met inhibitor + HGF/SF did not

achieve full-closure (Phase 2 was not completed), only the first

two healing phases were considered (descriptor vector of length

12 per experiment). To exclude the global healing speed and to

focus on the spatio-temporal motility patterns, each experiment

descriptor was normalized to 1 (Figure 7d). Two-components

PCA analysis was unable to discriminate between the treatments

(Figure S2c). Perfect classification was achieved with each of the

two classifiers to conclude that the motility patterns of cells

treated with Met inhibitor and HGF/SF differ inherently than

untreated (p,0.0022 using Wilcoxon rank sum a-parametric

test) and HGF/SF-treated (p,0.0043 using the same test). As

Met-signaling becomes more prominent, cells located farther

than the wound take an active role in collective motility,

Figure 7d shows that when treated with Met inhibition + HGF/

SF the ratio between front cells’ and distant cells motility is

maximized, this ratio decreases for untreated cells and is

minimal when Met-signaling is induced by HGF/SF. Perfect

classification between all pairs of treatments was also demon-

strated using the texture-representation (Figure 7b). These

results indicate that the endogenously over expressed Met in

these cells [27] plays a role in collective cell motility thus

validating the involvement of the Met-signaling pathway with

induction of collective motility patterns as well as the

discriminative power of our proposed morpho-kinetic measure-

ments.

Discussion

Collective cell migration mechanisms are important for normal

and pathological biological processes. We propose a quantitative

hybrid measure that incorporates fully automated cellular

spatiotemporal motility and indirect morphological measures

together with semi-automated direct morphological measures to

describe the kinetics of collective cells migration. Applying this

analysis, we demonstrate that HGF/SF dramatically alters the

morpho-kinetic dynamics of the healing wound: from a simple

model in which the front cells lead the healing at constant speed;

to a more elaborate model in which cells lead a coordinated

increased motility along with spatiotemporal phenotypic EMT-

MET-like collective cell motility dynamics (Figure 8). Met-

inhibition experiments demonstrating inhibition of cell motility,

validated the important role of HGF/SF-induced Met activation

in breast cancer metastasis.

Traditionally, velocity fields are extracted by tracking individual

cells during a time-lapse experiment [35]. Practically, single cell

tracking in a monolayer requires considerable labor and can be

usually performed only for a small number of cells, providing

limited statistical coherency. Our method does not require single

cell tracking nor fluorescent-based imaging and is fully-automated.

The proposed collective cell migration morpho-kinetic analysis is

based on local motion estimation, an approach well suited for DIC

images, where inner cellular regions maintain high textural

information enabling accurate motion-estimation at the patch

level without further processing [8]. The main motivation behind

it is the ability to process all cells within the monolayer; the

dynamics of collective motility is complex, understanding the

individual cell in more detail does not necessarily explain the

collective kinetics of a monolayer of cells [36]. Another important

advantage is the ability to be performed in high-throughput

settings, such as suggested by Yarrow et al. [37].

Velocity magnitude maps are 2-dimensional continuous and

compact representation of the local motion estimation vector fields

during the entire time lapse wound healing experiment. Driscoll et

al. [38] recently presented a similar visualization for the

spatiotemporal evolution of a cell’s boundary curvature. This

concise and coherent visualization demonstrate the alteration of

collective motility patterns induced by HGF/SF; we hypothesize

that the treatment stimulates cells distant from the leading edge to

become self-propelled in an organized and coordinated manner.

A major qualitative and quantitative utilization of velocity

magnitude maps is the generalization of the change in collective

motility patterns as a consequence of adding HGF/SF to the

medium with or without Met inhibition. This phenomenon was

validated qualitatively, by visual inspection of the velocity

magnitude maps, and quantitatively by applying classification,

treating them as plain images and extracting appropriate image-

features. This measure allows perfect classification based solely on

the motility patterns; the relative-role that cells take in collective

migration as a function of their location. This means that given

a full time lapse wound healing experiment, and two time points

representing the three healing-phases, it is possible to predict with
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high accuracy the treatment applied to cells. This ability is

a substantial improvement over the standard measures, usually

only showing correlation between treatment and phenotype. Thus,

we address Tambe et al.’s call [12], "…our understanding of

collective cellular migration lacks predictive power and remains

largely descriptive".

It is demonstrated that marking a small number of cells within

a monolayer can be sufficient to reveal cellular morphology-

dynamics. This analysis was applied to demonstrate the high

Figure 7. Generalization: multi-cellular speed- and texture-based classification. (a) Velocity magnitude-based vector-representation of
a full time lapse sequence. Each column represents a single experiment. The vector values were calculated as the average velocity magnitude of all
cells at a given distance-interval from the wound, at a given phase. The analysis demonstrates that the first six experiments (untreated) are very
different from the last five (HGF/SF-treated). (b) Texture-based vector-representation of a full time lapse sequence. The LBP image-texture descriptor
normalized histogram is averaged over all time frames from Phase 2, when most morphological changes occur. Each column is the LBP histogram
extracted from a single experiment. It was demonstrated that there exists a clear discrimination between any pair of the three conditions: untreated,
HGF/SF, and Met inhibition+ HGF/SF. (c) Example of a velocity magnitude map of cells treated with Met inhibition and HGF/SF. (d) Collective motility
patterns of full time lapse experiments. Each column represents the normalized spatio-temporal velocity magnitude of a single experiment. It was
demonstrated that there exists a clear discrimination in collective motility patterns between any pair of the three conditions: untreated, HGF/SF, and
Met inhibition + HGF/SF, as Met-signaling becomes more active, the ratio between motility of distant cells and close cells decreases which implies
that cells located farther from the wound become more active by Met-signaling activation.
doi:10.1371/journal.pone.0044671.g007
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correlation between cells’ morphology and motility: large and

elongated cells are characterized by faster motility regardless of

their spatial location or phase in the healing process. The dramatic

coordinated morphological changes in HGF/SF-treated cells’ are

another indication for being self-propelled. We hypothesize that

the lower (although still significant) morphology-motility correla-

tion of treated cells is explained by their self-propelled nature,

causing lower dependence on their surroundings.

It was demonstrated here that texture of a single image from

time lapse sequence, captured by the LBP descriptor, is sufficient

to predict the treatment. The image-texture of a monolayer of cells

can thus be used to implicitly measure cells morphological

characteristics, as in measuring cell scattering [34]. We hypoth-

esize that when considering large numbers of cells in a monolayer,

relations between neighboring pixels’ intensities represent in-

directly morphological characteristics of these cells. Indeed, the

average texture descriptor of image frames from Phase 2

discriminate between cells untreated, HGF/SF-treated and treated

with MET inhibitor and HGF/SF together, concordant with the

data indicating that the morphological changes mostly occur

during this phase. Thus, using image-texture as an indirect multi-

cellular morphology descriptor can be exploited as a treatment-

predictor. Further investigation should try to find a direct

connection between cells’ morphology and texture.

The combination of image texture and cellular velocity

magnitude descriptors may serve as fully automated quantitative

measures to represent morpho-kinetic dynamics, to enable in

principle high throughput analyses without human intervention.

It is noteworthy that the in vitro model of tumor cells moving

collectively studied herein does not take into account important

parameters that maintain a crucial role in biological processes that

include collective motility such as 3D motility and the tissue’s

microenvironment (e.g., extracellular matrix resistance

[39,40,41]). These parameters have prominent effects on collective

cell migration in embryogenesis [1], tumor invasion [1,42], and

tubulogenesis [39,40,43]. However, important benefits in using in

vitro models to study cellular and molecular mechanisms are

controlling starting-point definition and ability to perform high-

throughput screening and analysis [1].

The uneven velocity of DA3 cells in collective migration toward

the wound in vitro is not associated with formation of finger-like

structures [44] as in collective migration of MDCK cells [5]. The

displacement gap formed between front and distant cells during

untreated DA3 experiments, visualized by the fan-like dynamics

(Figure 4a), contradicts the fact that the monolayer is kept

continuous with no visible gaps throughout the healing process.

Morphology transitions alone cannot account for this phenome-

non, since cells’ growth is insignificant in the gap formed by

accumulating displacements between cells located closer and

farther from the leading edge. On the other hand, the gap formed

under HGF/SF treatment can be explained solely by morphology

transitions; it is formed when cells near the wound’s edge become

larger than distant cells. During the next phase, distant cells exceed

the size of cells located closer to the leading edge and fill the gaps.

We hypothesize that accelerated proliferation at the leading edge

is the answer for the untreated cells’ ‘‘gap mystery’’, as shown in

Figure 8. Model for HGF/SF-induced collective motility pat-
terns during the healing process. HGF/SF dramatically alters the
morpho-dynamics of the healing wound: from a simple model, in which
the front cells lead the healing in constant acceleration, to a more
elaborate model in which cells in different distances from the wound
lead a coordinated increased motility along with spatio-temporal
phenotypic EMT-MET based collective cell motility dynamics. Untreated
DA3 front layers cells are larger, more elliptical and move faster (marked
by wider arrows) than cells located behind demonstrating a homoge-
neous motility pattern during the wound healing process (Phases 1 and
2). During post wound closure (Phase 3), all cells decelerate, shrink and
round up regardless of their position. HGF/SF treatment leads to the
emergence of dramatic different cell motility patterns: at the beginning,
front cells are larger, more elliptical and move faster than distant cells.
Throughout Phase 1, distant cells become larger, more elliptical and
gradually join the rapid motion by accelerating layer by layer. These
morphology changes and gradual acceleration continues during Phase
2, were distant cells maintain a higher velocity toward the wound than

cells located closer to the wound edge. Finally, post wound closure
(Phase 3), front cells shrink, round up and halt, while distant cells
gradually decelerate, and change morphology in a similar manner. It is
hypothesized that accelerated proliferation at the leading edge is the
answer for the untreated cells gap mystery presented in the text. It is
hypothesized that in treated cells proliferation occurs more intensively,
but is spread approximately equally throughout the monolayer.
doi:10.1371/journal.pone.0044671.g008
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Poujade et al. [5]. Since HGF/SF induces accelerated proliferation

[45], we believe that it is spread approximately equally throughout

the monolayer under treatment. This hypothesis, complementing

the motility pattern description is also illustrated in Figure 8.

EMT is a process that changes proliferating cells from an

aplanetic state to a motile state [46,47], which allows cancer cells

to leave the primary tumor and metastasize. The dramatic

changes in cell morphology and behavior here is reminiscent of the

EMT. It is thus likely that HGF/SF treatment leads to a more

pronounced and accelerated morphological EMT, followed by an

accelerated phenotypic MET post wound closure, which validates

similar results regarding Met-induced EMT [48].

Analyses of Met-inhibited experiments indicate that endoge-

nously-activated over-expressed Met plays an important role in

collective cell motility and further validates involvement of Met-

signaling pathway in this process. These results are coherent with

recent findings by Loerke et al [49], connecting cell speed to cell-

cell adhesion upon HGF/SF-induced Met-signaling.

Matsubayashi et al. have demonstrated that a "wave" of

increasing velocities propagates back from the leading edge during

monolayer wound healing of mIMCD3 mouse kidney epithelial

cells [50]. Recently, Serra-Picamal et al. demonstrated a similar

phenomenon for MDCK cells, also showing that stress forces

gradually propagate from the leading edge backwards. They

suggested that progressive cell mobilization away from the leading

edge is a general response of cell collective motility [51]. We argue

that this "wave" is induced by specific signal transduction; it is

induced by HGF/SF, and reduced by Met-inhibition in breast

cancer cells.

Collective motility should thus not be explained from

a mechanical perspective alone; increased efforts should be

invested in understanding the effects of various chemical signaling,

which constitute a significant role in collective cell motility as

demonstrated herein and in other studies (e.g., [9,35]). Revealing

the effect of Met-signaling on collective morpho-kinetic patterns is

crucial to understand the molecular and cellular mechanisms

behind metastasis. The ability to predict that a group of cells

maintain a dynamical metastatic signature can have therapeutic

implications in the long run; this may turn to be a first step in that

exciting avenue.

Supporting Information

Figure S1 Multi-cellular texture-based classification.
Local Binary Patterns (LBP) applied as an image texture

descriptor. For every pixel in the image, a code is generated

based on the intensities of neighboring pixels with relation to it.

There are ten possible codes, and their histogram over all cellular

pixels is used to describe the image’s texture which is used as an

indirect descriptor of cells morphology.

(TIF)

Figure S2 Compact representations of a wound healing
experiment. (a) Velocity-magnitude based vector representation

of a wound healing experiment. Distances from the wound were

partitioned to 6 intervals. The average motility of all cells in any

given interval during each healing phase was recorded to define

a length 18 vector representation. These values are calculated by

taking the average intensities of the corresponding rectangular

regions in the velocity magnitude map. (b) Texture-based vector

representation of a wound healing experiment as an implicit

measure for cells’ morphology. LBP normalized histogram is

extracted for every image in the time-lapse sequence. All

histograms of frames in Phase 2, where most morphological-

changes occur, are averaged to define the combined texture

descriptor. (c) First two components of the principal component

analysis (PCA) performed on the normalized velocity-magnitude

based vector representation was not sufficient.

(TIF)

Figure S3 Single cell morphology (area) as function of
time and distance from the wound. (a) ‘‘Average’’ cell’s area

at different distances over time. Same data as presented in Figure 4,

shown with different visualization. It can be seen that most

morphological alterations occurs for HGF/SF-treated cells far

from the wound at the later stages of healing. (b) Estimated density

as function of time for close (,248 mm, red markers) and far

(.248 mm, green markers) cells. Throughout the healing process,

untreated cells that are close to the wound’s edges are consistently

spread sparsely compared to distance cells. During Phase 1 treated

cells maintain similar location-dependent characteristics to those

described for untreated cells. In Phase 2, treated cells "switch" -

distant cells become sparsely distributed compared to front cells.

(TIF)

Figure S4 Single cell morphology (eccentricity) as
function of time and distance from the wound. Eccentric-

ity is the ratio of the distance between the foci of an ellipse and its

major axis length. In our setting it is referred to the ellipse that has

the same second-moments as the segmented cell. The values range

between 0 and 1. (0 and 1 are degenerate cases; an ellipse whose

eccentricity is 0 is actually a circle, while an ellipse whose

eccentricity is 1 is a line segment.). (a) Same as Figure 6 a–b only

for eccentricity instead of area: ‘‘Average’’ cell’s eccentricity at

different distances over time. Untreated (left), and HGF/SF-

treated cells (right). The x-coordinates represent discrete distance-

intervals from the wound edge, the y-coordinates are the average

cells’ eccentricity at a given distance interval and at a given phase

in the healing process. Color markers represent the phase in the

healing process. (b) Same as in Figure S3a only for eccentricity:

‘‘Average’’ cell’s eccentricity at different distances over time

(different visualization).

(TIF)

Methods S1 In this document we provide a detailed
description of the following methods: (1) velocity
magnitude map, (2) fully-automated single cell trajecto-
ry-estimation from DIC-based motion vector fields, (3)
semi-automated single cell tracking, (4) velocity magni-
tude map based on semi-automated single cell tracking,
and (5) single-cell morphology measures.

(DOCX)
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