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Abstract

Dealing with traffic congestion is one of the most pressing challenges for cities. Transport

authorities have implemented several strategies to reduce traffic jams with varying degrees

of success. The use of reversible lanes is a common approach to improve traffic congestion

during rush hours. A reversible lane can change its direction during a time interval to the

more congested direction. This strategy can improve traffic congestion in specific scenarios.

Most reversible lanes in urban roads are fixed in time and number; however, traffic patterns

in cities are highly variable and unpredictable due to this phenomenon’s complex nature.

Therefore, reversible lanes may not improve traffic flow under certain circumstances; more-

over, they could worsen it because of traffic fluctuations. In this paper, we use cellular

automata to model adaptive reversible lanes(aka dynamic reversible lanes). Adaptive

reversible lanes can change their direction using real-time information to respond to traffic

demand fluctuations. Using real traffic data, our model shows that adaptive reversible lanes

can improve traffic flow up to 40% compared to conventional reversible lanes. Our results

show that there are significant fluctuations in traffic flow even during rush hours, and thus cit-

ies would benefit from implementing adaptive reversible lanes.

Introduction

One of the major challenges in modern cities is to reduce traffic congestion [1, 2]. Improving

public transport and promoting the use of alternative vehicles such as bikes and scooters is

critical to reducing the number of cars on the streets. In addition to the above mentioned, we

can also improve traffic congestion by implementing smart routing strategies, smart traffic

lights, or changes in the infrastructure, such as reversible lanes. Far from conflicting, these

strategies are complementary to improve traffic congestion. In the 1920s, some cities in the

United States started to implement reversible lanes to deal with increasing traffic [3]. The

reversible lane approach lies in this assumption: During rush hours, traffic flow in some two-

way streets increases in one direction with respect to the other direction. In most cities, it is
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expected that early in the morning, people living in the suburbs commute to their workplaces

in the center of the city and return home in the afternoon. This behavior creates an asymmetric

demand in the roads that connect the city’s border with the center. Using this insight, city

planners can decide to change a lane to a more demanding direction in a specific time interval

[4]. As a result, the road’s capacity is increased in the direction with more traffic flow but

reduced in the opposite direction. The reversible lanes are an easy way to increase road capac-

ity without adding new infrastructure. However, they require exceptional planning and opera-

tion to have adequate performance.

The existing methods for setting up a reversible lane are based in the observation that in

most cases, there are two distinct peaks on the traffic demand, one in the morning and one in

the afternoon. Based on these patterns, traffic managers decide to change the reversible lanes’

direction for a fixed time [5]. It could be one or several hours, depending on the duration of

the rush hour [6]. When the traffic behaves as expected, the reversible lanes perform effec-

tively. However, traffic in a big city is just a part of a complex system; numerous components

and their interactions determine traffic flow patterns [7]. As a consequence, traffic congestion

is a highly unpredictable phenomenon. It is hard to predict the traffic flow fluctuations at short

time scales because it could be affected by an accident, a closed street, or faulty traffic lights

kilometers away. We are now aware that reversible lanes cannot operate optimally because

of these traffic flow fluctuations. We can even think of extreme scenarios where the traffic

demand is the opposite of the expected one, resulting in a worse performance than the situa-

tion without any reversible lane.

Since the beginning of 2020, many urban areas worldwide have experienced massive mobil-

ity changes due to the COVID-19 pandemic. The restrictions imposed by governments and

the disease itself have shaped how we move in the city [8]. Alternative transport modes, such

as bikes and scooters, have more demand than before the pandemic. In contrast, public trans-

port systems, such as the metro and bus, are in much lower demand because people are trying

to avoid crowded environments. Similarly, we can expect an increase in the number of people

who prefer to use a particular vehicle due to the worry of becoming infected. Once the pan-

demic is over, there is a high risk that those who shifted from public transport for the private

vehicle never go back. This situation could have adverse consequences for mobility in cities.

Recent studies have shown evidence of how the pandemic has changed our mobility habits; in

particular, in [9], we see how the morning rush peak and the afternoon rush peak have been

flattened. This phenomenon is a direct consequence of the increment in remote work and

schools’ shutdowns, among others. The flattening of the rush peaks makes it even harder to

predict the traffic patterns. As reversible lanes based their functioning in the existence of these

rush hours, adaptive reversible lanes make sense for the foreseeable future.

In recent years, we are experiencing considerable changes in using data to understand and

solve complex problems in almost every field. Technological advances have allowed us to gen-

erate and process real-time data through mobile phones and other connected devices to under-

stand mobility patterns [10, 11]. Not only that, but the increasing availability of data sets and

the use of social networks have revolutionized the whole field of human mobility [12–14].

These advances open the possibility to build systems that can use this information to make

informed decisions in complex environments. We have also explored the coordination of traf-

fic lights using self-organization [15–17] and the adaptive regulation of public transportation

systems [18, 19]. In transportation research, some authors have studied reversible lanes as a

network optimization problem [20–22] to find the optimal number and location of reversible

lanes in a traffic network. In most of these studies, reversible lane allocation cannot be dynami-

cally changed according to the traffic volume of the road, and manual operation is needed.
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Some authors have proposed mechanisms to control dynamically reversible lanes. Kory

Krause et al. compare different diamond design intersections with dynamic reversible lanes

[23]. They identify some scenarios where the intersection with the dynamic reversible lane

increases traffic flow with respect to the conventional diamond intersections. Matthew Haus-

knecht et al. proposed a linear programming formulation to optimize the number of reversible

lanes that maximize traffic flow [24]. In [25], a bi-level programming model to optimize

reversible lane assignment in signalized intersections was proposed.

Recently, some strategies to implement conventional reversible lanes safer and more effi-

cient have been proposed. Safety impacts of roadway design have been studied in [26–29]. In

[30], the authors present an automatic mechanism to separate the lanes physically without

human intervention. In [31], authors propose a mechanism to control reversible lanes using

real-time information.

In this work, we propose a framework based on a cellular automata model to evaluate the

potential benefits of an adaptive reversible lanes versus conventional, prescheduled reversible

lanes. Our framework allow us to determine analytically if specific locations can benefit from

an adaptive reversible lane based on existent traffic data. We show that even during rush

hours, in most cases traffic fluctuations are notorious, so an adaptive approach improves traffic

flow.

Instead of having reversible lanes in a particular direction during a fixed period of time, we

allow the lanes to change their direction depending on real-time traffic information. Unlike

traditional reversible lanes, adaptive reversible lanes can adapt to traffic flow fluctuations

improving its performance. In addition, the adaptive reversible lanes could handle different

transportation modes, such as bikes or buses according to the demand and traffic conditions.

In the next sections, we describe our framework and propose a methodology to model adaptive

reversible lanes with cellular automata. We show that adaptive reversible lanes are more effi-

cient than conventional reversible lanes and we quantify the traffic flow fluctuations during

rush hours. Finally, we discuss potential benefits of adaptive lanes and challenges in their

implementation.

Materials and methods

Nagel-Schreckenberg model

Nagel-Schreckenberg (NaSch) is a well known cellular automata model for freeway traffic [32].

In this model, each lane is represented by a uni-dimensional lattice of length L. Each vehicle

has an associated x position on the highway. By convention, the position is increasing, starting

at index 0. Each vehicle has an associated velocity v, which is an integer value such that: v 2 {0,

1, . . ., vmax}. Each cell on the lattice represents either a vehicle or space between them. The

cells of the lattice are updated synchronously at discrete time steps according to the following

rules:

• Acceleration. If velocity v of a vehicle is less than the maximum velocity vmax and if the dis-

tance d (in unit cells) to the vehicle in front is greater than v + 1, then, v = v + 1.

• Braking. If a vehicle in cell i encounters a vehicle in cell i + j(j� v), then v = j − 1.

• Stochasticity. If the velocity v is greater than 0, v = v − 1 with probability p, where p is the

probability that a vehicle will slow down randomly.

• Movement. Each vehicle moves v cells.

It has already been shown that variants of the NaSch model deliver precisely the same results

for vehicle trajectories as kinematic wave models and linear vehicle-following models [33].
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Furthermore, the NaSch model may produce realistic behavior at the macroscopic level, and the

equivalency of its behavior to various macroscopic models has also been demonstrated.

Reversible lane model

In this work, we compare conventional reversible lanes’ behavior and adaptive reversible lanes

in terms of the macroscopic traffic flow based on historical data. In particular, our model aims

to a self-driving car environment, where the full potential of adaptive lanes is expected to take

place. For these reasons, to carry out the simulation results presented in our paper, we use the

NaSch model parameters to reflect the real freeway traffic flow behavior when adaptive revers-

ible lanes are used. Thus, we use the following parameters:

• L = 1000

• vmax = 5

• p = 0.5

We set each time step to be equivalent to one second. The size of each cell is 7.5 meters.

With these parameters, the maximum speed is equivalent to 135k/m. We should note that the

parameters we use are chosen to achieve a specific maximum speed. However, changing the

time scale parameters does not affect the macroscopic behavior of the system. [34]

With the NaSch model implemented, we ran 1000 simulations to obtain mean flows for

each density (ρ) value from 0 to 1 in 0.001 increments. We can calculate the density as ρ = N/L,

where N is the number of cells occupied by a vehicle, and L is the size of the lattice. Density ρ =

0 means each cell in the lattice is empty, and ρ = 1, means every cell is occupied by a vehicle.

Flow is defined as:

q ¼
1

T � L

XT

t¼1

XN

i¼1

viðtÞ ð1Þ

Where, T is the number of iterations vi(t) is the velocity of the vehicle i at time t. Then we

can calculate the mean flow values across all simulations for each density value and derived

this fundamental diagram (see Fig 1):

With the NaSch model, we simulate a single lane road. However, our purpose is to model a

road with one or more reversible lanes. To illustrate the idea, we are going to assume a six-lane

road scenario. In the standard case, we have three lanes going to the east and three to the west.

However, with reversible lanes, we can have five lane configurations (See Fig 2): one lane to the

west and five lanes to the east (1-5), two lanes to the west and four lanes to the east (2-4), three

lanes to the east and three lanes to the west (3-3, which is the standard configuration), four lanes

to west and two lanes to the east (4-2) and finally, five lanes to the west and one lane to the east

(5-1). We can see that configurations (1-5) and (5-1), as well as (2-4) and (4-2), are symmetrical.

From the NaSch model we derive analytically two density values. The density to the east ρe
and the density to the west ρw for any of the possible lane configurations as follows:

re ¼
r �

lw
le
� Pe

1 � Pe

ð2Þ

rw ¼
r �

le
lw
� ð1 � PeÞ

Pe

ð3Þ
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Fig 1. Fundamental diagram of traffic flow. We show the relation between flow and density values obtained from

computational simulations. The values correspond to the average flow obtained from 1000 simulations. At lower

densities, we have the freeflow phase. The higher the density on the congested phase (negative slope), the lower the

flow. The maximum flow corresponds to the capacity of the lane.

https://doi.org/10.1371/journal.pone.0244326.g001

Fig 2. Six-lane road with adaptive reversible lanes. (A) 3-3 lane configuration. (B) 4-2 lane configuration. (C) 5-1

lane configuration. (D) 2-4 lane configuration. (E) 1-5 lane configuration.

https://doi.org/10.1371/journal.pone.0244326.g002
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Where, ρ is a given density between 0 and 1, le, lw are the number of lanes to the east and

the west respectively, and Pe is the probability of vehicles going to the east (1 − Pe is the proba-

bility of vehicles going to west). This approach allows us to obtain a fundamental diagram for

any lane configuration. For instance, let us say that we want to calculate the mean flow for a

given density of 0.3 on a 3-3 road configuration where we have 60 percent of the vehicles going

to the east and the rest 40 percent going to the west. In that case, we have:

re ¼
0:3 � 3

3
� 0:6

1 � 0:6
¼ 0:45

rw ¼
0:3 � 3

3
� ð1 � 0:6Þ

0:6
¼ 0:2

Thus, we can estimate the corresponding flow with the fundamental diagram we obtained

in our previous simulations (See Fig 1) using the new density values we have calculated.

Hence, we have that for ρe and ρw: The corresponding flow values are qe = 0.21 and qw = 0.29.

To estimate the mean flow on each lane for this 3-3 lane configuration, we can do it in the fol-

lowing way:

q3 � 3 ¼
qe � le þ qw � lw

le þ lw
¼

0:21 � 3þ 0:29 � 3

3þ 3
¼ 0:25

Using these equations, we can obtain the flow for any density and percentage number of

vehicles to east direction value for any lane configuration. In the results section, we present the

flow-density values we obtained for a six-lane scenario with reversible lanes. Using these val-

ues, we determine the configuration that maximizes traffic flow depending on the number of

vehicles in each direction.

Traffic data

To test our model, we use traffic data from the Transport Infrastructure Ireland https://

www.tii.ie. They provide traffic volume information since 2006. The traffic counts data

comes from induction loops embedded in the road surface. When a vehicle goes over one of

these loops, a sensor detects it. We analyze the data to determine the traffic volume behavior

during rush hours. We consider 852 datasets; each dataset contains the information from

one sensor in the period comprehended from 2006 to 2015. We analyze more than five mil-

lion records.

With the traffic data, we model three different scenarios. The first scenario is the non-

reversible lane scenario, where we always have the same number of lanes for each direction.

The second one is the reversible lane scenario, where we have a reversible lane in a specific

direction over a fixed time interval. The third one is the adaptive lane scenario, where we

have an adaptive lane that can change its direction depending on the traffic volume each

hour.

For the non-reversible scenario, we assume a six-lane road with three lanes each side,i.e., a

3-3 lane configuration. So, we assign a 3-3 lane configuration to each record on the dataset.

We obtain the average flow for that configuration from our model using the traffic volumes

for each hour in every dataset to calculate the percentage of vehicles going to the east.

For the reversible scenario, we also assume a six-lane road. We calculate the average traffic

volumes for the morning rush hour (from 6:00 am to 9:00 am). If the average traffic volume in

the east direction is more than 50%, we assign a 2-4 lane configuration for all records in the

morning rush hour; otherwise, we assign a 4-2 lane configuration. We obtain the mean flow
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for 2-4 and 4-2 configurations from our model using the traffic volumes at each record. We

use the traffic volumes at each record in the morning rush hour from 6:00 am to 9:00 am for

the adaptive scenario. For each record, we assign a lane configuration based on the results

obtained our model on Fig 5. If the traffic volume to the east is between 0% and 41%, we assign

the 4-2 configuration. If the east’s traffic volume is between 42% and 57%, we assign the 3-3

configuration. Otherwise, we assign the 2-4 configuration. As in the previous scenarios, we

obtain the mean traffic flow for the corresponding configuration and traffic volume using the

values obtained in our model. See Table 1 in the S1 File.

In the results section, we present a comparison between the three scenarios. We compare

them in terms of traffic flow.

Results

Six-lane road with reversible lanes

We use the method described in the Reversible Lane Model section to model a six-lane road

with reversible lanes. In Fig 3(A), we can observe the heatmap for the 5-1 lane configuration.

We observe that the maximum flow values are in densities around 16%, and when the percent-

age of vehicles going to the east is around 20%. This behavior is because when we only have

one lane to the east direction, the flow decreases if we add more than 20% vehicles to that

direction due to the lower capacity of the road in the east direction. If the percentage of vehi-

cles going to the east is around 20%, the flow will reach its maximum values because we main-

tain the optimal density values.

In Fig 3(C), we can see the heatmap for the 3-3 configuration. In this case, we can find

higher flow values when around 50% of vehicles go to the east. This percentage corresponds to

the symmetric scenario when the number of vehicles in each direction is the same; in this case

the 3-3 configuration is optimal. We can also notice how flow decreases when the percentage

of vehicles goes far higher or lower from 50%. We observe a similar behavior for 2-4, 4-2, and

1-5 lane configurations. In each heatmap, the optimal values of traffic flow change depending

on which configuration we observe. With this information, we can see how traffic flow behaves

concerning density and percentage of vehicles to the east, that is, the comportment of traffic

flow for the different lane configurations.

As a result, we can show that to maximize traffic flow, we only need to know the percentage

of vehicles in each direction at a given moment and select the proper lane configuration. In Fig

4 for each lane configuration, we show the mean flow as a function of the east percentage. We

can observe that for east percentage values from 0% to 41%, the lane configuration that maxi-

mizes flow is the 4-2, for 41% to 57% is the 3-3 lane configuration, and for 57% to 100% is the

2-4 lane configuration.

Analysis of traffic asymmetry

The datasets’ information described in the traffic data subsection allows us to calculate the

asymmetry in the traffic volume for each loop detector. We define the asymmetry as 100�|ve −
vw|/vt. Where ve is the east traffic volume, vw is the west traffic volume and vt is the total volume

(ve + vw). Thus, an asymmetry value of 0 indicates that ve = vw and a value of 100 is absolute

asymmetry, i.e., either ve = 0 or vw = 0. In Fig 5, we observe the distribution of the asymmetry

values for a sensor located in Dundalk at different time scales(year, month, week, and day).

We observe a variance in the traffic asymmetry. This variance is important because, in the

implementation of reversible lanes, it is prevalent that traffic planners use surveys to estimate

traffic volume [35]. They use this method due to the costs of installing loop detectors,
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especially in developing countries; thus, the collected information via surveys could have a

huge bias depending on the day and hour they acquire the information.

Even if traffic planners have loop detectors or other mechanisms to estimate traffic volume,

our analysis shows that traffic volumes can have a high variance. In Fig 6, we present a boxplot

to show the variance of the traffic asymmetry. Thus, it becomes tough to forecast traffic volume

based on historical records or surveys. If our predicted traffic volumes are not accurate, the

reversible lanes are not going to operate efficiently. Suppose the traffic volume increases in the

opposite direction of the reversible lane. In that case, it could cause a bottleneck.This encour-

ages us to expect that an adaptive reversible lane will perform better than a conventional

reversible lane.

Fig 3. Heatmap of the traffic flow for all the lane configurations. We present the traffic flow in terms of vehicles’ density and the percentage of

vehicles to the east. Higher values of traffic flow correspond to the bright yellow color. We observe how the maximum traffic flow peak changes

accordingly with the lane configuration. (A)5-1 lane configuration. (B)4-2 lane configuration, (C)3-3 lane configuration. (D)2-4 lane configuration.

(E)1-5 lane configuration.

https://doi.org/10.1371/journal.pone.0244326.g003
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Comparison between non-reversible, reversible and adaptive reversible

scenarios

We modeled three scenarios using the historical traffic data https://www.tii.ie. A non-revers-

ible scenario, a reversible scenario, and an adaptive reversible scenario. With our model, we

obtained the mean traffic flow for each scenario for each of the 200 sensors during the morn-

ing rush hours (6 a.m. to 9 a.m).

For the sensors we selected, we observe that the mean flow is higher in the adaptive scenario

than in the reversible scenario (see Fig 7). The fluctuation during the morning rush hours of

the traffic volumes explains this increment in the traffic flow.

In the adaptive scenario, we have the option to change the configuration each hour from

record to record; then, if the traffic volume changes significantly, the road can adapt to the cur-

rent traffic volume with the proper lane configuration. On the other hand, in the reversible

scenario, we maintain the same lane configuration during the morning rush hours, which is

how conventional reversible lanes operate. Consequently, if the traffic volume changes signifi-

cantly, the traffic flow decreases because that lane configuration is no longer optimal for the

new traffic conditions.

We can also observe interesting comportment. In some cases, the non-reversible scenario

performs better than the reversible scenario. When this occurs is because the traffic volumes

fluctuate broadly.

Configuration change ratio

We showed that the adaptive scenario augments traffic flow concerning the reversible scenario

when traffic volume fluctuations occurs during the morning rush hours. Hence, we present a

simple approach to characterize sensors by its traffic fluctuations.

Fig 4. Mean flow by lane configuration. Mean flow as a function of the percentage of vehicles to the east direction for each

lane configuration.

https://doi.org/10.1371/journal.pone.0244326.g004
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When we modeled the three scenarios, we associated each record to a lane configuration

depending on the scenario. Suppose the lane configurations in both scenarios are the same for

a given record. In that case, that means there is no significant change in the traffic volume.

Because if the traffic volume were significantly higher or lower than the rush hour’s average

traffic volume, then we have assigned that record a different lane configuration for the adaptive

scenario. Thereby, suppose the lane configurations are different for the reversible and the

adaptive scenario. In that case, the traffic volume at that record is significantly higher or lower

than the rush hour’s average traffic volume. In the first case, there is no change in the lane con-

figuration in both scenarios; there is a change in the lane configuration in the second case. We

can then calculate the configuration change ratio for each record on the dataset by counting

the number of records that do not have the same lane configuration divided by the total num-

ber of records.

Fig 5. Distribution of asymmetry values of traffic volumes for a loop detector located in Dundalk. (A)Distribution of average asymmetry

during 2013. (B)Distribution of average asymmetry in July 2013. (C)Distribution of average asymmetry between 15 and 19 of July 2013. (D)

Distribution of asymmetry on July 17, 2013.

https://doi.org/10.1371/journal.pone.0244326.g005
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We can use the configuration change ratio to determine which loop detectors (locations)

could benefit more from the adaptive lanes. In Fig 8, we take the top 100 sensors ranked by its

configuration change ratio. We observe a high correlation between the configuration change

ratio and traffic flow gain(the flow difference between the reversible and the adaptive sce-

nario). Thus, the more frequent the fluctuations in the traffic volume, the likely the adaptive

reversible lane perform better than the conventional reversible lane. For the top 100 loop

detectors, we have, on average, 40% more traffic flow for the adaptive scenario with respect to

the reversible scenario.

Discussion and conclusions

We presented a cellular automata approach to model adaptive reversible lanes. Our framework

allows us to determine the potential benefits of adaptive reversible lanes based on historical

traffic data. Unlike conventional reversible lanes, adaptive reversible lanes use data to adjust

the lane’s direction on demand, depending on the traffic conditions. Reversible lanes take

advantage of the asymmetry on traffic volumes during the rush hours; a pattern observed in

most cities [6]. However, we have shown that traffic volume fluctuates wildly, even during

rush hours. Because of this, adaptive lanes could perform better than conventional reversible

lanes. The precise advantage of adaptive reversible lanes will depend on the asymmetry and

variability of traffic and the mechanisms to implement them, varying from city to city. In any

case, adaptive reversible lanes, in theory, may perform better than predefined reversible or reg-

ular lanes.

Limitations of our study include the modeling of lane changes [36–38], traffic intersections

[17], and different driving behaviors [39]. Still, in previous work, we have considered each of

these sophistications, so it would be straightforward to include them in future work and evalu-

ate whether these features might affect the results presented in this work.

Fig 6. Boxplot of the traffic asymmetry for a loop detector located in Dundalk in 2013. We observe a high variance

in the traffic volume during morning rush hours.

https://doi.org/10.1371/journal.pone.0244326.g006
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Authorities spend vast amounts of money on new vehicle infrastructure. However, a frac-

tion of this infrastructure, specifically roads and highways, are underused because of the asym-

metries on travel demand in modern cities. Adaptive lanes can optimize the use of the existing

vehicle infrastructure by increasing the road capacity when needed. By doing that, authorities

could save millions of dollars and invest more capital in public transport infrastructure and

alternative mobility solutions, also distributing public space in a more equitable fashion.

One of the challenges of adaptive reversible lane implementation is the design of control

systems. In [40], the authors propose two strategies to control the operation of a dynamical

reversible lane. The control strategies they proposed based their functioning on the length of

the bottleneck queue created by the reversible lane. Similar strategies could be developed using

the number of vehicles as a parameter, as shown in this work. In [41], the authors propose a

dynamic control to operate reversible lanes on signalized intersections. We could explore

these ideas in the future using a more sophisticated cellular automata model.

Fig 7. Mean flow for the three scenarios. In this figure, we show the mean flow for each scenario for the four locations. The adaptive lane scenario

outperforms the reversible scenario. (A)Raheen 2012. (B)Rossbrien 2011. (C)Dunkettle 2007. (D)Rossbrien 2012.

https://doi.org/10.1371/journal.pone.0244326.g007
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However, we expect the full potential of adaptive lanes is in a self-driving car environment.

In that sense, the implementation strategies should focus on the coordination between vehicles

and infrastructure. Moreover, it could be interesting to estimate the time required for traffic

to stabilize after lane changes take place under various conditions, which we leave for future

work. Another essential feature of adaptive reversible lanes could be the possibility of handling

different transport modes. This should be considered in future work. Other adaptation mecha-

nisms could be integrated into the adaptive reversible lanes.

Another challenge is the physical mechanisms to operate the adaptive lanes safely. Trans-

port engineers have designed strategies to make the implementation of conventional reversible

lanes safer and more efficient. In [30], the authors present an automatic mechanism to separate

the lanes physically without human intervention. In [31], authors propose a mechanism to

control reversible lanes using real-time information. Safety impacts of roadway design have

been studied in [26–29]. Transport engineers could develop other novel strategies to imple-

ment adaptive lanes. Assuming that it is impossible to implement adaptive lanes with the

current technology, it is not senseless to assume that it might happen soon. We have been

experiencing considerable progress in the autonomous vehicle industry, and it could be easier

to implement adaptive lanes in a self-driving cars environment. We could dispense with cen-

tralized control for the adaptive lanes and take advantage of connected autonomous vehicles.

The risk of accidents will be minimal after removing the human factor from the equation.
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Fig 8. Configuration change ratio and traffic flow gain for the top 100 sensors. We show the flow gain for the top

100 sensors, which have a higher configuration change ratio. We can see a relation between higher values of flow gain

and configuration change ratio.
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