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Simple Summary: Diagnosis of neurodegenerative diseases requires examination of a variety of
characteristics. A definitive diagnosis is obtained using a comprehensive evaluation of family history,
neurological findings, brain imaging, genetic testing, and other medical information. Multiple-system
atrophy (MSA) is a neurodegenerative disease associated with autonomic dysfunction, parkinsonism,
and cerebellar ataxia, and early diagnosis is difficult because the disease changes over time. The aims
of this study were to examine whether machine learning can improve diagnostic accuracy using MSA
case data from a national survey, and to identify the features that are important for differentiation
among MSA subtypes using machine learning.

Abstract: Multiple-system atrophy (MSA) is primarily an autonomic disorder with parkinsonism or
cerebellar ataxia. Clinical diagnosis of MSA at an early stage is challenging because the symptoms
change over the course of the disease. Recently, various artificial intelligence-based programs
have been developed to improve the diagnostic accuracy of neurodegenerative diseases, but most
are limited to the evaluation of diagnostic imaging. In this study, we examined the validity of
diagnosis of MSA using a pointwise linear model (deep learning-based method). The goal of
the study was to identify features associated with disease differentiation that were found to be
important in deep learning. A total of 3377 registered MSA cases from FY2004 to FY2008 were
used to train the model. The diagnostic probabilities of SND (striatonigral degeneration), SDS (Shy-
Drager syndrome), and OPCA (olivopontocerebellar atrophy) were estimated to be 0.852 ± 0.107,
0.650 ± 0.235, and 0.858 ± 0.270, respectively. In the pointwise linear model used to identify and
visualize features involved in individual subtypes, autonomic dysfunction was found to be a more
prominent component of SDS compared to SND and OPCA. Similarly, respiratory failure was
identified as a characteristic of SDS, dysphagia was identified as a characteristic of SND, and brain-
stem atrophy was identified as a characteristic of OPCA.

Keywords: multiple-system atrophy; artificial intelligence; pointwise linear model

1. Introduction

Multiple-system atrophy (MSA) is a neurodegenerative disorder characterized by
progressive autonomic dysfunction, parkinsonism, and cerebellar and pyramidal features
that occur in various combinations [1]. MSA used to be classified into olivopontocerebel-
lar atrophy (OPCA), striatonigral degeneration (SND), and Shy-Drager syndrome (SDS);
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however, in the first diagnostic consensus on MSA, cases were classified as MSA-P for
those with parkinsonism and MSA-C for those with cerebellar ataxia [2]. The term SDS,
which had been used to describe MSA cases with prominent autonomic dysfunction, was
formally taken out of use. In the second diagnostic consensus, MSA cases were categorized
as definite, probable, and possible [3]. Since diagnosis of definite MSA requires patholog-
ical autopsy, early confirmation of a probable or possible case is clinically significant for
patient management and disease-modifying therapy. In the second consensus, probable
MSA was defined as a sporadic, progressive, and adult-onset (age ≥ 30 years) case with
autonomic dysfunction and poorly L-DOPA-responsive parkinsonism (bradykinesia with
rigidity, tremor, or postural instability) or cerebellar syndrome (gait ataxia with cerebellar
dysarthria, limb ataxia, or cerebellar oculomotor dysfunction), while possible MSA was
defined as a sporadic, progressive adult-onset case including parkinsonism or cerebellar
ataxia and at least one feature suggesting autonomic dysfunction plus one other feature
that may be a clinical or neuroimaging abnormality.

The accuracy of MSA diagnosis using the second consensus is 71% for probable
MSA and 60% for possible MSA [4]. Therefore, an improvement in diagnostic accuracy is
needed. Recently, artificial intelligence has been used to improve the diagnostic accuracy
of neurodegenerative diseases, including MSA [5]. For example, differentiation of MSA
from Parkinson’s disease was examined using brain imaging with computed tomography
(CT) and magnetic resonance imaging (MRI) [6]. However, neurological findings and other
medical information are important in MSA diagnosis [7], but few studies have examined the
early diagnosis of neurodegenerative diseases by machine learning using datasets obtained
in clinical practice as training data [8]. The issues associated with machine learning include
standardization of the dataset [9] and evaluation of the obtained diagnostic probability, i.e.,
how to define the thresholds of certainty [10].

The second consensus diagnostic criteria for MSA do not cover all early-stage MSA
cases [11]. SDS is not included as a subtype in this consensus but is known to be a
clinical form of MSA with autonomic dysfunction as the primary symptom. The usefulness
of the SDS concept in planning therapeutic trials is being evaluated, as early onset of
autonomic dysfunction is a poor prognostic factor [12]. Therefore, we decided to use
machine learning and conventional statistical methods to determine the features that
influence diagnosis of the MSA subtypes in the earlier classification. The aim of the study
was to evaluate the diagnostic accuracy of machine learning for the OPCA, SND, and SDS
subtypes based on diagnoses by neurologists and to identify the important variables in
classifying these subtypes.

Conventional statistical methods are mainly models based on linear or logistic regres-
sion between a small number of variables and outcomes. Machine learning can derive a
broader range of standard variables using a neural network [13], but conventional machine
learning is limited in visualization of this process [14]. Therefore, in this study, we used
a deep learning-based method based on a pointwise linear model [15,16], which allows
for correlations of each explanatory variable to express the target variable. We show that
machine learning can increase the diagnostic accuracy of MSA to >80%, and we identify
the important features for diagnosis of MSA and their relationship with each MSA sub-
type using the pointwise linear model. This method improves the diagnostic accuracy for
early MSA and demonstrates the effectiveness of use of machine learning in validating
diagnostic criteria.

2. Materials and Methods
2.1. Ethics

This study was performed under the ethical guidelines for medical and biological
research involving human subjects issued by the Ministry of Education, Culture, Sports,
Science, and Technology (MEXT), the Ministry of Health, Labor, and Welfare (MHLW),
and the Ministry of Economy, Trade, and Industry (METI) in Japan. The ethics commit-
tee of the National Center of Neurology and Psychiatry approved the study (A2019-056;
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14 January 2021). All patients gave written informed consent for registration in the Speci-
fied Disease Treatment Research Program. After submission of informed consent forms
and approval of a review committee, including neurologists in their respective prefectural
governments, personal information was anonymized, and cases were registered in the
MHLW database [17]. The anonymized data were provided to us for analysis by the MHLW
(9 March 2021).

2.2. Data and Diagnosis

Data were obtained from forms submitted to and digitized by the MHLW between
FY2004 to FY2008. We first excluded duplicate cases and those without essential demo-
graphic data, such as onset age. Cases included in data analysis fulfilled the diagnostic
criteria for MSA established by the MHLW Research Committee on MSA.

2.3. Items

The following demographic and clinical features were obtained from forms submitted
as cases with MSA: sex, age, symptoms at onset, mode of onset, progression, neurological
findings, autonomic findings, other neurological findings, brain images on CT and MRI,
activities of daily living (ADL), and medication (Table 1), walking capacity, standing
capacity/eyes open, finger-to-nose test, and knee–tibia test on the International Cooperative
Ataxia Rating Scale (ICARS) [18], gait abnormalities due to parkinsonism on the Unified
Parkinson Disease Rating Scale (UPDRS) [19], and bent posture, posture stability, tremor at
rest, rigidity, finger taps, and rising from a chair on the Unified Multiple System Atrophy
Rating Scale (UMSARS) [20]. Except for walking, ADLs were classified on a three-point
scale (without assistance, with assistance, and unable). Walking was classified on a four-
point scale (without assistance, with assistance, with a wheelchair, and unable) [21].

Table 1. Form for registration of cases of MSA.

Item Option

Sex 1. Male, 2. female

Age

Symptoms
at onset

1. Ataxia

2. Parkinsonism

3. Autonomic dysfunction

Mode of onset 1. Mild, 2. subacute, 3. acute

Progression 1. Progressive, 2. arrested, 3. improved, 4. other

Neurological
findings

1. Walking capacity

2. Gait abnormalities due to parkinsonism

3. Standing capacity, eyes open

4. Bent posture

5. Posture stability

6. Finger-to-nose test

7. Knee–tibia test

8. Tremor at rest

9. Rigidity

10. Finger taps

11. Rising from a chair
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Table 1. Cont.

Item Option

Autonomic
findings

1. Head-up tilt test

2. Syncope

3. Urinary disturbances

4. Urinary incontinence

5. Erectile dysfunction (male only)

6. Severe constipation

Other
neurological

findings

1. Dementia

2. Hallucination (non-drug-induced)

3. Aphasia

4. Apraxia

5. Agnosia

6. Alien hand sign

7. Vertical supranuclear gaze palsy

8. Persistent Spontaneous Nystagmus

9. Dysphasia

10. Dysarthria

11. Respiratory failure

12.Tendon reflex

13. Babinski reflex

14. Other neurological findings

Brain images
with CT/MRI

1. CT examination

2. MRI examination

3. Cerebellar atrophy

4. Brain-stem atrophy

5. Hot-cross-bun sign

6. Striatal atrophy/signal abnormality

7. Enlargement of 3rd ventricle

8. Cerebral atrophy

9. Cerebral white-matter lesion

ADL

1. Eating

2. Bathing

3. Hygiene

4. Dressing

5. Toileting

6. Walking (more than 50 m)

7. Climbing stairs
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Table 1. Cont.

Item Option

Medication

1. Taltirelin hydrate

2. Protirelin tartrate hydrate

3. Levodopa

4. Dopamine receptor agonists

5. Amantadine hydrochloride

6. Anticholinergics

7. MAO-B inhibitors

8. Droxidopa

Diagnosis
1. SND
2. SDS

3. OPCA

2.4. Classification of MSA Subtypes

A pointwise linear model, the deep learning-based method, was used for classification
of MSA subtypes [22]. To evaluate over-learning in discriminant boundary generation,
the training data were divided into a training and test dataset. Futhermore, to optimize
the hyperparameters and evaluate prediction performance of the model, we conducted
10-fold double cross-validation using the training dataset, and the model with the best
prediction accuracy (highest AUC) was adopted. The best hyperparameters are listed in
Table 2. In this study, 60 items were used as explanatory valuables, and diagnosis was used
as the objective variable (Table 1). Of the 3377 cases registered from FY2004 to FY2008,
3220 (851 SND, 359 SDS, and 2010 OPCA) were included, after exclusion of 157 cases with
missing data. Ten cases of each MSA subtype were used for validation, and the remaining
3190 cases were used as the training dataset.

Table 2. The best hyperparameters of the pointwise linear model for classification of MSA subtypes.

Hyperparameter Best Parameter

Number of epochs 100

Number of inner layers 16

Size of layers 180

Label smoothing 0.055

Learning rate 1.83 × 10−4

Momentum 0.968

Optimization adam

Dropout rate of inner layers 0.027

Dropout rate of input layer 0.171

Regularization coefficient 9.29 × 10−5

Ratio of L1 regularization 0.048

2.5. Extraction of Important Features Involved in Classification of MSA Subtypes

Diagnoses by neurologists were classified into three subtypes: SND, SDS, and OPCA.
A pointwise linear model (implemented in Pytorch 1.5.1, Python 3.7.4) was used to identify
important features in these diagnoses. Two datasets were used: dataset (a), which included
the rank order of items; dataset (b), which did not include the rank order of items. Both
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datasets excluded medication information. The feature variables of the two datasets were
classified into binary variables (B), categorical variables (C), ordinal variables (O), and
quantitative variables (Q). All features included in datasets (a) and (b) are listed in Table 3.
Binary variables were encoded as 1 or 0. One-hot encoding was used for categorical
variables. Quantitative variables were normalized (mean = 0, standard deviation = 1),
and ordinal variables were expressed on a scale of 1, 2, 3, etc., corresponding to the
order of ranks. The final numbers of feature variables in datasets (a) and (b) were 58 and
126, respectively.

Table 3. Datasets used in the pointwise linear model.

(a) With Rank Order of Items (b) Without Rank Order of Items

Item Options for
Item Category # Number of

Feature Variables = 58 Category # Number of
Feature Variables = 126

Sex B 1 B 1

Age Q 1 Q 1

Symptoms at onset 1–3 B 3 B 3

Mode of onset O 1 C 3

Progression C 4 C 4

Neurological findings 1–11 O 11 C 62

Autonomic findings 1–6 B 6 B 6

Other neurological findings
1–11, 13 B 12 B 12

12 C 3 C 3

Brain images with CT/MRI 1–9 B 9 B 9

ADL 1–7 O 7 C 22

Medication 1–8 n/a 0 n/a 0

# B, C, O, and Q indicate binary variables, categorical variables, ordinal variables, and quantitative
variables, respectively.

The predictive performance of the pointwise linear model was calculated using the
area under the curve (AUC) evaluated by 10-fold double cross-validation (DCV). The
one-vs.-rest strategy was used, in which a multiclass classification is split into one binary
classification problem per class. Ultimately, the mean of the three different AUCs was
considered to be the predictive performance.

To evaluate important features in each diagnosis, the importance score was defined
using the weight vector. First, we calculated the sample-wise importance score s(n)k for the
k-th feature xk of a sample with index (n) as

s(n)k =
∣∣∣w(n)

k x(n)k

∣∣∣,
where w(n)

k is the weight tailored for the k-th feature x(n)k of sample (n) by the pointwise
linear model. Next, for each subtype (e.g., SDS), the top 10% of features with sample-wise
importance scores that were the largest in the classification model for each subtype were
determined for each patient. Finally, the importance score was defined for each feature as
the rate of samples whose top 10% features contained the feature.
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2.6. Statistics

Descriptive statistics reported as counts (percentage) were used to describe the char-
acteristics of the patients included in the analysis. A Kruskal–Wallis one-way analysis-
of-variance-by-ranks test was performed to compare variables between MSA subtypes.
All p-values are reported to three decimal places, with those less than 0.001 reported as
p < 0.001. χ2 tests were used to compare categorical variables. Residual analysis was per-
formed to determine which cell numbers in the cross-table represented sources of bias
(p < 0.05) when significant bias was observed in a χ2 test (p < 0.05). All analyses were
performed using STATA ver. 17.0 (Stata Corporation LLC, College Station, TX, USA).

3. Results
3.1. Patient Characteristics

A progressive course characterized the three MSA subtypes, and all had onset in
the late 60s. Among early symptoms, ataxia (90.6%) was significantly more common in
OPCA, parkinsonism (87.6%) was significantly more common in SND, and autonomic
dysfunction (72.9%) was significantly more common in SDS. SND showed significantly
more severe neurological findings than the other subtypes, and OPCA had a trend toward
poorer finger-to-nose and knee–tibia tests and a higher frequency of dysarthria (79.3%). SDS
showed significantly more autonomic dysfunction, especially respiratory failure (43.5%),
than the other MSA subtypes. Brain CT and MRI revealed cerebellar atrophy common to all
subtypes, with significant incidences of striatal atrophy/signal abnormality (58.7%) in SND
and of brain-stem atrophy (79.3%) and a hot-cross-bun sign (47.9%) in OPCA. Regarding
medication, dopamine receptor stimulants (40.5%) and amantadine hydrochloride (24.8%)
were commonly used in SND, taltirelin hydrate (35.7%) was commonly used in OPCA, and
droxidopa (37.7%) was commonly used in SDS (Table 4).

Table 4. Characteristics of MSA according to clinical subtype.

Item Category
SND SDS OPCA

p–Value
894 377 2106

Sex 1.21 0.41 0.92 <0.001

Age 67.4 ± 9.7 66.8 ± 10.6 64.8 ± 9.3 <0.001

Symptoms at onset, n (%)

Ataxia Yes 65 (7.3) 61 (16.2) 1907 (90.6) <0.001

Parkinsonism Yes 783 (87.6) 61 (16.2) 162 (7.7) <0.001

Autonomic dysfunction Yes 57 (6.4) 275 (72.9) 86 (4.1) <0.001

Mode of onset, n (%) Mild 835 (93.4) 333 (88.3) * 2017 (95.8) †

<0.001Subacute 56 (6.3) 39 (10.3) 84 (4.0) *

Acute 3 (0.3) 5 (1.3) † 5 (0.2)

Progression, n (%) Progressive 886 (99.1) 369 (97.9) 2087 (99.1)

0.137
Arrested 8 (0.9) 5 (1.3) 11 (0.5)

Improved 0 2 (0.5) 4 (0.2)

Other 0 1 (0.2) 4 (0.2)
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Table 4. Cont.

Item Category
SND SDS OPCA

p–Value
894 377 2106

Neurological findings Scale

1. Walking capacity 1–9 5.7 ± 2.5 5.0 ± 2.7 4.8 ± 2.3 <0.001

2. Gait abnormalities due to parkinsonism 1–5 3.3 ± 1.1 2.4 ± 1.4 1.9 ± 1.3 <0.001

3. Standing capacity, eyes open 1–8 4.6 ± 2.3 4.2 ± 2.4 4.2 ± 2.0 <0.001

4. Bent posture 1–5 2.6 ± 1.0 1.8 ± 0.9 1.6 ± 0.9 <0.001

5. Posture stability 1–5 3.4 ± 1.2 2.7 ± 1.5 2.5 ± 1.5 <0.001

6. Finger-to-nose test 1–5 2.1 ± 1.1 2.1 ± 0.9 2.6 ± 0.8 <0.001

7. Knee–tibia test 1–5 2.2 ± 1.2 2.2 ± 1.1 2.9 ± 1.0 <0.001

8. Tremor at rest 1–5 1.7 ± 0.9 1.4 ± 0.7 1.3 ± 0.6 <0.001

9. Rigidity 1–5 3.0 ± 0.8 2.0 ± 0.9 1.7 ± 0.9 <0.001

10. Finger taps 1–5 2.9 ± 0.9 2.1 ± 0.9 2.0 ± 1.0 <0.001

11. Rising from a chair 1–5 3.5 ± 1.3 2.8 ± 1.5 2.9 ± 1.5 <0.001

Autonomic findings, n (%)

1. Head-up tilt test Positive 348 (38.9) 310 (82.2) 818 (38.8) <0.001

2. Syncope Yes 166 (18.6) 290 (76.9) 269 (12.8) <0.001

3. Urinary disturbances Yes 465 (52.0) 300 (79.6) 839 (39.8) <0.001

4. Urinary incontinence Yes 335 (21.4) 218 (57.8) 517 (24.6) <0.001

5. Erectile dysfunction (males only) Yes 191 (47.1) 185 (69.2) 366 (33.4) <0.001

6. Severe constipation Yes 534 (59.7) 259 (68.7) 740 (35.1) <0.001

Other neurological findings

1. Dementia Yes 127 (14.2) 52 (13.8) 212 (10.1) <0.001

2. Hallucination (non-drug-induced) Yes 37 (4.1) 10 (2.7) 24 (1.1) <0.001

3. Aphasia Yes 9 (1.0) 4 (1.1) 18 (0.9) 0.878

4. Apraxia Yes 16 (1.8) 7 (1.9) 17 (0.8) 0.033

5. Agnosia Yes 9 (1.0) 6 (1.6) 16 (0.8) 0.279

6. Alien hand sign Yes 1 (0.1) 2 (0.5) 3 (0.1) 0.228

7. Vertical supranuclear gaze palsy Yes 66 (7.4) 11 (2.9) 69 (3.3) <0.001

8. Persistent spontaneous nystagmus Yes 69 (7.7) 24 (6.4) 367 (17.4) <0.001

9. Dysphasia Yes 318 (35.6) 76 (20.2) 489 (23.2) <0.001

10. Dysarthria Yes 524 (58.6) 194 (51.5) 1670 (79.3) <0.001

11. Respiratory failure Yes 175 (19.6) 164 (43.5) 331 (15.7) <0.001

12. Tendon reflex

Increased 363 (40.6) 133 (35.3) * 962 (45.7) † <0.001

Decreased 81 (9.1) 50 (13.3) † 177 (8.4)

Normal 450 (50.3) 194 (51.5) 967 (45.9) *

13. Babinski reflex Yes 189 (21.1) 78 (20.7) 391 (18.6) 0.489
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Table 4. Cont.

Item Category
SND SDS OPCA

p–Value
894 377 2106

Brain images with CT/MRI, n (%)

1. Cerebellar atrophy Yes 367 (41.1) 218 (57.8) 1980 (94.0) <0.001

2. Brain-stem atrophy Yes 323 (36.1) 173 (45.9) 1670 (79.3) <0.001

3. Hot-cross-bun sign Yes 189 (21.1) 81 (21.5) 1008 (47.9) <0.001

4. Striatal atrophy/signal abnormality Yes 525 (58.7) 44 (11.7) 111 (5.3) <0.001

5. Enlargement of 3rd ventricle Yes 64 (7.2) 29 (7.7) 140 (6.7) 0.674

6. Cerebral atrophy Yes 116 (13.0) 52 (13.8) 148 (7.0) <0.001

7. Cerebral white-matter lesion Yes 47 (5.3) 24 (6.4) 70 (3.3) <0.001

ADL Scale

1. Eating 1–3 1.5 ± 0.7 1.4 ± 0.6 1.3 ± 0.5 <0.001

2. Bathing 1–3 2.0 ± 0.7 1.8 ± 0.8 1.6 ± 0.7 <0.001

3. Hygiene 1–3 1.8 ± 0.7 1.6 ± 0.7 1.4 ± 0.6 <0.001

4. Dressing 1–3 1.8 ± 0.7 1.6 ± 0.7 1.4 ± 0.7 <0.001

5. Toileting 1–3 1.7 ± 0.7 1.6 ± 0.7 1.4 ± 0.2 <0.001

6. Walking (more than 50 m) 1–4 2.3 ± 1.0 2.1 ± 1.0 1.9 ± 1.0 <0.001

7. Climbing stairs 1–3 2.3 ± 0.8 2.1 ± 0.8 2.0 ± 0.8 <0.001

Medication, n (%)

1. Taltirelin hydrate 1. Not used 786 (87.9) † 316 (83.8) † 1323 (62.8) *

<0.0012. Used 75 (8.4) * 48 (12.7) * 751 (35.7) †

3. Unknown 33 (3.7) † 13 (3.5) 32 (1.5) *

2. Protirelin tartrate hydrate 1. Not used 824 (92.2) † 347 (92.0) † 1806 (85.8) *

<0.0012. Used 25 (2.8) * 23 (6.1) * 230 (10.9) †

3. Unknown 45 (5.0) † 17 (4.5) † 70 (3.3) *

3. Levodopa 1. Not used 113 (12.6) * 257 (68.2) † 1752 (83.2) †

<0.0012. Used 775 (86.7) † 109 (28.9) * 288 (13.7) *

3. Unknown 6 (0.7) * 11 (2.9) 66 (3.1) †

4. Dopamine receptor agonists 1. Not used 496 (55.5) * 318 (84.3) 1950 (92.6) †

<0.0012. Used 362 (40.5) † 42 (11.1) * 86 (4.1) *

3. Unknown 36 (4.0) 17 (4.5) † 70 (3.3)

5. Amantadine hydrochloride 1. Not used 634 (70.9) * 335 (88.9) 1935 (91.9) †

<0.0012. Used 222 (24.8) † 26 (6.9) * 93 (4.4) *

3. Unknown 38 (4.3) 16 (4.2) 78 (3.7)

6. Anticholinergic 1. Not used 775 (86.7) * 341 (90.5) 2000 (95.0) †

<0.0012. Used 79 (8.8) † 17 (4.5) 26 (1.2) *

3. Unknown 40 (4.5) 19 (5.0) 80 (3.8)

7. MAO-B inhibitors 1. Not used 747 (83.6) * 347 (92.0) 2000 (95.0) †

<0.0012. Used 108 (12.1) † 11 (2.9) 26 (1.2) *

3. Unknown 39 (4.4) 19 (5.0) 80 (3.8)

8. Droxidopa 1. Not used 693 (77.5) * 223 (59.2) * 1958 (93.0) †

<0.0012. Used 161 (18.0) † 142 (37.7) † 66 (3.1) *

3. Unknown 40 (4.5) † 12 (3.2) 82 (3.9)

* Significantly smaller (p < 0.05) in residual analysis. † Significantly larger (p < 0.05) in residual analysis.
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3.2. Diagnostic Probability Using the Point-Wise Linear Model

Every 10 cases were randomly selected from SND (851 cases), SDS (359 cases), and
OPCA (2010 cases) diagnosed by neurologists in the deep learning-based method as the
test dataset. The remaining cases were used as the training dataset. The AUC in the
10-fold DCV was 0.958 ± 0.001 in the training set and 0.959 ± 0.012 in the test dataset. The
deep learning-based method resulted in high accuracies with a diagnostic probability of
0.852 ± 0.107 for SND and 0.858 ± 0.270 for OPCA. In contrast, SDS showed a significantly
lower diagnostic probability of 0.650 ± 0.235 compared to SND and OPCA (p < 0.05). The
diagnostic probability of SND, SDS, and OPCA for each case is shown in Table 5. Of the
SDS cases classified as other subtypes, two were assigned to SND (cases 1 and 8) and one
was assigned to OPCA (case 5); among OPCA cases, one was categorized as SND (case 2).
On the other hand, in SND, all cases were classified into SND.

Table 5. Diagnostic probability estimated using the point-wise linear model.

SND (n = 10) SDS (n = 10) OPCA (n = 10)

Diagnostic Probability Diagnostic Probability Diagnostic Probability

No. SND SDS OPCA No. SND SDS OPCA No. SND SDS OPCA

1 0.956 0.025 0.019 1 0.373 0.489 0.138 1 0.037 0.040 0.923

2 0.934 0.039 0.027 2 0.019 0.947 0.034 2 0.910 0.041 0.049

3 0.884 0.034 0.082 3 0.050 0.885 0.065 3 0.016 0.032 0.952

4 0.909 0.060 0.031 4 0.281 0.400 0.319 4 0.017 0.032 0.952

5 0.572 0.076 0.352 5 0.028 0.474 0.497 5 0.021 0.029 0.950

6 0.948 0.028 0.025 6 0.104 0.667 0.229 6 0.021 0.040 0.939

7 0.812 0.019 0.169 7 0.091 0.717 0.192 7 0.017 0.010 0.973

8 0.804 0.178 0.018 8 0.589 0.214 0.197 8 0.021 0.021 0.959

9 0.820 0.050 0.130 9 0.044 0.776 0.180 9 0.037 0.031 0.932

10 0.876 0.091 0.032 10 0.036 0.932 0.032 10 0.025 0.022 0.953

The deep learning-based method was used to analyze SND, SDS, and OPCA cases di-
agnosed by neurologists to determine the diagnostic probability by each subtype. Columns
with the highest diagnostic probability were colored.

3.3. Identifying Important Features Using the Pointwise Linear Model

The pointwise linear model was used to extract important features that were closely
associated with the diagnosis for each of the three MSA subtypes.

3.3.1. Verification of the Prediction Performance for the Pointwise Linear Model

To investigate whether a specific rank in ordinal variables contributed to the classi-
fication of each diagnosis, we generated models with and without consideration of the
rank order of items. Important features (score ≥ 0.3) were initially extracted from dataset
(a) (number of feature variables: 58) or (b) (number of feature variables: 126) (Table 3).
The AUCs for the models were calculated using 10-fold DCV. For each fold, a model was
determined using the training set, and then the trained model was evaluated using the
test set. The prediction performance for each learning model was evaluated as the mean
AUC over the 10 folds. The AUCs for the training and test sets were 0.954 ± 0.001 and
0.956 ± 0.010, respectively, in the classification model including the order of neurological
findings, and 0.962 ± 0.001 and 0.960 ± 0.010, respectively, in the model that did not include
this order.
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3.3.2. Extraction of Important Features Closely Associated with the Diagnosis for the
MSA Subtypes

Features with importance scores ≥ 0.30 were extracted from the pointwise linear model,
i.e., features found to be important in ≥30% of patients. In the model including the order of
severity, the finger-to-nose test ranked highest for all types, and ataxia onset was common
to all types. Findings specific to each type included striatal atrophy/signal abnormality
(score = 0.798) for SND, brain-stem atrophy (score = 0.347) for OPCA, and respiratory
failure (score = 0.796) for SDS (Table 6a). If the order of severity was not taken into
account (Table 6b), features common to all subtypes included autonomic dysfunction onset,
parkinsonism onset, syncope, and striatal atrophy/signal abnormality. Common features
were respiratory failure and head-up tilt test (positive) for SDS and OPCA, ataxia onset for
SND and OPCA, and erectile dysfunction for SND and SDS. Dysphagia (score = 0.343) and
walking capacity (normal) (score = 0.342) were specific to SND, severe constipation (score
= 0.414) was specific to OPCA, and toileting (without assistance) (score = 0.433), urinary
disturbance (score = 0.372), and urinary incontinence (score = 0.341) were specific to SDS.

Table 6. Features involved in diagnosis of MSA using the pointwise linear model.

(a) With Consideration of the Rank Order of Items

Rank
SND SDS OPCA

Feature Score Weight Feature Score Weight Feature Score Weight

1 Striatal atrophy/signal
abnormalities 0.798 −0.143 Respiratory failure 0.796 −0.122 Finger-to-nose test 0.910 0.060

2 Parkinsonism onset 0.705 −0.288 Syncope 0.788 −0.139 Parkinsonism onset 0.694 −0.089

3 Finger-to-nose test 0.621 0.028 Finger-to-nose test 0.771 0.035 Urinary
disturbance 0.517 0.104

4 Head-up tilt test 0.544 0.101 Urinary
incontinence 0.562 −0.074 Ataxia onset 0.395 −0.458

5 Urinary disturbance 0.462 0.080 Ataxia onset 0.395 −0.222 Head-up tilt test 0.350 0.067

6 Ataxia onset 0.395 −0.183 Brain-stem atrophy 0.347 −0.155

7 Rigidity 0.378 0.023

(b) Without Consideration of the Rank Order of Items

Rank
SND SDS OPCA

Feature Score Weight Feature Score Weight Feature Score Weight

1 Autonomic dysfunction
onset 0.720 0.022 Autonomic

dysfunction onset 0.865 −0.254
Striatal

atrophy/signal
abnormalities

0.770 0.130

2 Syncope 0.639 0.173
Striatal

atrophy/signal
abnormalities

0.749 0.111 Syncope 0.720 0.155

3 Parkinsonism onset 0.628 −0.125 Parkinsonism onset 0.704 0.214 Parkinsonism onset 0.644 0.204

4 Striatal atrophy/signal
abnormalities 0.603 −0.161 Respiratory failure 0.576 −0.084 Autonomic

dysfunction onset 0.606 0.071

5 Erectile dysfunction 0.378 −0.020 Head-up tilt test 0.510 −0.133 Severe constipation 0.414 0.064

6 Ataxia onset 0.375 0.173 Syncope 0.495 −0.125 Ataxia onset 0.387 −0.366

7 Dysphagia 0.343 −0.025 Erectile dysfunction 0.444 −0.056 Head-up tilt test 0.376 0.061

8 Walking capacities,
normal 0.342 −0.103 Toileting, without

assistance 0.433 −0.081 Respiratory failure 0.342 0.047

9 Urinary
incontinence 0.372 −0.053

10 Apraxia 0.368 −0.030

11 Urinary
disturbance 0.341 −0.063
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To understand whether the occurrence of an event tended to raise the probability in
an MSA subtype, the median regression coefficients (weights) tailored to each case are
listed in Table 6, in addition to the score. Note that the presence/absence registration in the
registry form is reversed from the usual relationship (presence = 1, absence = 0) because
presence = 1, and absence = 2. Therefore, a negative value indicates a stronger correlation,
while a positive value indicates a weaker correlation. On the other hand, for items classified
as “O” in Table 3 (neurological findings and ADL), positive values indicate a positive
correlation (severe disability). Therefore, finger-to-nose test, rigidity, and walking capacity
are treated as “O” in Table 6a and “C” in Table 6b. In Table 6a, the finger-to-nose test
showed positive values for all subtypes and negative values for ataxia onset. In Table 6b,
autonomic dysfunction = −0.254 in SDS and ataxia onset = 0.366 in OPCA. For brain images
from CT/MRI, the striatal atrophy/signal abnormality values were positive (0.111 and
0.130) in SDS and OPCA and negative (−0.161) in SND.

4. Discussion

MSA is a complex disease caused by a combination of parkinsonism, cerebellar ataxia,
and autonomic dysfunction, and clinical presentation varies from onset of MSA [1]. The
pathogenesis of MSA is thought to be accumulation of insoluble α-synuclein in neurons
and oligodendroglia, which leads to progressive neurodegeneration [23]. In the latest
international diagnostic consensus, diagnosis of MSA is classified into three stages: definite,
probable, and possible. Since definite MSA requires an autopsy, a probable or possible
clinical diagnosis is significant for disease management and selection of disease-modifying
treatment [24]. However, in the current consensus, the probability of diagnosis is <70% [4].
A clinical trial targeting α-synuclein as a disease-modifying treatment for MSA is being
planned, but since MSA is suspected only when clinical findings become apparent, early
diagnosis is needed for development of treatment strategies [24].

Recent studies have examined utilization of artificial intelligence to improve the diag-
nostic accuracy of neurodegenerative diseases. However, these studies have mainly been
limited to differential diagnosis using images and have not utilized medical information
such as family history and neurological findings [6]. Moreover, it is challenging to make
an early diagnosis by brain imaging alone, and a comprehensive evaluation of all medical
information is necessary to improve diagnostic accuracy [25]. MSA is also a rare disease,
and a nationwide collection of MSA cases requires the same diagnostic criteria, survey
questions, and case validation framework to ensure data uniformity. For this reason, we
used case information registered in a uniform nationwide survey. In addition, since newly
registered cases were used, the data were likely to be from a relatively early point after
MSA was suspected, as shown by the characteristics of the cases in Table 4.

Conventional statistical methods can reveal differences among subtypes, but machine
learning has the advantage of linking all explanatory and objective variables for each
case [26]. Thus, the diagnostic probability can be indicated by cases according to the MSA
disease type with which it is strongly associated. The MSA cases used in this study were
not classified as MSA-C or MSA-P, but as the subtypes of SND, SDS, and OPCA, and we
machine-trained the data in these three subtypes to verify the diagnostic validity. Machine
learning enables the diagnostic probability of each subtype to be shown for each case,
which permits determination of this probability for each subtype. As shown in Table 5,
some cases that were registered as SDS were classified as SND or OPCA. However, about
70% of the cases remained as SDS, which indicates that this subtype has features that differ
from those of OPCA and SND. The diagnostic accuracies for SND and OPCA, which are
strongly characterized by parkinsonism and cerebellar ataxia, respectively, exceeded 90%,
suggesting that each of these populations has a homogeneous component.

One limitation of a machine learning is that the processing method is hidden, which
limits the understanding of the relationship between objective and explanatory vari-
ables [14]. Therefore, we used a pointwise linear model, which can display the relationship
between explanatory and objective variables as coefficients, to identify features involved in
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the diagnosis of each MSA subtype. This model was applied to the relationship between
clinical information and diagnostic results for all items shown in Table 1. We note that
the cases were registered at an early stage when MSA was suspected; hence, only the
details of the medication could be ascertained, and results for drug responsiveness are still
needed. We then tried to extract the important features that influence the classification of
each subtype, excluding medication information. The accuracy of the machine learning
model for MSA obtained using the pointwise linear model was not significantly affected
by the amount of information used or the information structure, as the AUCs all showed
high accuracy of ≥0.95, regardless of whether the severity of each item was ordered or
not. Since the inclusion of a large amount of information can result in over-learning, which
may lead to a decrease in model accuracy [27], we attempted to verify whether accuracy
could be improved by narrowing down the items, but no significant differences were found.
Therefore, the items ranked high for each condition in Table 6 were identified as important
features for differentiation among the MSA subtypes.

Results from the corresponding component analysis using the pointwise linear model
showing the impact of autonomic dysfunction (A), parkinsonism (P), and cerebellar ataxia
(C) components for each subtype are shown in Figure 1. When the order of severity
was considered (Figure 1a), the A component was more important in SDS than in SND
and OPCA, the P component (rigidity, parkinsonism onset, and striatal atrophy/signal
abnormality) was more important in SND, and the C component (finger-to-nose test, brain-
stem atrophy, and ataxia onset) was more important in OPCA. The finger-to-nose test and
ataxia onset (C component) were commonly ranked high in all subtypes, reflecting the
significantly greater impairment and more frequent occurrence of OPCA compared to the
other two subtypes (Table 4).
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Figure 1. Features involved in diagnosis of MSA subtypes using machine learning. The items
in Table 6a,b were divided into three components that were strongly associated with autonomic
dysfunction (A), parkinsonism (P), and cerebellar ataxia (C). Analyses were performed with (a) and
without (b) considering the order of severity of items for neurological findings and ADL. Based on
the weight value, those with a strong relationship with the subtype were designated as P (positive)
and those with a weak relationship with the subtype were designated as N (negative).
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The head-up tilt test (positive) and urinary disturbance high (A component) ranked
high for SND and OPCA, but not for SDS, for which respiratory failure, syncope, and
urinary incontinence ranked higher. These respective items tended to be significantly
higher in SDS than in SND and OPCA, at 76.9%, 43.5%, and 57.8%, respectively (Table 4).
In particular, respiratory failure, which is a poor prognostic factor in MSA, ranked high
for SDS and may be a unique feature determining prognosis for this subtype [28]. For
neurological findings and ADL, each item had more subitems according to the degree of
disability. If order was not considered, the relationships among the 84 subitems included in
these items and other items could be evaluated (Figure 1b). In contrast to Figure 1a, the P
component commonly ranked high in all subtypes. In particular, parkinsonism onset and
striatal atrophy/signal abnormality were common in all subtypes, while dysphagia was
specific for SND and apraxia was specific for SDS. The higher frequency of cases assigned
to this subtype compared to the other subtypes may be due to these specific findings. It is of
note that dysphagia was identified as an important feature for SND because this condition
is an additional feature of possible MSA-P and a poor prognostic factor for MSA-P [29].

Since the score indicates the importance of each item in the diagnosis, it is necessary
to clarify whether this contributes positively or negatively to the diagnosis. Therefore, we
examined the involvement of each item in the diagnosis in terms of positive and negative
correlations using the median regression coefficient (weight) obtained in the pointwise
linear model. With consideration of the rank order of the items, the finger-to-nose test
tended to be positive, with a positive weight for all subtypes. In addition, ataxia onset was
negative for all subtypes because presence/absence was reversed in the dataset structure
(presence = 1, absence = 0) from the general dataset structure (presence = 1, absence = 2),
indicating a tendency for all subtypes to have ataxia onset in common (Table 6a). Similarly,
without considering the rank order of items, SDS tended to be associated with autonomic
dysfunction and was less likely to be associated with parkinsonism (Table 6b). On the
other hand, SDS showed a weight of −0.030 for apraxia, which indicates that apraxia
is a significant differential feature in SDS. SND tended to be accompanied by erectile
dysfunction as autonomic dysfunction and walking capacity normal, with a weight of
−0.103. Given that the severity of walking capacity was included in the critical feature of
the model with considering the order of severity of items, it suggests that “inability to walk
normally” is more important than the severity of walking capacity in the diagnosis of SND.
In OPCA, autonomic dysfunction and parkinsonism were less likely to be present.

This study shows that use of a machine learning can improve the diagnostic accuracy
for MSA. However, important items in differential diagnosis need to be identified using a
pointwise linear model, so that future studies of complex conditions such as MSA can be
conducted. This will be a key aspect of development of diagnostic criteria for MSA.

5. Conclusions

In this study, we examined the feasibility of machine learning for differential diagnosis
of MSA, which is characterized by a complex interplay of autonomic dysfunction, parkin-
sonism, and cerebellar ataxia that changes over time, and we identified important features
in the diagnosis. Unlike conventional statistical methods that capture the characteristics of
MSA subtypes, we were able to determine the influence of features that may have been
overlooked in diagnosis by considering relationships among all the variables. Although
poorly L-DOPA-responsive parkinsonism is a diagnostic criterion for MSA, treatment
response could not be included in the machine learning because of the lack of data on
response assessment after L-DOPA medication in this study. In this regard, it is not easy
to objectively assess L-DOPA responsiveness at early diagnosis. On the other hand, it is
possible to predict the prognosis from the information at the time of initial diagnosis by
machine learning the long-term course of medical treatment.
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