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Background. Metamodels can simplify complex health policy models and yield instantaneous results to inform policy
decisions. We investigated the predictive validity of linear regression metamodels used to support a real-time
decision-making tool that compares infant HIV testing/screening strategies. Methods. We developed linear regression
metamodels of the Cost-Effectiveness of Preventing AIDS Complications Pediatric (CEPAC-P) microsimulation
model used to predict life expectancy and lifetime HIV-related costs/person of two infant HIV testing/screening pro-
grams in South Africa. Metamodel performance was assessed with cross-validation and Bland-Altman plots, show-
ing between-method differences in predicted outcomes against their means. Predictive validity was determined by the
percentage of simulations in which the metamodels accurately predicted the strategy with the greatest net health ben-
efit (NHB) as projected by the CEPAC-P model. We introduced a zone of indifference and investigated the width
needed to produce between-method agreement in 95% of the simulations. We also calculated NHB losses from
‘‘wrong’’ decisions by the metamodel. Results. In cross-validation, linear regression metamodels accurately approxi-
mated CEPAC-P-projected outcomes. For life expectancy, Bland-Altman plots showed good agreement between
CEPAC-P and the metamodel (within 1.1 life-months difference). For costs, 95% of between-method differences
were within $65/person. The metamodels predicted the same optimal strategy as the CEPAC-P model in 87.7% of
simulations, increasing to 95% with a zone of indifference of 0.24 life-months (;7 days). The losses in health benefits
due to ‘‘wrong’’ choices by the metamodel were modest (range: 0.0002–1.1 life-months). Conclusions. For this policy
question, linear regression metamodels offered sufficient predictive validity for the optimal testing strategy as com-
pared with the CEPAC-P model. Metamodels can simulate different scenarios in real time, based on sets of input
parameters that can be depicted in a widely accessible decision-support tool.
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The clinical complexity of health policy models such as
the Cost-Effectiveness of Preventing AIDS Complications
Pediatric (CEPAC-P) model allows highly detailed analyses

This Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons

Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use,

reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and

Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Corresponding Author

Djøra I. Soeteman, Center for Health Decision Science, Harvard T.H.

Chan School of Public Health, 718 Huntington Ave, 2nd Floor,

Boston, MA 02115, USA; Telephone: (617) 432-1723

(dsoetema@hsph.harvard.edu).

us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/2381468320932894
journals.sagepub.com/home/mdm


that capture many essential components of HIV disease
progression and clinical care.1–4 However, microsimula-
tion model complexity often requires that model users
undergo extensive training before conducting time-
intensive and computationally intensive model-based
analyses. Public health planners aim to allocate resources
among health care strategies as efficiently as possible.
However, they do not always have access to published
research findings from a detailed microsimulation model
for scenarios that resemble their own specific circumstances.
Moreover, they may prefer instantaneous (although less
nuanced) results in order to make policy decisions quickly.
Therefore, there is a pressing need for alternate approaches
to make model results accessible to a wide range of users
and to permit users to modify analyses quickly to reflect the
unique features of their own clinical or programmatic
settings.

In a previous analysis, we used the CEPAC-P microsi-
mulation model of pediatric HIV acquisition and disease
progression to evaluate two strategies for infant HIV
testing and screening in South Africa, Zimbabwe, and
Côte d’Ivoire to inform World Health Organization
(WHO) recommendations.5 As requested by policy makers,

we varied key clinical and economic inputs to reflect a
range of local settings. These variations were time-
intensive and computationally intensive. A ‘‘light’’ ver-
sion of the CEPAC-P model—a metamodel, based on
statistical analysis of model inputs and outputs from
many simulation runs—may provide a solution to mak-
ing this complex health policy model publicly available
while enabling public health planners to customize the
model input parameters to local settings and receive
immediate results. There is a sizeable literature on meta-
modeling, most of it in the physical sciences and engi-
neering.6–8 In health policy, as yet, such statistical
metamodels have mainly been used to reduce computing
time in value of information analyses, quantifying the
impact of decision uncertainty in model input para-
meters.9–13 In this article, we describe the use of meta-
models to simulate different scenarios based on sets of
input parameters that can be varied in a widely accessi-
ble decision-support tool. The objectives of this study
were to make the CEPAC-P model results available in a
real-time decision-making tool to public health planners
and to investigate the predictive validity of linear regres-
sion metamodels used to support this tool that compares
infant HIV testing and screening strategies.

Methods

Infant HIV Testing Strategies in the CEPAC-P
Model

Early infant HIV diagnosis and antiretroviral therapy
markedly reduce pediatric mortality.14 The WHO recom-
mends early infant HIV diagnosis (EID) at 6 weeks of
age for all infants who are at risk for HIV infection (i.e.,
HIV-exposed). However, many HIV-exposed infants are
not being tested (49% globally, as of 2017),15 due in part
to loss to follow-up before the 6-week visit and to lack of
knowledge of maternal HIV status and thus infant risk.
Infant immunization coverage exceeds 80% in many high
HIV prevalence settings, and immunization visits may
therefore provide valuable opportunities for HIV diagno-
sis among infants.16,17 In a previous analysis, we used the
CEPAC-P microsimulation model to evaluate the cost-
effectiveness of adding a screening strategy to determine
HIV exposure to the currently WHO-recommended
strategy of testing only known HIV-exposed infants. The
microsimulation model analysis evaluated these strate-
gies in Côte d’Ivoire, Zimbabwe, and South Africa. For
this metamodeling analysis, we use the CEPAC-P results
from South Africa as an example setting.5 The incremen-
tal cost-effectiveness ratio in South Africa was $420/year
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of life saved (YLS), suggesting that screening to deter-
mine exposure would be cost-effective at willingness-to-
pay (WTP) thresholds higher than $420/YLS.

CEPAC-P Model Strategies and Structure

The CEPAC-P model is a first-order, Monte Carlo simu-
lation model of infant HIV acquisition, disease progres-
sion, diagnosis, and treatment.1–4 Using CEPAC-P, we
simulated a ‘‘birth cohort’’ of all infants born in South
Africa in a given year, composed of HIV-unexposed
infants, HIV-exposed infants who do not acquire HIV,
and infants with HIV. A virtual cohort of 30 million
infants was simulated in order to achieve stable model
output. We examined the two strategies mentioned in the
previous section, more specifically: 1) current infant test-
ing programs, using polymerase chain reaction (PCR)-
based testing at 6 weeks of age for all infants born to
mothers known to be living with HIV (EID); and 2) in
addition to current EID programs, a novel program of
screening mothers to determine infant exposure at immu-
nization visits at 6 or 10 weeks of age (with an antibody-
based rapid diagnostic test [RDT]), followed by PCR-
based testing for infants identified as HIV-exposed
(screen and test).

The structure of the CEPAC-P model has been
described in detail in prior publications.2–4 Briefly,
infants enter the model at birth and are at risk of having
acquired or acquiring HIV during the mother’s preg-
nancy, delivery, or during breastfeeding. After an infec-
tion occurs, individuals transition monthly between
health states, including chronic HIV infection, acute
opportunistic infections (OIs), and death, with transition
probabilities based on age, CD4% (age \5years) or
CD4 cell count (age �5), retention in care or loss to follow-
up, antiretroviral therapy (ART) use, and response to
ART. The simulation ends when an individual dies from
an HIV-related or non-HIV-related cause. Costs are calcu-
lated from the health care system perspective (here, in 2016
US$) and include the costs of routine HIV care, care for
OIs, ART regimens, laboratory monitoring, and HIV
screening and testing.4 Costs and life-years are discounted
at a rate of 3% annually. More information about the
CEPAC-P model is available at https://www.massgeneral
.org/medicine/mpec/research/cpac-model.

Metamodel Parameters

A metamodel, or model of the model, is a second model
that simplifies the relationship between the inputs and

outputs of a simulation model.9 The CEPAC-P model
includes hundreds of individual input parameters related
to HIV natural history, peri- and postnatal transmission,
HIV test characteristics, multiple treatment regimens,
laboratory monitoring, and costs. To select input para-
meters for the metamodel and decision-support tool (i.e.,
the parameters that the lay user will be able to modify),
we used three criteria. First, we included parameters to
which cost-effectiveness results were sensitive in the orig-
inal microsimulation model–based analyses for South
Africa or which are known to affect all CEPAC-P model
results.2,4,5 Second, we selected parameters that are likely
to vary across settings in sub-Saharan Africa, in order to
allow users of the decision-support tool to reflect pro-
grams in countries beyond South Africa.5 Third, we
selected parameters that were identified by policy makers
during a regional workshop organized by the WHO in
Johannesburg in June 2017. During this workshop, pol-
icy makers and program planners from 16 African coun-
tries provided key information about the local
availability of the data parameters selected as inputs for
the tool through the first two methods, and suggested
additional parameters that would be helpful to make
policy decisions.18 Based on these considerations (i.e.,
impact on cost-effectiveness results, variability between
countries, and relevance to policy makers), we selected
14 clinical/epidemiological parameters and 4 cost para-
meters for the metamodels (Table 1).

We fitted separate metamodels to each outcome: life
expectancy and lifetime per-person HIV-related cost.
From these outcomes, we calculated net health benefit
(NHB). NHB expresses the cost-effectiveness of the pro-
grams by subtracting forgone health benefits due to the
resources required by the intervention from the gain in
health resulting from the intervention (NHB = health
benefit 2 (cost/WTP for health)). For this analysis, we
assumed a WTP for health of $547/YLS, which reflects
the combined ICER of a package of services that the
health sector was able to afford with the 2016 to 2018
HIV budget of about $1.6 billion per year in South
Africa.19 In the decision-support tool, the user is able to
vary the WTP for health.

Generating Datasets of CEPAC-P Model Inputs
and Outputs to Fit the Metamodels

We used Latin Hypercube Sampling (LHS)20 in MATLAB21

to generate the input parameter values for 5000 CEPAC-
P model simulations. LHS is a method of stratified
sampling that selects values randomly from the

Soeteman et al. 3

https://www.massgeneral.org/medicine/mpec/research/cpac-model
https://www.massgeneral.org/medicine/mpec/research/cpac-model


parameter space. The purpose is to cover a range of
input values that the user may want to choose in the
decision-support tool, indicating variability across set-
tings and policies. The ranges considered are provided in
Table 1.

Metamodel

We chose an ordinary least squares (OLS) regression for
the metamodel, because it performed as well or better than
more complex nonlinear metamodels in our preliminary

Table 1 Metamodel Input Parameters, Descriptions, and Value Rangesa

Clinical/Epidemiological/Cost Parameters Description Value Range

1. Maternal HIV prevalence Maternal prevalence of HIV in antenatal care
(ANC) settings

0% to 40%

2. Maternal HIV incidence during breastfeeding Yearly probability of incident HIV infection among
HIV-uninfected breastfeeding women

0% to 10%

3. HIV status known in pregnancy Probability of HIV status being known during
pregnancy (e.g., HIV testing)

0% to 100%

4. ART coverage during pregnancy/breastfeeding Proportion of identified HIV-infected women
receiving ART during pregnancy and breastfeeding
(e.g., PMTCT coverage)

0% to 100%

5. Breastfeeding probability Probability that a simulated infant is breastfed 0% to 100%
6. Breastfeeding duration, mean (in months) Among breastfed infants, average duration of

breastfeeding
0 to 18

7. Immunization coverage (screen and test only) Proportion of all infants presenting to immunization
clinics at 6 weeks and undergoing HIV screening

0% to 100%

8. EID coverage Proportion of known HIV-exposed infants
undergoing EID testing at 6–10 weeks

0% to 100%

9. Result-return and linkage to infant care/ART
after PCR for EID

Following a positive PCR during EID testing,
probability of receiving results and linking to HIV
care

0% to 100%

10. Result-return time for PCR in EID, mean (in
months)

For infants receiving PCR results during EID
testing, mean time to result return

0 to 3

11. Result-return and transfer to infant PCR
after RDT (screen and test only)

Following a positive maternal rapid antibody
screen, probability of receiving result and linking
to recommended follow-up PCR testing

0% to 100%

12. Result-return and linkage to infant care/ART
after PCR following RDT (screen and test
only)

Proportion of infants (identified as HIV-exposed
from maternal screening and undergoing follow-up
PCR) who receive the result of the PCR

0% to 100%

13. Result-return time for PCR following RDT,
mean (in months) (screen and test only)

For infants receiving PCR test after positive
maternal screen, mean time to result return

0 to 3

14. Maternal linkage to care/ART following
RDT (screen and test only)

For women newly identified with HIV through
maternal screening, probability of linking to adult
HIV care and ART (reducing later risk of
postnatal HIV transmission to uninfected infants)

0% to 100%

15. ART cost (multiplier 3 CEPAC-P cost input
data for South Africa, derived from published
price lists)

Costs of first-line and second-line pediatric and
maternal ART (these vary by age and regimen)

0.1 to 2

16. Cost of screening program (per mother-infant
pair)

Cost of HIV screening program to detect maternal
HIV (including rapid diagnostic test cost,
personnel cost, and implementation costs)

$1 to $50

17. Routine care cost (multiplier 3 CEPAC-P
cost input data for South Africa, derived
from published data)

Routine monthly HIV care costs (these vary by age
and CD4%/CD4 count)

0.1 to 2

18. Acute OI cost (multiplier 3 CEPAC-P cost
input data for South Africa, derived from
published data)

Cost of care for specific types of OI (these vary by
OI type and age)

0.1 to 2

ART, antiretroviral therapy; CEPAC-P, Cost-Effectiveness of Preventing AIDS Complications Pediatric; EID, early infant diagnosis; OI,

opportunistic infection; PCR, polymerase chain reaction; PMTCT, prevention of mother-to-child transmission; RDT, rapid diagnostic test.
aThe model inputs for pediatric ART were based on the 2016 WHO guidelines (prior to incorporation of DTG for children).28
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analyses (Appendix A). Moreover, it is the simplest and
most practical model compared to more advanced meta-
modeling techniques.22 We evaluated the performance of
OLS for both outcomes of life expectancy and cost. We
fitted metamodels to both strategies (EID and screen and
test), because some parameters are irrelevant for the EID
strategy and, therefore, not included in the model (e.g.,
immunization coverage). OLS assumes a linear relation-
ship between the model parameters and the outcomes. We
added interaction terms to optimize model fit. All meta-
models were developed in R software and the code is pro-
vided in Appendix B.23

Metamodel Performance

For each strategy, we first tested the predictive validity
of the metamodels for both outcomes (life expectancy
and cost) using a cross-validation approach.24 We ran-
domly split the total number of simulations in half and
developed two metamodels independently using each of
these 2500 simulations (training datasets). Next, we used
each metamodel to predict the outcomes using the data-
set that was not used to generate that metamodel (valida-
tion datasets). For each metamodel, we compared the
predicted outcome values with the original CEPAC-P
model-generated results using the R2 statistic. The R2

statistic measures the proportion of variability in the
model outcomes that can be explained by the input para-
meters. Generally, a large R2 value (e.g., close to 1) indi-
cates that the model fits the data well. The metamodel
was considered valid if the R2 statistic computed on the
data that was used in model development (i.e., the train-
ing dataset) was similar to the R2 computed on the data
that was not used to fit the models (i.e., the validation
dataset). Friedman and Friedman, in their landmark
paper on the validation of metamodels, visually compare
the R2 values to indicate whether the R2s are similar
enough to indicate that internal validity of the metamo-
del is sufficient and do not define any cutoff values.24

For each strategy, we next assessed between-method
agreement between the CEPAC-P model and the meta-
models for the outcomes of life expectancy and cost, as
well as for the resulting NHB, with Bland-Altman plots.25

In the Bland-Altman plots, we plotted the differences
between predicted CEPAC-P model outcome values
obtained with the metamodel and the actual CEPAC-P
model outcome values [(Ycepac2Ymetamodel)] against the
mean of the two outcome values [(Ycepac+ Ymetamodel)/
2]. The limits of agreement, represented by two dotted
lines in the plot, provide an interval within which 95% of

between-method differences in predicted outcomes are
expected to fall and is estimated by m6 1.96 * SD, where
m is the mean difference and SD is the standard deviation
of the differences. The smaller the 95% limits of agree-
ment, the closer the metamodel predictions resemble the
observations as projected by the CEPAC-P model.

Finally, when comparing the two strategies (EID and
screen and test), we determined the predictive validity,
defined as the percentage of simulations in which the
metamodels accurately predicted the strategy with the
greatest CEPAC-P-projected NHB (i.e., the optimal
strategy). We also calculated the mean and range of
NHB losses from ‘‘wrong’’ decisions by the metamodels,
representing forgone benefits in terms of health, if the
metamodels were used in lieu of the CEPAC-P model for
decision making.

In the CEPAC-P model analysis comparing EID and
screen and test, a cohort of all infants born in a given
year in South Africa was simulated. In that cohort, a
minority of infants are HIV-exposed (base-case: 34%),
and even fewer acquire HIV (6%). Therefore, the abso-
lute difference between life expectancies in the two strate-
gies was small, because the clinical benefits of screen and
test for HIV-exposed infants were diluted by the large
number of infants in the population who were HIV-
unexposed and who did not benefit from that strategy.
As a result, the differences in NHB between the two stra-
tegies were also small. Generally, the strategy with the
greatest NHB is the economically optimal strategy,26 but
without substantial difference in cost-effectiveness, deci-
sions can be made based on other factors such as pro-
grammatic feasibility. In comparing the metamodel-
predicted and CEPAC-P-predicted optimal strategy, we
therefore used a new approach, introducing a zone of
indifference. In this approach, we had three possible sce-
narios: 1) EID could be indicated as the optimal strategy
(EID’s NHB was greatest and the difference between the
NHB’s of the two strategies was larger than the zone of
indifference); 2) screen and test could be indicated as the
optimal strategy (screen and test’s NHB was greatest and
the difference between the NHB’s of the two strategies
was larger than the zone of indifference); or 3) the differ-
ence in NHB between the two strategies represented too
narrow a margin to generate a decision (the difference
was smaller than the zone of indifference). We expanded
the width of this indifference zone from 0 (base case
analysis) to the width needed to produce between-
method agreement on the optimal strategy or indiffer-
ence between strategies in 95% of the simulations (i.e.,
an a priori determined arbitrary standard).
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Results

Decision-Support Tool

The metamodels were embedded into an online decision-
support tool, available with full documentation at the
WHO website: https://www.who.int/publications-detail/
paediatric-hiv-testing-strategy-decision-tool or directly via
the link: https://mghcost-effectiveness.shinyapps.io/CEA_
Q1_May12/. Figure 1 displays the design of the tool.

Model Fit Using Cross-Validation

We show results for the EID strategy in Table 2. First,
cross-validation showed that the R2 values computed on

the training and validation datasets were high, indicating
that OLS explain the variation in CEPAC-P-projected
results well (Table 2). The R2 for life expectancy was
slightly higher (R2 = 0.99 for both training and valida-
tion datasets) than for costs (R2 = 0.98 for both training
and validation datasets).

Agreement Between Metamodels and CEPAC-P
Model

For both strategies, the Bland-Altman plots showed good
agreement for life expectancy between the CEPAC-P model
and the OLS regression metamodels (Figure 2). With
EID, comparing the CEPAC-P model and metamodel

Figure 1 Screenshot of the decision-support tool in R Shiny.

Table 2 Cross-Validation Results of Linear Regression Metamodels in Comparison With the CEPAC-P Model for the
EID and Screen and Test Strategiesa

Life Expectancy Lifetime per-Person HIV-Related Cost

R2
Statistic EID Screen and Test EID Screen and Test

Training dataset 1 (2500 simulations) 0.99 0.99 0.98 0.98
Validation dataset 1 (2500 simulations) 0.99 0.99 0.98 0.98
Training dataset 2 (2500 simulations) 0.99 0.99 0.98 0.98
Validation dataset 2 (2500 simulations) 0.99 0.99 0.98 0.98

EID, early infant diagnosis; CEPAC-P, Cost-Effectiveness of Preventing AIDS Complications Pediatric; OLS, ordinary least squares.
aWe conducted 5000 CEPAC-P model microsimulations. We divided these 5000 parameter sets into a training dataset (the 2500 simulations used

in metamodel development) and a validation dataset (the 2500 simulations not used in metamodel development).
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(Figure 2a), the mean between-method difference in dis-
counted life expectancy was 20.004 life-months. In 95%
of the simulations, life expectancy as measured with the
metamodel was within 1.01 life-months below or above
the CEPAC-P model-generated value (95% limits of
agreement: 21.01, 1.003 life-months). The limits of agree-
ment of the between-method differences represented
0.3% of mean overall life expectancy. There was poorer
agreement for lifetime HIV-related costs between the
CEPAC-P model and the metamodel. With EID, com-
paring CEPAC-P and the metamodel, the mean between-
method difference was $ 0.93 (95% limits of agreement:
2$57, $59; Figure 2b). The limits of agreement repre-
sented a bigger proportion (;20%) of mean overall life-
time costs compared to life expectancy.

The agreement between CEPAC-P and the metamo-
dels was similar for the Screen and test strategy. For
example, for life expectancy, there was a mean between-
method difference of 20.01 life-months (95% limits of
agreement: 21.05, 1.04 life-months; Figure 2c), and for
costs, a mean between-method difference of $ 0.16 (95%
limits of agreement: 2$64, $65; Figure 2d).

Prediction of Optimal Strategy

Without a zone of indifference (i.e., requiring the selec-
tion of either EID or Screen and test to have the highest
NHB and thus be ‘‘optimal’’), the metamodels identified
the same optimal strategy as CEPAC-P in 87.7% of the
simulations. The mean loss in NHB in the instances

Figure 2 Bland-Altman plots comparing CEPAC-P model
results with the results of the linear regression metamodels.
Shows the comparison of the CEPAC-P microsimulation
model results with results from the OLS metamodels for the
EID and Screen and test strategies, using Bland-Altman plots.
The vertical axis indicates the between-method difference in
predicted outcomes in life-months (for life expectancy) or
USD (for lifetime HIV-related per-person cost). The
horizontal axis indicates the mean value of the CEPAC-P-
projected and metamodel-generated outcomes for each set of
parameter values. The solid line indicates the mean of the
differences and the dotted lines indicate the limits of
agreement within which 95% of the differences fall. The open
circles indicate the results of 2500 comparisons. Comparisons
are shown between CEPAC-P-generated life expectancy and
the OLS metamodel for EID (panel a), CEPAC-P-generated
cost and the OLS metamodel for EID (panel b), CEPAC-P-

generated life expectancy and the OLS metamodel for screen
and test (panel c), and CEPAC-P-generated cost and the OLS
metamodel for screen and test (panel d).
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where the metamodel chose the ‘‘wrong’’ strategy com-
pared to CEPAC-P was very low at 0.018 (range: 0.0002–
1.1) life-months.

With a zone of indifference, we calculated the propor-
tion of all simulations in which the metamodel either
selected the same optimal strategy as CEPAC-P or gener-
ated a result of ‘‘indifferent,’’ as a function of the defined
width of the zone of indifference. The metamodel pre-
dicted the same optimal strategy or state of indifference
between strategies as CEPAC-P in 95% of the simula-
tions when we expanded the zone of indifference from 0
to 0.24 life-months (;7 days).

Regression Coefficients

The regression coefficients of the metamodel input para-
meters for life expectancy and lifetime HIV-related costs
for the EID and Screen and test strategies using the total
dataset of 5000 simulations are displayed in Appendix C.

Discussion

We investigated the validity of linear regression metamo-
dels to predict the results of a complex microsimulation
model of infant HIV testing and screening strategies.
Cross-validation results showed good predictive validity
of this metamodeling technique. The R2 statistic was
high for life expectancy (R2 = 0.99) and HIV-related
costs (R2 = 0.98). Bland-Altman plots showed good
agreement for the comparison between the metamodels
and the CEPAC-P model for life expectancy (within 1.05
life-months difference), suggesting that an OLS metamo-
del predicts these CEPAC-P-generated outcomes reli-
ably. For the outcome of HIV-related costs, 95% of the
between-method differences were within $65. The slightly
poorer agreement for costs, compared to life expectancy,
could be attributed to the skewedness of the cost out-
comes. However, when we compared the OLS metamo-
dels to more advanced metamodeling techniques that
take the nonnormal distribution of the cost outcome into
account, such as generalized additive models, OLS with
and without log transformation, and generalized linear
models with gamma-family and log-link (Appendix A),
OLS surprisingly offered the best predictive validity as
compared with CEPAC-P. Thus, at least for this applica-
tion, the linear regression metamodel provides an accu-
rate, easy to use, and efficient proxy for the CEPAC-P
simulation model upon which it is based.

The online decision-support tool (running the meta-
models in the background) can be used to support deci-
sion makers who wish to understand the sensitivity of a

decision to variations in assumptions about key popula-
tion quantities. Using the tool in practice could poten-
tially identify gaps in data availability on (or uncertainty
in) key model parameters and the need to collect better
estimates. We hope that this tool will help public health
planners to allocate resources between testing strategies
as efficiently as possible.

Despite the fact that the absolute difference in NHB
between EID and Screen and test was very small in the
original CEPAC-P model-based analysis, the metamo-
dels identified the same optimal strategy as CEPAC-P
87.7% of the time. Moreover, the losses in health bene-
fits due to ‘‘wrong’’ choices by the metamodel were very
small (mean = 0.018 life-months; range: 0.0002–1.1 life-
months), so that their consequences for decision-making
can likely be ignored. When we designated a small differ-
ence in NHB of 0.24 life-months (;7 days) or below as
too narrow a margin to make a decision between strate-
gies, the percentage of accurate predictions (i.e., both
CEPAC-P and metamodels indicated EID optimal, Screen
and test optimal or too small of a difference to generate a
decision) increased to 95%. When the economic value of
both strategies is considered similar, decisions can be made
based on other factors such as programmatic feasibility.
Alternatively, program planners could delay the decision
and continue the currently implemented strategy until find-
ings from the CEPAC-P model on their own clinical or
programmatic settings become available.

In our original analysis, with the CEPAC-P model,
the differences in NHB between the two strategies were
very small, due to the fact that we modeled a birth cohort
consisting of HIV-unexposed infants, HIV-exposed
infants who do not acquire HIV, and infants with HIV.5

In this population, only ;6% of infants acquired HIV.
The life expectancy gains and HIV-related costs due to
EID and Screen and test were mainly accrued in this
small portion of the modeled population and were thus
diluted when we calculated aggregated NHB over the
total modeled population, as is required to understand
the value of a testing strategy which must reach both
children with and without HIV. We expect that the abil-
ity of these metamodels to predict the same optimal
strategy as the CEPAC-P model will increase when they
are used in analyses in which the differences in NHB
between the strategies are more pronounced, and thus
the decision is more certain.

The OLS metamodels performed well in terms of pre-
dictive validity and between-methods level of agreement
for life expectancy, and relatively well for lifetime HIV-
related costs. Our aim was to use the metamodels to
facilitate publicly available, online decision-support tools
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that allow users to provide their own input data to gen-
erate setting-specific results. Therefore, in addition to the
accuracy of model predictions and level of agreement,
we also consider the practicality of embedding the meta-
models at the ‘‘back-end’’ of a decision-support tool.
OLS yields a simple formula with regression coefficients
that is transparent and can easily be used to calculate a
predicted value for outcomes when a user enters setting-
specific values for the input parameters of the metamo-
del. Additional considerations in building the tool are
that we would like to present multiple clinical and eco-
nomic outcomes, both short- and long-term, for this and
other policy analyses. Regularly updating the metamo-
dels with new evidence may be warranted. Therefore,
only if OLS would not sufficiently predict the CEPAC-
P-predicted outcomes would it justify turning to more
advanced metamodeling techniques that would bring
extra challenges in developing and maintaining the deci-
sion support tool.

The metamodel is limited to the policies, or health care
strategies, that were simulated in the original microsimu-
lation model analyses. Although changes in parameteriza-
tion would allow the metamodel user to evaluate the
same policies (EID and Screen and test) in different set-
tings, the metamodel will not be able to evaluate an
entirely novel policy, unless the policy is only defined by
the parameters included in the metamodels. For example,
including the parameter ‘‘age’’ in the metamodels, would
allow the user to compare EID testing at a different age.

The major strength of this validation study is that in
addition to R2 cross-validation, we used another approach
that specifically focused on between-methods agreement
of predicted outcomes (i.e., the Bland-Altman approach).
We note that a high R2 statistic does not necessarily mean
that the CEPAC-P model and the metamodel are in high
agreement.25 This concept is best illustrated for the out-
come of lifetime HIV-related costs. The OLS metamodel
shows a very high R2 of 0.98, but when we look at the
level of agreement between the CEPAC-P model and the
metamodel with Bland-Altman plots, moderate absolute
differences in lifetime HIV-related costs (i.e., ;20% of
mean overall lifetime costs) suggest that it may not be
acceptable to replace the former with the metamodel to
predict costs. This is mainly due to several extreme out-
liers when the costs in the CEPAC-P simulation are close
to zero. However, when evaluating NHB rather than just
costs, the metamodel performed adequately, as demon-
strated by predicting the same optimal strategy as the
CEPAC-P model 88% of the time.

This study is subject to several limitations. First, the
metamodels may only be generalizable to countries and
local settings for which the values of the CEPAC-P
model parameters not included in the metamodels are
applicable. Although we have included the parameters in
the metamodels that showed variation between countries
and appeared sensitive to changing the outcomes in sen-
sitivity analyses, additional metamodels may be needed
for settings with parameter values that strongly deviate
from the sub-Saharan African values for these additional
parameters. Second, there is no clear consensus about
the WTP for health in South Africa or most other coun-
tries. We used a WTP for health of $547/YLS.19 This
threshold value is relatively close to the incremental cost-
effectiveness ratio of $420/YLS of screen and test com-
pared to EID, which makes the decision to indicate
screen and test as the optimal strategy relatively uncer-
tain. Choosing a different WTP threshold would affect
the percentage of accurate predictions by the metamo-
dels. When the difference between the WTP for health
and the incremental cost-effectiveness ratio of the two
strategies is more pronounced, the decision will be more
certain, and the percentage of accurate predictions will
increase. In the decision tool, we allow the user to alter
the WTP threshold to explore the impact on the clinical
and cost-effectiveness outcomes. Finally, our conclusion
that linear regression metamodels provide sufficient fit is
specific for our policy comparison (EID v. Screen and
test) using the CEPAC-P model as the gold standard.
Further research using different policy comparisons and
microsimulation models should go through a similar pro-
cess of fitting different forms of metamodels, assess the
fit, and choose the best-fitting metamodeling technique.
However, it is not uncommon to successfully capture
complex disease progression and processes in a ‘‘simple’’
linear regression model. For example, the Framingham
coronary heart disease risk score is generated by one of
the most commonly used clinical prediction models,
which is based on a logistic regression analysis.27

Despite these limitations, we conclude that metamo-
dels can provide accurate support when instantaneous
results to inform policy decisions are preferred. For this
policy question, comparing EID with Screen and test
using the CEPAC-P model, the linear regression meta-
model offers sufficient predictive validity to identify the
optimal testing strategy as compared with CEPAC-P.
Moreover, metamodels can simulate different scenarios
in real-time based on sets of input parameters that can
be depicted in a widely accessible decision-support tool.
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