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Fundamental to classical and quantum vortices, superconductors,
magnetic flux tubes, liquid crystals, cosmic strings, and DNA is
the phenomenon of reconnection of line-like singularities. We
visualize reconnection of quantum vortices in superfluid 4He,
using submicrometer frozen air tracers. Compared with previous
work, the fluid was almost at rest, leading to fewer, straighter,
and slower-moving vortices. For distances that are large com-
pared with vortex diameter but small compared with those from
other nonparticipating vortices and solid boundaries (called here
the intermediate asymptotic region), we find a robust 1/2-power
scaling of the intervortex separation with time and characterize
the influence of the intervortex angle on the evolution of the
recoiling vortices. The agreement of the experimental data with
the analytical and numerical models suggests that the dynam-
ics of reconnection of long straight vortices can be described by
self-similar solutions of the local induction approximation or Biot–
Savart equations. Reconnection dynamics for straight vortices in
the intermediate asymptotic region are substantially different
from those in a vortex tangle or on distances of the order of the
vortex diameter.
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Reconnections are collisions of two line-like topological
defects which subsequently recombine by exchanging each

other’s tails (1). These changes in topological configuration occur
in magnetic flux tubes (2), cosmic strings (3), polymers, liquid
crystals (4), superconductors (5), and DNA (6) and are common
in quantum (7) as well as classical vortices (8). Reconnec-
tions are crucial in redistributing and dissipating energy (kinetic
or magnetic) in turbulence, astrophysical plasmas, and fusion
devices (2).

Here, we study reconnection of quantized vortices in super-
fluid 4He. Superfluid helium can be modeled as a mixture of
a viscous normal component and an inviscid superfluid com-
ponent. Vorticity in the superfluid fraction is constrained to
quantum vortices (9), which are phase singularities and topo-
logical defects in the order parameter describing the super-
fluid. The circulation of the quantized vortices is constrained
to be the quantum of circulation κ= h/m , where h is Planck’s
constant and m the mass of the helium atom. The tan-
gle of quantum vortices that forms when the superfluid is
driven far from equilibrium is called quantum turbulence (10).
Reconnections are thought to be central to the decay of quantum
turbulence (11), which lacks viscosity as a dissipative mech-
anism in the zero-temperature limit (12). Reconnections are
understood to excite a cascade of kelvin waves (13) leading to
energy dissipation via emissions of phonons (14) and possibly
rotons (15). Reconnection of quantized vortices has been visual-
ized in superfluid helium (7) and in Bose–Einstein condensates
(16). Unlike in classical fluids (8, 17), quantized vortices and
their reconnections are well-defined concepts because the vor-
ticity does not diffuse. In the present work, the vortex core
a0≈ 10−10 m, while the vortex length l ' 1 mm. This work
focuses on reconnection in the intermediate asymptotic state
where the vortices are straight and distances are large com-
pared with the vortex diameter and small compared with those

from the next nonparticipating vortices or the walls of the
apparatus.

The first person to address reconnection analytically was
Crow (18) with his work on trailing vortices (in classical fluids).
Schwarz (19) introduced numerical techniques based on the
Biot–Savart equation and studied the problem quantitatively.
Other works (20, 21) are based on the nonlinear Schrödinger
equation, also known as the Gross–Pitaevksii (GP) equa-
tion. In classical fluids, reconnection has been studied exper-
imentally (22, 23) and numerically (24, 25). The first exper-
imental study of reconnection in superfluid helium was by
Bewley et al. (7), who used a technique previously devel-
oped in ref. 26 to visualize the vortex position by means
of micrometer-sized solid hydrogen tracers trapped on vortex
cores. Later studies by Paoletti et al. (27, 28) included some
20,000 reconnection events and found that the intervortex dis-
tance δ scales as A

√
κta(1 + cta), where ta = |t − t0| and t0

is the time of reconnection, A is a dimensionless prefactor,
and c is a correction factor. This was a necessary modifica-
tion of the δ∝

√
κta scaling deduced from dimensional analysis,

assuming that the only relevant quantity in reconnecting vor-
tices is the quantum of circulation, and with previous numer-
ical simulations in an ideal fluid by ref. 29. The numerical
work using the GP equation yields, for scales close to the
vortex core, deviations from the 1/2 scaling, with different expo-
nents for advancing and receding vortices (30, 31), although
such deviations have not been observed in similar calculations
in ref. 32.

Significance

Superfluid helium exhibits topological defects in the form of
line-like objects called quantum vortices. Reconnection occurs
when two vortices collide and recoil by exchanging tails. We
observe such a reconnection for nearly isolated conditions and
find that the intervortex separation for a certain range scales
closely as the square root of the time after reconnection and
that the prefactor in the square-root law shows an analyti-
cal dependence on the reconnection angle. Reconnection is
important because it provides a mechanism for energy dissipa-
tion which otherwise does not occur in the zero-temperature
limit. The kinematics of reconnections are similar in systems
of classical vortices, cosmic strings, magnetic flux tubes in
plasmas, liquid crystals, and even DNA.
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Compared with these previous experimental studies we use
a visualization technique that uses frozen air tracers which are
much finer, described briefly in Materials and Methods and in
detail in ref. 33. The technique, previously used to visualize
kelvin waves (34), uses submicrometer particles injected directly
in the superfluid phase, permitting the visualization of longer
and straighter vortices. While the studies by Paoletti et al. (27,
28) inferred the reconnection events indirectly from rapid sepa-
rations of particle pairs, we observe reconnection events when
many particles are visible on both vortices along their length.
However, the number of events is smaller by a factor of 1,000
(20 events vs. 20,000 events) for two reasons. First, we worked in
a quiet system, at a temperature around 1.9 K, in which there
was no imposed heat flux (velocity of the normal component
∼0.01 mm/s) and the vortices had enough time to relax to almost
straight configurations; this is in contrast to refs. 27 and 28 in
which reconnections were excited in large numbers by pulsing a
heat flux that drove a counterflow and created vortex tangles.
Second, we looked for events in which both vortices are fully
decorated with particles and both branches lie within the narrow
laser sheet, which is only 150 µm thick. These stringent selection
criteria greatly reduce the number of observable events but this
choice of conditions has the benefit of eliminating the projection
effect of out-of-plane vortices.

When two straight vortices approach each other, they locally
reconfigure into antiparallel configuration (19, 23, 35, 36).
However, on the larger separation scale considered here, two
approaching straight vortices are always in a parallel configu-
ration and there exists a self-similar evolution for which the
vortex asymptotes form a global angle θ (Fig. 1). This self-similar
evolution is what we observe in our experimental visualizations
(Fig. 1). We first note that the intervortex distance δ follows
the 1/2 scaling, δ∝

√
κta , quite well (Fig. 2). To measure δ we

considered the closest intervortex distance by manually interpo-
lating the position of neighboring particles. We estimate a line
vortex density of ∼106 m−2, which corresponds to an average
intervortex spacing in the whole system of ∼1 mm.

If we insist on fits of the type used in refs. 27 and 28, we find
that the distribution of c (Fig. 3) peaks near 0, with a median
value of −0.10 s−1 and an average of −0.15 s−1. This means
that the deviation from the average is less than 10%. Moreover,
all values of c are negative. This fact could be due to boundary
conditions: The 1/2 scaling breaks down when the vortex comes
to rest as the cusp relaxes into a straight vortex and when the
boundary conditions progressively slow down its motion. This

≠

=

Fig. 1. (Left) The first frame of images shows the experimentally observed
vortices within ta = t− t0 = 30 ms of the time or reconnection t0, the second
frame those within the next 30 ms, and the last frame those after 240 ms.
(Right) The vortices at the time of reconnection are almost straight close to
the reconnection “point,” so it is possible to define an angle θ between
the vortices (leftmost line diagram). We also define the intervortex dis-
tance δ as the minimum distance between the retracting vortices (center
line diagram). The arrows on the lines represent the directions of circula-
tion. Straight vortices reconnect as in the top rightmost diagram. This is the
parallel reconnection. The way to understand this is to follow each vortex
after reconnection: One can identify a vortex by joining any two segments,
provided that the arrows point in the same direction; what matters is the
direction of the arrows. This picture does not preclude an antiparallel orien-
tation (bottom rightmost diagram) locally at reconnection but the present
intermediate asymptotics picture does not possess that resolution.
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Fig. 2. The intervortex distance δ as a function of time after reconnec-
tion for 20 reconnection events. Each point represents a measurement. The
trend is in broad agreement with the δ∝

√
κta scaling for which the dashed

lines are a guide to the eye. The data are collected in a few instances for
up to 2 s after reconnection, which is a factor of 10 longer than the data
collection in refs. 27 and 28. We have inserted an example of the error
bar, taken conservatively as the size of the pixel and the time between
images.

contrasts from refs. 27 and 28 in which the distribution peaked
at 0 and was much broader with a slightly larger number of pos-
itive values than negative values (Fig. 3, Inset). This difference is
most likely the result of very different conditions of the system:
quiet in our case, turbulent in refs. 27 and 28. Finally, devia-
tions from the 1/2 scaling of the intermediate asymptotic regime
could be due to the curvature and/or the presence of neighboring
vortices.

Although the statistics are limited, another important distinc-
tion is the distribution of the prefactor A. As is clear from Fig. 4,
we observe four instances in which A> 3 unlike any of the previ-
ous 20,000 observations in ref. 28 and, in general, higher values
of A. Indeed, the average value Ā of A is 2.14, compared with
Ā= 1.1 in ref. 28 and with Ā= 0.4 in the simulations in ref. 29.
The difference between the two experiments could be due to
the very different conditions and geometries of the system, as
already mentioned, and perhaps also to the reduced projection
effects here. Previous experiments looked at shorter timescales
after reconnection (10−3 s< ta < 0.2 s) over which the particle
pairs of interest were visible even while moving with a velocity
component orthogonal to the plane of the laser sheet. The cur-
rent experiments study longer timescales (2× 10−2 s< ta < 2 s),
with particles distributed along the vortex lengths, visible only
when aligned with the plane of the laser sheet.

The surprising fact that in previous experiments there were no
reported reconnections with A > 3 might also be caused by their
technique for measuring the separation distance δ between parti-
cle pairs. If the separation was too rapid, the algorithm might not
have detected the particles as a pair. Moreover, the bigger par-
ticles compared with the present ones might have slowed down
the separation between vortices due to drag, reducing the effec-
tive A. We cannot observe the prefactor A before reconnection
because of the way in which the vortices are arranged: The obser-
vations are for straight vortices approaching each other in the
direction orthogonal to the field of view, so it is not possible to
see the intervortex distance δ before reconnection. The reason
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Fig. 3. Normalized frequency distribution of the parameter c representing
the deviation from the 1/2-power scaling, δ= A

√
κta(1 + cta). The distribu-

tion consists only of negative values, peaking at slightly lower than 0, in
striking contrast with the data from the pulsed counterflow experiments
(28) (Inset, black curve) for which the distribution was much wider and
there were more instances in which c was positive than negative. Inset spike
represents data in the main plot.

for the difference from simulations in ref. 29 may well be that
they were performed just for the reconnection of vortex rings.

Let us consider the localized induction approximation (LIA)
for the vortices, first derived by Da Rios (37) and rediscovered
multiple times (38, 39). The Da Rios equation for the position of
the vortex s, also related to the elastica (40–42) originally solved
by Euler, is

ds
dt
'β ds

dσ
× d2s

dσ2
,

where σ is the parametric arc length and β'κ. We neglect log-
arithmic corrections for the core size and the radius of curvature
and examine the self-similar solutions described by Gutierrez et
al. (43) by defining the dimensionless coordinate η=σ/

√
βt . A

Fig. 4. Normalized frequency distribution of the prefactor A of the scaling
δ= A

√
κta(1 + cta). The black curve represents the data from about 20,000

events in the pulsed counterflow experiments reported in ref. 28, while
the histogram represents the 20 events currently under study. Unlike the
pulsed counterflow data, the present measurements show events with A >

3, corresponding to high intervortex velocity, and no events for A < 1.

similarity solution is sought in terms of s(σ, t) =
√
βtG(η), and

the resulting equation for G is

1

2
G− 1

2
ηG′= G′×G′′,

where the prime denotes the derivative with respect to η. The
solutions are a one-parameter family of curves governed by the
initial curvature C0, which satisfies C0 =A/4. The parameter C0

or A uniquely determines the opening angle θ between the two
branches of the retracting vortex. In fact, it is possible to write
an analytical relationship (43) between the curvature and the
opening angle as

A= 4

√
− 2

π
log(sin(θ/2)).

Note that the self-similar solutions are for individual curves and
describe the relaxation of the cusps, but do not take into account
the presence of other vortices.

As already stated, our data were obtained around 1.9 K, at
which there is still 40% of normal component, with the atten-
dant damping effect due to mutual friction (44). To account for
this effect, it is possible to include in the Da Rios equation the
extra term αd2s/dσ2, as done by Lipniacki (45). From the tables
in ref. 44 and our temperature range 1.9 K < T < 2 K we can
estimate a mutual friction coefficient to be 0.25<α< 0.3. No
analytical relation between the prefactor A and the angle θ exists
for such a modified equation, but it is possible to compute one
numerically. In Fig. 5 we present the data for A as a function
of θ as well as the two theoretical relationships with and with-
out the mutual friction term. We calculated the A-θ relationship
also for the self-similar solution of the full Biot–Savart law (46),
but no appreciable difference was seen in comparison with LIA.
We estimated the angle by measuring it manually. The horizon-
tal error bars reflect the uncertainty in these measures and the
inherent curvature of the vortices. The vertical error bar is the

Fig. 5. Plot of the prefactor A as a function of the angle of reconnec-
tion. The circles represent the present data while the square represents
the data in ref. 34. The dashed line represents the analytical relationship

A = 4
√
− 2

π log(sin(θ/2)) for the case α= 0, while the solid line represents
the case for α= 0.3, appropriate to T ' 1.9.
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uncertainty on the nonlinear fit to obtain the prefactor A. It is
clear from the plot that there is an overall agreement between
the experimental data and the theory, but it is hard to decide
whether the data are better fitted by the inclusion or omission of
the mutual friction. In ref. 34, however, we showed that the over-
lap of the data with theory is better if mutual friction is included.
We plotted the distribution of the angles in Fig. 5, Inset. As for
prefactor A, we observed a relatively flat distribution in the mid-
dle with no reconnections for angles less than 20

◦
and larger than

140
◦

, in contrast to the distribution predicted for mechanical
and thermal turbulence; they peaked, respectively, for high and
low θ (47).

In conclusion, we have examined the reconnection of almost
straight reconnecting vortices. On a global scale these vortices
reconnect in a parallel configuration and display a self-similar
evolution. The local rearrangement of vortices at the reconnec-
tion “point” is not visible on this scale, and a locally antiparallel
configuration is by no means precluded. To observe the local
rearrangement into antiparallel configuration and deviations
from the self-similar solution of LIA and Biot–Savart equations,
it is necessary to make observations at much smaller scales on
the order of the vortex core.

Our results are that deviations from the 1/2-power scaling
of the intervortex distance as a function of reconnecting time
are much smaller than in previous pulsed counterflow experi-
ments (27, 28). We have shown that the relationship between the
angle of reconnection and the prefactor A follows the analyti-
cal formula deduced from the self-similar solution of LIA. We
also observed reconnection events with A > 3 (corresponding to
θ < 50

◦
), higher than any of the events in the pulsed counter-

flow experiments. More broadly, in the intermediate asymptotic
regime for which reconnecting vortices are almost straight, the
behavior of reconnection is substantially different from that dur-
ing the decay of a vortex tangle, where the vortices are curved
and close together.

Materials and Methods
The experimental setup and visualization method is the same as in ref. 34
and is described in detail in ref. 33. It consists of an optical cryostat filled
with liquid helium in which we inject a dilute mixture of atmospheric air
in helium gas. The atmospheric air freezes into tracer particles that get
trapped on the quantum vortices due to a Bernoulli pressure gradient. The
particle size was estimated to be on the order of 0.5 µm, sometimes as
small as few hundred nanometers, based on both optical (48) and termi-
nal (33) velocity considerations. The particles are illuminated with a laser
sheet 1 cm wide and a thickness with a full width at half maximum (FWHM)
of 150 µm generated with a 4-mW laser. The imaging setup consists of a
Princeton Instruments Pro-EM, EM-CCD low-light camera running at a frame
rate of 30–100 frames per second and a resolution of 512 × 512–512 ×
128, on which is mounted a macro-lens (Micro-Nikkor 105 mm f/2.8 lens).
The 8.2-mm × 8.2-mm field of view is inside a glass cell, 2 cm2, that is
used to stabilize the system. Note that no particular procedure was used
to generate the vortices, which were present from transition or created by
parasitic heat flux. However, we cooled on the order of a few hundred
microkelvins per second and waited on the order of at least tens of min-
utes in the superfluid state to obtain the long, straight, and relaxed vortices
in which we were interested. The original movies can be downloaded from
https://zenodo.org/record/2543528#.XEId3lVKhph and questions concerning
them can be addressed to the corresponding author.
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