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Background: The benefit of cold exposure for humans against obesity has brought the
energy metabolism and activity of brown adipose tissue (BAT) induced by cold into focus.
But the results are inconsistent. This review is aimed to systematically explore the effect of
cold exposure on the activity of BAT and energy metabolism in humans.

Methods:We searched relevant papers that were published from 1990 to 2021 and were
cited in PubMed Central, Web of science, Embase and Cochrane Library databases to
conduct this systematic review and meta-analysis. Energy metabolism, BAT volume, BAT
activity and non-esterified fatty acids (NEFA) data reported in eligible researches were
extracted. Meta-analysis was applied to combine the mean difference or standard mean
difference with their 95% confidence intervals (95%CI). RevMan 5.3 software was used for
meta-analysis and evaluating the risk of bias. Stata 16.0 was used for evaluating the
publication bias.

Results: Ten randomized controlled trials were included in meta-analysis. Compared with
human exposed in room temperature at 24°C, the energy expenditure (EE) was increased
after acute cold exposure at 16~19°C (Z = 7.58, p < 0.05, mean different = 188.43kal/d,
95% CI = 139.73–237.13); BAT volume (Z = 2.62, p < 0.05; standard mean different =
0.41, 95% CI = 0.10–0.73); BAT activity (Z = 2.05, p = 0.04, standard mean difference =
1.61, 95%CI = 0.07–3.14) and the intake of BAT NEFA (Z = 2.85, p < 0.05; standardmean
different = 0.53, 95% CI = 0.17–0.90) also increased.

Conclusion: Acute cold exposure could improve the energy expenditure and BAT activity
in adults, which is beneficial for human against obesity.
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INTRODUCTION

Nowadays, overweight and obesity have become the greatest
health challenges worldwide. It was estimated that the
percentage of overweight or obese adults was 39% for men
and 40% for women; over 340 million children and
adolescents aged 5–19 were overweight or obese in 2016.
Moreover, World Health Organization (WHO) had pointed
out that the epidemic of obesity is on the rise worldwide.
Obesity affects nearly all physiological functions of the body
and increases the risk of many diseases, such as diabetes mellitus,
cardiovascular disease, musculoskeletal disorders and some
cancers (including endometrial, breast, ovarian, kidney, and
colon cancers) (Anandacoomarasamy et al., 2008; Singh et al.,
2013; Lauby-Secretan et al., 2016).

Obesity is a state of energy imbalance, which means much
more energy intake than energy expenditure, leading to excess
energy stored as fat. Reducing energy intake and increasing
energy consumption are effective ways to combat obesity.
Brown adipose tissue (BAT), owing to its unique capacity to
change excess energy into thermal energy, is considered an
effective potential target against obesity and related metabolic
diseases (Cypess and Kahn, 2010; Tseng et al., 2010). BAT is
mainly regulated by the sympathetic nervous system (SNS) that
releases norepinephrine to activate β-adrenergic receptor (β-AR)
on the surface of brown adipocytes (Oelkrug et al., 2015).
Subsequently, uncoupling protein 1 (UCP1) uses the proton
gradient created by nicotinamide adenine dinucleotide
(NADH) and flavin adenine dinucleotide (FADH2) instead of
the decomposition of adenosine triphosphate (ATP) to generate
heat (Oelkrug et al., 2015). When UCP1 is expressed in the BAT,
it can invigorate the mitochondrial respiration to the most
extreme sum in arrange to compensate for the gradient loss,
in which process leading to energy consumption increasing
(Cannon and Nedergaard, 2004). The BAT activity is higher
in normal weight people than that in obese or overweight people.
BAT activity is inversely correlated with body mass index (BMI),
age and fat content in humans (Cypess et al., 2009; Yoneshiro
et al., 2011b; Dinas et al., 2015).

At present, several mechanisms affecting the activity and
metabolism of BAT, including diet, exercise, medicine and
cold exposure, have been proved (Cannon and Nedergaard,
2004; Marlatt and Ravussin, 2017; Yau and Yen, 2020).
Among them, cold exposure is the foremost well-studied
method to activate BAT, as the primary role of BAT is to
convert glucose and fat into heat by non-shivering
thermogenesis (NST). Acute cold exposure (1–48 h) increased
glucose uptake and improved insulin sensitivity; and free fatty
acids (FFA) uptake and metabolism also increased in
BAT(Ouellet et al., 2012; Leitner et al., 2017). Amid
continuous cold stimulation, adipose tissue was remodeled to
activate the thermogenic potential of both BAT and white adipose
tissue (WAT). Incessant cold exposure causes metabolic changes
within the BAT to maximize β-oxidation of fat acid from human
cells and blood, electron transport action, and Ucp1 expression to
produce heat (Cannon and Nedergaard, 2004; Blondin et al.,
2014; Blondin et al., 2017a).

A few studies carried out in rodents had suggested that
prolonged exposure to cold environment could activate the
BAT further improve diet-induced obesity and its related
complications, such as disturbed glucose and lipid homeostasis
(Vallerand et al., 1986; Bartelt et al., 2011). Studies carried out in
humans had also indicated that cold-induced BAT activation
could enhance glucose uptake and improve whole-body glucose
disposal and insulin sensitivity (Cypess et al., 2009; Saito et al.,
2009; van Marken Lichtenbelt et al., 2009; Virtanen et al., 2009;
Yoneshiro et al., 2013b; Blondin et al., 2015). After cold exposure,
the resting metabolic rate in healthy people with detectable BAT
levels increased by 14% (Chondronikola et al., 2014). However,
studies carried out in aborigines living in the deserts of Australia
and Bushmen population in the Kalahari Desert of southern
Africa indicated that repeated nocturnal cold exposure did not
increase the energy expenditure (EE) (Scholander et al., 1958;
Wyndham and Morrison, 1958). Besides, no increase in EE was
observed in obese individuals exposed to a short-term acute cold
due to the small number of BAT activations (Hanssen et al.,
2016). Similarly, sleeping in a room at 19°C for 1 month did not
alter the cold-induced thermogenesis (CIT) (Lee et al., 2014). To
date, due to the limited sample size of the population, the
evidence of the effects of cold exposure on BAT activity and
energy metabolism in humans is limited and inconsistent.
Therefore, the present systematic review is carried out to
assess the effect of acute cold exposure on human BAT
activity and energy metabolism, and it is very crucial to
provide accurate evidence to combat obesity and related
metabolic diseases.

MATERIALS AND METHODS

Search Strategy and Selection Criteria
We conducted the standard method according to the Preferred
Reporting Items for Systematic Reviews and Meta-analysis
(PRISMA) guidelines (Shamseer et al., 2015). Two
independent authors (HCY and SZK) searched for related
articles about the effects of cold exposure on BAT activity and
EE in humans published from 1 January 1990 to 31 May 2021 in
PubMed, Web of Science, Embase and Cochrane library
databases. The search strategy in the PubMed database can be
found in Appendix A. Following the different retrieval
requirements of different databases, the connectives were
appropriately adjusted. In addition, the reference lists of the
included studies in systematic reviews searched out were
searched to supplement the literature of this study that had
not been initially searched out. The disagreement between two
independent authors in the searching strategy was resolved by
consensus.

Inclusion and Exclusion Criteria
The articles were included or excluded by two independent
authors (HCY and SZK), and the differences between the two
authors were resolved through consensus or the third author
(ZY). The studies we included were randomized controlled trials
(RCT) carried out in humans with clear data of the sample size,
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the brown adipose tissue activity and energy metabolism before
and after cold exposure. We excluded the studies with the
influence of other intervention factors besides cold exposure,
the studied carried out in animals, or lack the data of BAT activity
and energy metabolism before and after cold exposure. For
studies from the same research group, we only included the
latest research report. Our research does not include reviews,
editorials, letters, magazine articles and meeting minutes.

Data Extraction and Quality Assessment
We imported all articles searched from various databases into
EndNote and removed duplicates. Two authors (HCY and YJL)
independently reviewed the title, abstract, and full text that met
the inclusion criteria. For any discrepancies, the third author (ZY)
will make the final decision. For the included studies, two authors
(HCY and QHH) extracted the following information: 1) the
name of the first author; 2) the year of publication; 3) the country;
4) the year(s) of study; 5) the type of study; 6) the number of
participants; 7) the average age (if the mean was not available,
using the median instead); 8) baseline data such as BMI. Cold
exposure intervention data were also extracted. Finally, we
extracted the main results data of cold exposure on BAT
activity and energy metabolism measured by 18

F-Fluorodeoxyglucose (FDG), Positron Emission Tomography
(PET), Computed Tomography (CT), Magnetic Resonance
Imaging (MRI), and energy expenditure.

Two authors (HCY and QHH) independently conducted
the risk of bias in the included studies that met the systematic
review standards, and any differences in the risk of bias
assessment were adjusted by the third author (ZY). For the
qualified randomized controlled trials, we used the Cochrane
Library bias assessment tool to assess the risk of bias (Higgins
et al., 2011).

Statistical Analysis
RevMan 5.3 and Stata 16.0 software were used to conduct the
meta-analysis. Continuous, inverse variance were selected to
summarize energy metabolism difference (kcal/d), BAT
volume, BAT activity and non-esterified fatty acids (NEFA).
The means and standard deviations were used to represent the
difference in energy expenditure between participants who were
exposed to cold environment and participants who did not
expose to cold environment or were controlled, studies only
provided subgroup means and standard deviations were
analyzed after merging. Cochran’s Q test and I2 statistics were
used to assess the heterogeneity among studies, and I2 > 50%
indicates significant heterogeneity. Subgroup analysis was used
for heterogeneity analysis. When I2 ≤ 50%, the fixed-effect model
was used for meta-analysis; when I2 > 50%, the random effect
model was used. We estimated the 95% confidence interval (CI)
of the study and used the Z value and p value to test the statistical
significance. When p < 0.05, it was considered to be statistically
different. Where appropriate, we used the following formula to
convert standard error (SE) into standard deviation (SD): SD =
SE× √n.

RESULTS

Literature Search and Selection
A total of 2089 documents were searched out initially. 307
duplicate articles, 1750 unrelated articles based on the review
of the titles and abstracts were excluded. Of the remaining 32
articles, 23 were removed because some of them applied other
interventions or did not clearly report EE, BAT volume, BAT
activity or BAT NEFA. One study was manually included via
searching the reference list. Finally, 10 RCT articles were included
for meta-analysis. All of the 10 articles were in English. All
participants in the 10 RCTs were healthy. After the
qualification assessment, 10 papers reporting the BAT activity
or energy expenditure after cold exposure were retained for
quantitative analysis, 2 in Finland, 2 in the United States, 1 in
Australia, 1 in Switzerland, 2 in the Netherlands and 2 in Japan.
The research selection process and flowchart of the literature
search were shown in Figure 1.

Characteristics of the Included Studies
In general, the average age of participants was mainly 20~40 years
old, and the number of male participants was more than females.
These studies all used FDG-PET/CT or MRI to evaluate the BAT
activity before and after cold exposure, as well as the energy
metabolism. Others baseline information can be found in
Table 1.

Risk of Bias Assessment Results
The bias risk assessment on the included RCTs was summarized
in Figure 2A. 65% of the included RCTs showed a low risk in
selection bias, and 35% showed an unclear risk of bias. In
performance bias, 70% showed low risk, 30% showed an
unclear risk of bias. In the detection bias, 90% showed a low
risk, and 10% showed an unclear risk of bias. All of the included
RCTs were low-risk in attrition bias and reporting bias. In the
other bias, 90% displayed low risk, while 10% showed high risk.
The detailed risk of bias for each study included in the systematic
review was shown in Figure 2B.

Meta-Analysis Outcomes
As for BAT volume, BAT activity and BATNEFA, standard mean
difference that can eliminate the influence of the absolute value of
a study and the influence of measurement unit on the results was
adopted. As for EE, mean difference was adopted.

In the ten studies, eight studies reported clearly data of body
energy expenditure before and after cold exposure (Taniguchi
et al., 2020; Brychta et al., 2019; Thuzar et al., 2018; Romu et al.,
2016; M et al., 2016; Hanssen MJ. et al., 2015; Chen et al., 2013;
van Marken Lichtenbelt et al., 2009). Since I2 < 50%, no obvious
heterogeneity was observed. The results of the effect of cold
exposure on body energy metabolism showed that the energy
metabolism of subjects in the cold exposure group was
significantly higher than that in the control group (Z = 7.58,
p < 0.05, mean different = 188.43kal/d, 95% CI = 139.73–237.13).
The result was shown in Figure 3.
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The changes in BAT volume were evaluated in 4 studies
(Raiko et al., 2021; Romu et al., 2016; M et al., 2016; Chen et al.,
2013). Since I2 < 50%, no obvious heterogeneity was observed.
The results indicated that the volume of BAT was higher after
cold exposure than that of room temperature (Z = 2.62, p <
0.05, standard mean difference = 0.41, 95% CI = 0.10–0.73).
The result was shown in Figure 4.

As for BAT activity, two studies reported relevant data
(Yoneshiro et al., 2013a; Chen et al., 2013). Because I2 = 76%
and p < 0.05, high heterogeneity was observed. Subgroup analysis
was used for heterogeneity analysis. The results showed that the
activity of BAT was improved after cold exposure (Z = 2.05, p =
0.04, standard mean difference = 1.61, 95% CI = 0.07–3.14). The
result was shown in Figure 5.

Three studies reported the intake of BAT NEFA (Raiko et al.,
2021; M et al., 2016; HanssenMJ. et al., 2015). Due to I2 < 50%, no
obvious heterogeneity was observed. The results showed that the
intake of BAT NEFA was increased after cold exposure (Z = 2.85,
p < 0.05, mean difference = 0.53, 95% CI = 0.17–0.90). The result
was shown in Figure 6.

Subgroups and Sensitivity Analysis
We performed sensitivity analyses via omitting 1 study each time.
The analysis results indicated that the meta-analysis results for
EE, BAT volume and BAT NEFA did not alter when each study

was removed in turn, so that the findings were robust. The result
was shown in Table 2.

There is some heterogeneity for the BAT activity, thus
subgroup analysis is used to detect the heterogeneity. Only
gender subgroup was analyzed. Other subgroups were not
conducted because of under-representation in number of
trials. The BAT activity was improved in males (standard
mean difference = 1.58, 95% CI = 0.66–2.50) and females
(standard mean difference = 1.26, 95% CI = 0.28–2.24). The
result was shown in Figure 7.

Publication Bias
Visual inspection of funnel plots revealed no asymmetry
(Figure 8), and the results from Egger’s and Begg’s test
indicated that no evidence for publication bias was detected
for energy expenditure (Begg’s test, p = 0.386; Egger’s test, p =
0.521) and BAT volume (Begg’s test, p = 0.308; Egger’s test, p =
0.174).

DISCUSSION

Since BAT was “rediscovered” in humans, it has attracted great
attention due to its potential ability to fight against obesity and
related metabolic disorders (van Marken Lichtenbelt et al., 2009).

FIGURE 1 | Flow Diagram of studies included in the systematic review and meta-analysis.
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Although Wijers et al. reported that EE was significantly
elevated in healthy lean subjects after cold exposure the
present meta-analysis confirms that human energy expenditure
is increased after acute cold exposure (van Marken Lichtenbelt,
2009; Wijers et al., 2010). Similarly, we found that the intake of
NEFA is increased after acute cold exposure. Ouellet et al. also
proved that plasma NEFA uptake is increased in cold-activated
BAT compared with resting skeletal muscles and subcutaneous
adipose tissues (Ouellet et al., 2012). Those evidences suggest that
acute cold exposure plays an important role in enhancing energy
metabolism. Even though the mechanism of cold-induced
thermogenesis (CIT) is not fully defined, it has been
previously indicated that glucose treatment, plasma glucose
oxidation, and insulin sensitivity were improved effectively
after acute cold exposure (Chondronikola et al., 2014). This
mechanism is achieved by enhancing the expression of glucose
transporter type 4 (GLUT4) or removing the triacylglycerol
(TAG) in serum (Shibata et al., 1989; Shimizu et al., 1993;
Baba et al., 2007; Bartelt et al., 2011; Nedergaard et al., 2011).
Cold-induced increasing energy expenditure is related to the
18FDG positive BAT(Yoneshiro et al., 2011a; Vijgen et al.,
2011). Whole body energy expenditure caused by cold in
18FDG BAT-positive subjects is greatly affected by seasonal
changes (Yoneshiro et al., 2016). Free fatty acids as reaction
substrates were used by BAT to generate heat (Cannon and
Nedergaard, 2004). After cold exposure, NEFA from WAT
lipolysis and lipoproteins (TRL) from triglyceride-rich
lipoproteins enter BAT (Heeren and Scheja, 2018). Cold
exposure promotes BAT activation to stimulate TAG lipolysis,
then long-chain fatty acids were released andUCP1was activated,
leading to rodent and human mitochondrial thermogenesis
(Bartelt et al., 2011; Nie et al., 2015; Blondin et al., 2017b).

Acute cold exposure leads to an increase NEFA levels in
plasma. And the genes related to lipid utilization are
upregulated with cold exposure in humans. It is worth noting
that activated BAT is correlated to cold-induced lipolysis,
increased FFA re-esterification, FFA oxidation and energy
expenditure compared to both lean and obese individuals with
no or negligible BAT activity (Chondronikola et al., 2014; Blondin
et al., 2015; Chondronikola et al., 2016). The reason for the
difference in fatty acid intake in BAT may be related to the basal
level of BAT and the low oxidative metabolism capacity in the
activated state (Saari et al., 2020). However, during a 4-month
mild cold exposure in healthy lean participants, BAT
recruitability was confirmed by cold exposure, but significant
CIT response augmentation did not be observed (Lee et al., 2014).
This may be due to a slight increase in ambient temperature
during the day, which damages BAT and blunts previous
metabolic benefits. A 10-day cold acclimation period in
patients with type 2 diabetes resulted in only a minor increase
in metabolic activity of the supraclavicular BAT region (Hanssen
M. J. W. et al., 2015). In addition to being overweight, these
participants were older and already had low activity in this BAT
region at baseline.

Moreover, our results show that both BAT activity and
volume are improved after acute cold exposure. Our findings
are agreement with the study of Hanssen et al., who reported
obese subjects acquired large amounts of BAT during a short-
term cold exposure periods (Hanssen et al., 2016). After cold
exposure, oxygen consumption and blood perfusion in BAT
are increased, which may be responsible for the increase of
BAT volume. Although, the large number of specialized
studies had investigated cold-activated BAT in humans,
BAT volume is reported in few studies. Since a threshold

TABLE 1 | Characteristics of eligible studies.

Author Year Country Design Sample
size

Age BMI Modality Study
design

Raiko JRH 2021 Finland RCT 27 (M/F
13/24)

38.4 27.4 FDG-
PET/CT

Cooled the temperature above their shivering point
for 2 h

Taniguchi H 2020 Japan RCT 6 (F) 21.3 20 FDG-
PET/CT

Exposed to 19°C for 2 h

Brychta RJ 2019 United States RCT 21 (L/O
13/24)

25.5 23.2 (L)
34.4 (O)

FDG-
PET/CT

Exposed to 16°C for 4 h

Thuzar M 2018 Australia RCT 13 (M/F 7/6) 28 24.0 FDG-
PET/CT

Exposed to 19°C for 3 h

Romu T 2016 Sweden RCT 25 (R/C
12/13)

25.2 22.5(R)
21.6(C)

MRI Cooled the temperature above their shivering point
for 1 h

Mueez UD 2016 Finland RCT 7 (M/F 2/5) 36 25.5 FDG-
PET/CT

Cooled the temperature above their shivering point
for 2 h

Hanssen MJ 2015 Netherlands RCT 16 (M/F 8/8) 21.3 21.3 FDG-
PET/CT

Cooled the temperature above their shivering point
for 30 min

Yoneshiro T 2013 Japan RCT 8(M) 24.4 22.0 FDG-
PET/CT

Exposed to 19°C for 2 h

Chen KY 2013 United States RCT 24 (M/F
10/14)

28.1 -- FDG-PET Exposed to19°C for 12 h

Van Marken
Lichtenbelt

2009 Netherlands RCT 24 (L/O
10/14)

-- 23.2 (L)
30.3 (O)

FDG-
PET/CT

Exposed to 16°C for 2 h

RCT, randomized controlled trial; M, males; F, females; L, lean; O, obese; R, room temperature; C, cold; BMI, body mass index; BAT NEFA, brown adipose tissue nonesterified fatty acid
uptake; EE, energy expenditure.

Frontiers in Physiology | www.frontiersin.org June 2022 | Volume 13 | Article 9170845

Huo et al. Cold Exposure on Energy Metabolism

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


based on PET SUV alone leads to an overestimation of BAT
numbers, and a threshold based on SUV and CT HU leads to
an underestimation of total BAT activity, different analyzing
techniques need to be used to get BAT activity and BAT
volume. FDG PET-CT is considered as a standard tool to
identify human BAT, however, it has serious limitations that
only tissues that actively ingest glucose can be detected (Cypess
et al., 2014). However, instead of glucose, fatty acids were the
main substrate of BAT function. As a result, bias may exist in
the estimation of the quantification in BAT activity. Indeed,
BAT activity is related to age, sex, environmental temperature
and body fat content. A study showed that BAT was detected

more than 50% in subjects aged 20–29 years, and less than 10%
aged 50 and older (Yoneshiro et al., 2011b). In addition, some
studies have found that PET/CT studies have observed a higher
prevalence of BAT in winter than in summer, possibly due to
the changes in environmental temperature (Cypess et al., 2009;
Saito et al., 2009; Lee et al., 2010; Ouellet et al., 2011). BAT
activity is negatively correlated with BMI, and the activity of
healthy people is greater than that of overweight or obese
people. The reason for this fact was that the supraclavicular fat
depot in obese people is dominated by white fat, which leads to
the weakening of BAT activation ability (van Marken
Lichtenbelt et al., 2009).

FIGURE 2 | (A) Summary of risk of bias assessment for randomized controlled trials.(B) Risk of bias assessment for randomized controlled trials. +: low risk
of bias; -: high risk of bias; ?: unclear risk of bias.
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The effects of cold exposure and BAT on energy metabolism
have been intensively studied in animal models, but some points
should be noted when we apply these studies to humans. Firstly,
the fat depots in mice mainly located in the interscapular region
and in the cervical spine, around the heart and kidneys, while in
adult humans they mainly located in cervical, paravertebral,

axillary and clavicular regions (Townsend and Tseng, 2015;
Ikeda et al., 2018). Secondly, studies in rodents proved two
type of BAT, “classical and brite”, which differ in development
origin (Petrovic et al., 2010; Wu et al., 2012). Brown adipocytes,
located in the interscapular region, originate from Myf5-positive
myoblastic cells that called classical BAT(Timmons et al., 2007;

FIGURE 3 | Forest plot for the effect of cold temperature on energy expenditure.

FIGURE 4 | Forest plot for the effect of cold temperature on human brown adipose tissue volume.

FIGURE 5 | Forest plot for the effect of cold temperature on human brown adipose tissue activity.

FIGURE 6 | Forest plot for the effect of cold temperature on human brown adipose tissue NEFA uptake.
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Seale et al., 2008). Brite cells, named “beige or brite adipocytes”,
originate from a Myf5-negative precursor cells, and/or the
formation of brite cells within the white adipose depot is
referred to as “browning” (Walden et al., 2012; Wu et al.,
2012). BAT depots around the neck and in the supraclavicular
regions of humans may comprise both classical brown and brite/
beige cells, but its distribution may be affected by age and region
(Jespersen et al., 2013; Lidell et al., 2013). Therefore, further
studies are needed to distinguish the types of human BAT more

clearly, to elucidate their role and mechanism in whole-body
energy. When exposure to low temperature for a long time, it can
promote browning of white adipose tissue, and increases the
amount of brown adipocytes and the number of UCP1 through
proliferation of interstitial preadipocytes and matured adipocytes
of animals (Bukowiecki et al., 1986; Okamatsu-Ogura et al.,
2017). Although experiments in rodents have shown the
profound effects of cold on process of browning, the results of
human experiments remain inconclusive. Studies in healthy

TABLE 2 | The pooled results of sensitivity analyses, (95% CI).

Indicators Minimum estimate Maximum estimate Overall result

EE 161.95 (108.23–215.67) 222.62 (153.36–291.88) 188.43 (139.73–237.13)
BAT volume 0.34 (−0.03–0.70) 0.57 (0.20–0.95) 0.41 (0.10–0.73)
BAT NEFA 0.38 (−0.04–0.81) 0.81 (0.20–1.42) 0.53 (0.17–0.90)

EE, energy expenditure; BAT NEFA, brown adipose tissue nonesterified fatty acid uptake.

FIGURE 7 | Forest plot for the brown adipose tissue activity of subgroup analysis.

FIGURE 8 | Funnel plots of RCTs recording energy expenditure (A) and BAT volume (B) outcomes.

Frontiers in Physiology | www.frontiersin.org June 2022 | Volume 13 | Article 9170848

Huo et al. Cold Exposure on Energy Metabolism

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


human scWAT cells suggested that long-term cold exposure
increased UCP1 expression and mitochondrial activity, which
are characteristic of beige cells (Kern et al., 2014; Finlin et al.,
2017). But a cold-adaptation study in healthy humans did not
show scWAT beiging (van der Lans et al., 2013). Besides,
2–6 weeks cold exposure increases the volume of BAT, but it
is not possible whether the increase volume was from enhanced
activity or from an expanded cell mass (Blondin et al., 2014; Lee
et al., 2014). While long-term cold exposure can promote beiging
in cells, further research is needed to determine the temperature
and time to induce beiging in humans, and the feasibility of these
results applying. Furthermore, Compared with rodents, human
have relatively less BAT, with 0.02% of body weight in humans
and 0.4–1% of body weight in rodents (Geisler, 2011). Besides,
mice are often housed at 22°C, a temperature different from the
thermoneutrality (29–30°C) (de Jong et al., 2019). Such
adaptation renders their BAT chronically activated, which may
influence their energy metabolic behavior. Humans can protect
themselves against a cold challenge, leading to BAT at a lower
level. This may explain the differences in BAT activity and energy
metabolism caused by cold exposure in animals and humans.

The current meta-analysis presents a response to the view
that acute cold exposure to BAT is beneficial to human health,
and there is also an evidence that chronic cold exposure can
confer benefits on metabolic health. For example, sustained
6-week cold exposure resulted in increased BAT activity and
CIT, along with decreased body fat mass (Yoneshiro et al.,
2013a). Although, the potential of BAT activation to increase
energy consumption inducing weight loss is exciting.
Unfortunately, BAT activation through CIT in humans has
just increased the energy expenditure and decreased the fat
mass without eliciting any loss in body weight (Yoneshiro
et al., 2013b). A study showed that BAT prevalence increased
as an acute response to cold environment (less than 7 days),
and the effect was neutralized with delayed of low
temperatures (Kim et al., 2008). Moreover, maximal
activation of BAT for extended periods is a difficult feat,
particularly in humans. Compared with rodents, exposure
humans to a severe and delayed environment is impractical.
On the other hand, prolonged cold stimulation leads to a
compensatory increase in people’s food intake, which to some
extent counteracts the effect of BAT activation against obesity
(Ravussin et al., 2014). Therefore, chronic cold exposure may

cannot promote weight loss. Conversely, acute cold exposure
holds a great potential for combating with obesity due to its
ease of implementation. In the future, combining acute cold
exposure with other modalities such as exercise, diet, and
medication could be considered as a meaningful contribution
to addressing obesity and metabolic disorder.

CONCLUSION

BAT activity and volume had been increased after acute cold
exposure. BAT also played an important role in regulating
metabolism. After cold exposure, the body’s energy metabolic
increases as well as NEFA intake, both of which indicated that it
could regulate metabolism and increase heat production. BAT
thermogenesis may be available as therapies to against obesity in
the near future.
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APPENDIX A
SEARCH ALGORITHM IN PUBMED

{[“brown adipose tissue” (Title/Abstract) OR “brown fat”
(Title/Abstract) OR “brown like adipose tissue” (Title/
Abstract) OR “beige” (Title/Abstract) OR “brown like fat”

(Title/Abstract) OR “brown adipose like phenotype” (Title/
Abstract) OR “browning process” (Title/Abstract) AND
“hypothermia” (Title/Abstract)] OR “hypothermia
induced” [ Title/Abstract] OR “induced mild hypothermia”
[Title/Abstract]} AND 1990/01/01:2021/5/31 [Date-
Publication].
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