

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Methoxy-2-[2-({[6-(trifluoromethyl)pyridin-2-yl]oxy}methyl)phenyl]prop-2enoic acid

Rajni Kant,^a* Vivek K. Gupta,^a Kamini Kapoor,^a Chetan S. Shripanavar,^b Madhukar B. Deshmukh^c and Kaushik **Banerjee**^b

^aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, ^bNational Research Centre for Grapes, Pune 412307, India, and ^cDepartment of Chemistry, Shivaji University, Kolhapur, 416 004, India Correspondence e-mail: rkvk.paper11@gmail.com

Received 24 September 2012; accepted 9 October 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.059; wR factor = 0.154; data-to-parameter ratio = 12.7.

The title molecule, C₁₇H₁₄F₃NO₄, consists of two nearly planar fragments, viz. the 2-benzyloxypyridine (r.m.s. deviation 0.016 Å) and (E)-3-methoxyprop2-enoic (r.m.s. deviation 0.004 Å) units, which form a dihedral angle of 84.19 $(7)^{\circ}$. In the crystal, pairs of $O-H \cdots O$ hydrogen bonds link molecules into dimers that are further connected by $C-H \cdot \cdot \cdot O$ and C-H···F interactions into (001) layers. In addition, $\pi - \pi$ stacking interactions are observed within a layer between the pyridine and benzene rings [centroid–centroid distance = 3.768(2) Å]. The F atoms of the trifluoromethyl group are disordered over two sets of sites in a 0.53 (4):0.47 (4) ratio.

Related literature

The title compound is the acid metabolite of picoxystrobin [systematic name: methyl (E)-3-methoxy-2-{2-[6-(trifluoromethyl)-2-pyridyloxymethyl]phenyl}acrylate], a systemic fungicide with broad-spectrum bio-efficacy against various diseases of agricultural crops, see: Balba (2007); Ammermann et al. (2000). For a related structure, see: Kant et al. (2012).

Experimental

Crystal data

$C_{17}H_{14}F_{3}NO_{4}$	$\gamma = 110.685 \ (5)^{\circ}$
$M_r = 353.29$	V = 816.42 (7) Å ³
Triclinic, P1	Z = 2
a = 7.4701 (4) Å	Mo $K\alpha$ radiation
b = 10.1619 (5) Å	$\mu = 0.13 \text{ mm}^{-1}$
c = 11.8219 (5) Å	T = 293 K
$\alpha = 94.721 \ (4)^{\circ}$	$0.3 \times 0.2 \times 0.2$ m
$\beta = 100.079 \ (4)^{\circ}$	

Data collection

Oxford Diffraction Xcalibur
Sapphire3 diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Oxford
Diffraction, 2010)
$T_{\min} = 0.821, T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.154$ S = 1.043214 reflections 253 parameters 6 restraints

ation n^{-1} 0.2 mm

19533 measured reflections 3214 independent reflections 1988 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.057$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

Table 1

' (A,	°)	
1	/ (A,	′ (A, °)

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$04-H41\cdots O3^{i}$	0.85 (4)	1.78 (4)	2.626 (3)	174 (4)
$C15-H15\cdots O3^{ii}$	0.93	2.58	3.392 (3)	146
$C17-H17A\cdots F11A^{iii}$	0.96	2.41	3.135 (14)	132

Symmetry codes: (i) -x, -y + 2, -z; (ii) -x, -y + 1, -z; (iii) -x + 1, -y + 2, -z.

Data collection: CrvsAlis PRO (Oxford Diffraction, 2010): cell refinement: CrvsAlis PRO; data reduction: CrvsAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

RK acknowledges the Department of Science & Technology for access to the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/ CMP-47/2003.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2523).

References

- Ammermann, E., Lorenz, G., Schelberger, K., Mueller, B., Kirstgen, R. & Sauter, H. (2000). Proceedings of the BCPC Conference -Pest and Diseases, 541–548.
- Balba, H. (2007). J. Environ. Sci. Health Part B, 42, 441-451.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Kant, R., Gupta, V. K., Kapoor, K., Shripanavar, C. S. & Banerjee, K. (2012). Acta Cryst. E68, 02425.
- Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2012). E68, o3163 [doi:10.1107/S1600536812042316]

3-Methoxy-2-[2-({[6-(trifluoromethyl)pyridin-2-yl]oxy}methyl)phenyl]prop-2enoic acid

Rajni Kant, Vivek K. Gupta, Kamini Kapoor, Chetan S. Shripanavar, Madhukar B. Deshmukh and Kaushik Banerjee

Comment

The above compound is the acid metabolite of picoxystrobin, which is a systemic fungicide of strobilurin group with broad spectrum bio-efficacy against various diseases of economically important agricultural crops (Balba, 2007; Ammermann *et al.*, 2000).

In (I) (Fig.1), all bond lengths and angles are normal and correspond to those observed in the related structure (Kant *et al.*, 2012). The dihedral angle between the two aromatic rings is 1.93 (9)°. The propenoic acid fragment is nearly perpendicular to the attached benzene ring [dihedral angle 82.6 (1)°]. The two nearly planar fragments, 2-(benzyl-oxy)-3-(trifluoromethyl)pyridine unit (r.m.s. deviation 0.016Å) and (*E*)-3-methoxyprop2-enoic unit (r.m.s. deviation 0.004Å) form dihedral angle of 84.19 (7)°. The F atoms of the trifluoromethyl group were refined as disordered over two sets of sites with occupancies of 0.53 (4)/0.47 (4). In the crystal, O—H…O hydrogen bonds link molecules to form dimers (Table 1). Dimers are further connected by C—H…O and C—H…F hydrogen bonds into (001) layers (Fig. 2). The crystal structure is further stabilized by π - π interactions between the pyridine ring (C11—C15/N1) of the molecule at (*x*, *y*, *z*) and the benzene ring of an inversion related molecule at(1 - *x*, 1 - *y*, - *z*) [centroid separation = 3.768 (2) Å, interplanar spacing = 3.437 Å and centroid shift = 1.54 Å].

Experimental

Picoxystrobin (0.353 g, 0.001 mol) was dissolved in 5 ml of acetone and to it 5 ml of 1 N NaOH solution was added. The reaction mixture was refluxed at 343 K for 6 h, and then cooled. The compound was precipitated by neutralizing with 1 N HCl solution. The precipitated compound was dissolved in methanol and crystallized by the process of slow evaporation. (m.p. 415 K).

Refinement

H atom bonded to O atom was located in a difference map and refined freely. Other H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$. In the refinement process restraints were imposed on C-F distances of the disordered molecular fragments.

Computing details

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO* (Oxford Diffraction, 2010); data reduction: *CrysAlis PRO* (Oxford Diffraction, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997);

software used to prepare material for publication: PLATON (Spek, 2009).

Figure 1

ORTEP view of the molecule with the atom-labeling scheme. The thermal ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

Figure 2

The packing arrangement of molecules viewed down the *a* axis. The dotted lines show intermolecular C—H···O, O—H···O and C—H···F hydrogen bonds.

3-Methoxy-2-[2-({[6-(trifluoromethyl)pyridin-2-yl]oxy}methyl)phenyl]prop-2-enoic acid

Crystal data			
$C_{17}H_{14}F_{3}NO_{4}$	Z = 2		
$M_r = 353.29$	F(000) = 364		
Triclinic, P1	$D_{\rm x} = 1.437 \; {\rm Mg} \; {\rm m}^{-3}$		
Hall symbol: -P 1	Melting point: 415 K		
a = 7.4701 (4) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å		
b = 10.1619 (5) Å	Cell parameters from 7723 reflections		
c = 11.8219 (5) Å	$\theta = 3.5 - 29.0^{\circ}$		
$\alpha = 94.721 (4)^{\circ}$	$\mu = 0.13 \text{ mm}^{-1}$		
$\beta = 100.079 \ (4)^{\circ}$	T = 293 K		
$\gamma = 110.685 (5)^{\circ}$	Plate, colourless		
V = 816.42 (7) Å ³	$0.3 \times 0.2 \times 0.2 \text{ mm}$		
Data collection			
Oxford Diffraction Xcalibur Sapphire3	Absorption correction: multi-scan		
diffractometer	(CrvsAlis PRO; Oxford Diffraction, 2010)		
Radiation source: fine-focus sealed tube	$T_{\rm min} = 0.821, T_{\rm max} = 1.000$		
Graphite monochromator	19533 measured reflections		
Detector resolution: 16.1049 pixels mm ⁻¹	3214 independent reflections		
ωscan	1988 reflections with $I > 2\sigma(I)$		
	$R_{\rm int} = 0.057$		

$\theta_{\rm max} = 26.0^\circ, \theta_{\rm min} = 3.5^\circ$	$k = -12 \rightarrow 12$
$h = -9 \rightarrow 9$	$l = -14 \rightarrow 14$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.059$	Hydrogen site location: inferred from
$wR(F^2) = 0.154$	neighbouring sites
S = 1.04	H atoms treated by a mixture of independent
3214 reflections	and constrained refinement
253 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0666P)^2 + 0.1912P]$
6 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$
	$\Delta ho_{ m min} = -0.40$ e Å ⁻³

Special details

Experimental. *CrysAlis PRO*, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.3119 (3)	0.52862 (18)	0.05675 (15)	0.0505 (5)	
N1	0.5088 (3)	0.6809 (2)	0.22310 (18)	0.0441 (5)	
O2	0.5218 (3)	0.88494 (19)	-0.22824 (18)	0.0579 (6)	
O3	-0.0083 (3)	0.84278 (19)	-0.05459 (18)	0.0578 (6)	
O4	0.2235 (3)	1.05406 (19)	-0.05040 (19)	0.0580 (6)	
C1	0.1465 (4)	0.9160 (3)	-0.0804 (2)	0.0403 (6)	
C2	0.2512 (4)	0.8515 (2)	-0.1454 (2)	0.0369 (6)	
C3	0.4172 (4)	0.9358 (3)	-0.1689 (2)	0.0437 (6)	
Н3	0.4622	1.0333	-0.1434	0.052*	
C4	0.1601 (3)	0.6946 (2)	-0.1883 (2)	0.0358 (6)	
C5	0.1822 (3)	0.5959 (2)	-0.1174 (2)	0.0371 (6)	
C6	0.0916 (4)	0.4512 (3)	-0.1611 (2)	0.0436 (6)	
H6	0.1052	0.3847	-0.1142	0.052*	
C7	-0.0180 (4)	0.4060 (3)	-0.2733 (2)	0.0502 (7)	
H7	-0.0781	0.3090	-0.3016	0.060*	
C8	-0.0393 (4)	0.5030 (3)	-0.3437 (2)	0.0529 (7)	
H8	-0.1136	0.4720	-0.4194	0.063*	
C9	0.0500 (4)	0.6462 (3)	-0.3013 (2)	0.0477 (7)	
Н9	0.0363	0.7118	-0.3492	0.057*	
C10	0.3053 (4)	0.6487 (3)	0.0043 (2)	0.0434 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H10A	0.4369	0.7114	0.0023	0.052*	
H10B	0.2486	0.7015	0.0491	0.052*	
C11	0.4141 (4)	0.5507 (3)	0.1669 (2)	0.0402 (6)	
C12	0.6087 (4)	0.6917 (3)	0.3322 (2)	0.0492 (7)	
C13	0.6148 (4)	0.5784 (3)	0.3857 (2)	0.0521 (7)	
H13	0.6848	0.5918	0.4617	0.062*	
C14	0.5133 (4)	0.4432 (3)	0.3227 (2)	0.0519 (7)	
H14	0.5142	0.3634	0.3558	0.062*	
C15	0.4128 (4)	0.4282 (3)	0.2127 (2)	0.0484 (7)	
H15	0.3444	0.3384	0.1685	0.058*	
C16	0.7204 (6)	0.8399 (4)	0.3923 (3)	0.0835 (12)	
C17	0.6970 (5)	0.9862 (3)	-0.2501 (3)	0.0698 (9)	
H17A	0.6635	1.0336	-0.3127	0.105*	
H17B	0.7790	0.9378	-0.2709	0.105*	
H17C	0.7662	1.0551	-0.1813	0.105*	
F111	0.591 (3)	0.888 (3)	0.429 (2)	0.173 (7)	0.47 (4)
F222	0.854 (19)	0.914 (18)	0.334 (12)	0.145 (5)	0.47 (4)
F333	0.848 (3)	0.846 (2)	0.4878 (15)	0.115 (6)	0.47 (4)
F11A	0.6329 (17)	0.9292 (9)	0.3891 (12)	0.105 (4)	0.53 (4)
F22A	0.845 (17)	0.916 (16)	0.331 (11)	0.145 (5)	0.53 (4)
F33A	0.806 (3)	0.847 (2)	0.5018 (9)	0.109 (5)	0.53 (4)
H41	0.160 (6)	1.088 (4)	-0.012 (3)	0.101 (13)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0606 (12)	0.0338 (10)	0.0482 (11)	0.0123 (9)	0.0007 (9)	0.0076 (8)
N1	0.0467 (13)	0.0386 (12)	0.0423 (13)	0.0132 (10)	0.0035 (10)	0.0059 (10)
O2	0.0551 (12)	0.0447 (11)	0.0786 (14)	0.0159 (10)	0.0339 (11)	0.0074 (10)
O3	0.0480 (12)	0.0373 (10)	0.0867 (15)	0.0104 (9)	0.0282 (11)	-0.0015 (10)
O4	0.0540 (13)	0.0321 (10)	0.0882 (16)	0.0125 (9)	0.0301 (11)	-0.0030 (10)
C1	0.0405 (15)	0.0310 (13)	0.0460 (15)	0.0121 (12)	0.0054 (12)	0.0020 (11)
C2	0.0397 (14)	0.0312 (13)	0.0407 (14)	0.0141 (12)	0.0089 (11)	0.0069 (11)
C3	0.0494 (16)	0.0353 (14)	0.0505 (16)	0.0192 (13)	0.0141 (13)	0.0072 (12)
C4	0.0308 (13)	0.0357 (13)	0.0418 (14)	0.0132 (11)	0.0108 (11)	0.0020 (11)
C5	0.0354 (14)	0.0349 (14)	0.0404 (14)	0.0113 (11)	0.0124 (11)	0.0030 (11)
C6	0.0437 (15)	0.0334 (14)	0.0502 (16)	0.0090 (12)	0.0133 (13)	0.0063 (12)
C7	0.0482 (17)	0.0356 (15)	0.0546 (18)	0.0044 (13)	0.0108 (13)	-0.0078 (13)
C8	0.0487 (17)	0.0549 (18)	0.0455 (16)	0.0164 (14)	-0.0004 (13)	-0.0070 (14)
C9	0.0508 (17)	0.0488 (16)	0.0450 (16)	0.0235 (14)	0.0052 (13)	0.0059 (13)
C10	0.0475 (16)	0.0315 (13)	0.0454 (15)	0.0088 (12)	0.0079 (12)	0.0068 (11)
C11	0.0397 (15)	0.0384 (14)	0.0426 (15)	0.0132 (12)	0.0111 (12)	0.0098 (12)
C12	0.0532 (17)	0.0442 (16)	0.0490 (17)	0.0199 (14)	0.0048 (13)	0.0062 (13)
C13	0.0547 (18)	0.0600 (19)	0.0454 (16)	0.0266 (15)	0.0069 (13)	0.0147 (14)
C14	0.0585 (18)	0.0467 (17)	0.0587 (19)	0.0244 (15)	0.0173 (15)	0.0213 (14)
C15	0.0537 (17)	0.0372 (15)	0.0540 (18)	0.0161 (13)	0.0123 (14)	0.0086 (12)
C16	0.104 (3)	0.058 (2)	0.061 (2)	0.014 (2)	-0.017 (2)	0.0047 (18)
C17	0.059 (2)	0.068 (2)	0.086 (2)	0.0171 (17)	0.0335 (18)	0.0197 (18)
F111	0.267 (14)	0.108 (10)	0.142 (12)	0.136 (10)	-0.061 (8)	-0.060 (8)
F222	0.162 (8)	0.077 (4)	0.114 (6)	-0.033 (5)	-0.012 (6)	0.011 (3)

supplementary materials

F333	0.121 (8)	0.060 (6)	0.101 (9)	0.002 (5)	-0.067 (8)	0.006 (7)
F11A	0.144 (7)	0.039 (3)	0.111 (6)	0.042 (5)	-0.035 (4)	-0.007 (3)
F22A	0.162 (8)	0.077 (4)	0.114 (6)	-0.033 (5)	-0.012 (6)	0.011 (3)
F33A	0.166 (11)	0.090 (7)	0.046 (4)	0.043 (7)	-0.021 (5)	-0.009 (4)

Geometric parameters (Å, °)

01—C11	1.346 (3)	С8—Н8	0.9300
O1—C10	1.425 (3)	С9—Н9	0.9300
N1-C11	1.313 (3)	C10—H10A	0.9700
N1—C12	1.347 (3)	C10—H10B	0.9700
O2—C3	1.336 (3)	C11—C15	1.396 (3)
O2—C17	1.432 (3)	C12—C13	1.370 (4)
O3—C1	1.240 (3)	C12—C16	1.482 (4)
O4—C1	1.304 (3)	C13—C14	1.384 (4)
O4—H41	0.85 (4)	C13—H13	0.9300
C1—C2	1.457 (3)	C14—C15	1.350 (4)
C2—C3	1.326 (3)	C14—H14	0.9300
C2—C4	1.497 (3)	C15—H15	0.9300
С3—Н3	0.9300	C16—F11A	1.291 (7)
C4—C9	1.387 (3)	C16—F33A	1.324 (8)
C4—C5	1.394 (3)	C16—F333	1.326 (9)
C5—C6	1.392 (3)	C16—F111	1.346 (10)
C5—C10	1.505 (3)	C16—F222	1.350 (10)
C6—C7	1.376 (4)	C16—F22A	1.350 (9)
С6—Н6	0.9300	C17—H17A	0.9600
C7—C8	1.375 (4)	C17—H17B	0.9600
С7—Н7	0.9300	C17—H17C	0.9600
C8—C9	1.375 (4)		
C11—O1—C10	118.71 (19)	O1—C10—H10A	110.0
C11—N1—C12	115.5 (2)	C5—C10—H10A	110.0
C3—O2—C17	117.1 (2)	O1—C10—H10B	110.0
C1—O4—H41	115 (3)	C5—C10—H10B	110.0
O3—C1—O4	121.7 (2)	H10A—C10—H10B	108.4
O3—C1—C2	121.4 (2)	N1-C11-O1	120.1 (2)
O4—C1—C2	116.9 (2)	N1—C11—C15	124.4 (2)
C3—C2—C1	118.3 (2)	O1—C11—C15	115.5 (2)
C3—C2—C4	123.2 (2)	N1—C12—C13	124.6 (3)
C1—C2—C4	118.4 (2)	N1—C12—C16	114.5 (2)
C2—C3—O2	122.0 (2)	C13—C12—C16	120.9 (3)
С2—С3—Н3	119.0	C12—C13—C14	117.7 (3)
O2—C3—H3	119.0	C12—C13—H13	121.1
C9—C4—C5	119.2 (2)	C14—C13—H13	121.1
C9—C4—C2	119.2 (2)	C15—C14—C13	119.3 (3)
C5—C4—C2	121.6 (2)	C15—C14—H14	120.3
C6—C5—C4	119.3 (2)	C13—C14—H14	120.3
C6—C5—C10	121.6 (2)	C14—C15—C11	118.4 (3)
C4—C5—C10	119.1 (2)	C14—C15—H15	120.8
C7—C6—C5	120.4 (2)	C11—C15—H15	120.8

С7—С6—Н6	119.8	F11A-C16-C12	118.5 (5)
С5—С6—Н6	119.8	F33A—C16—C12	113.2 (9)
C8—C7—C6	120.5 (2)	F333—C16—C12	112.1 (9)
С8—С7—Н7	119.8	F111—C16—C12	106.9 (10)
С6—С7—Н7	119.8	F222-C16-C12	112 (8)
C7—C8—C9	119.5 (3)	F22A—C16—C12	112 (7)
С7—С8—Н8	120.2	O2—C17—H17A	109.5
С9—С8—Н8	120.2	O2—C17—H17B	109.5
C8—C9—C4	121.1 (3)	H17A—C17—H17B	109.5
С8—С9—Н9	119.4	O2—C17—H17C	109.5
С4—С9—Н9	119.4	H17A—C17—H17C	109.5
O1—C10—C5	108.36 (19)	H17B—C17—H17C	109.5
O3—C1—C2—C3	-179.2 (2)	C12—N1—C11—O1	-179.1 (2)
O4—C1—C2—C3	0.5 (4)	C12—N1—C11—C15	-0.2 (4)
O3—C1—C2—C4	4.4 (4)	C10-01-C11-N1	-1.5 (3)
O4—C1—C2—C4	-175.9 (2)	C10-01-C11-C15	179.5 (2)
C1—C2—C3—O2	-179.9 (2)	C11—N1—C12—C13	-0.6 (4)
C4—C2—C3—O2	-3.7 (4)	C11—N1—C12—C16	177.8 (3)
C17—O2—C3—C2	179.1 (2)	N1-C12-C13-C14	0.9 (4)
C3—C2—C4—C9	-80.6 (3)	C16-C12-C13-C14	-177.4 (3)
C1—C2—C4—C9	95.6 (3)	C12-C13-C14-C15	-0.3 (4)
C3—C2—C4—C5	99.8 (3)	C13—C14—C15—C11	-0.5 (4)
C1—C2—C4—C5	-84.0 (3)	N1-C11-C15-C14	0.8 (4)
C9—C4—C5—C6	-0.7 (3)	O1-C11-C15-C14	179.7 (2)
C2—C4—C5—C6	178.9 (2)	N1-C12-C16-F11A	47.7 (9)
C9—C4—C5—C10	178.7 (2)	C13-C12-C16-F11A	-133.9 (8)
C2-C4-C5-C10	-1.7 (3)	N1-C12-C16-F33A	175.8 (12)
C4—C5—C6—C7	0.3 (4)	C13-C12-C16-F33A	-5.8 (13)
C10—C5—C6—C7	-179.1 (2)	N1-C12-C16-F333	-166.4 (15)
C5—C6—C7—C8	0.1 (4)	C13—C12—C16—F333	12.1 (16)
C6—C7—C8—C9	0.1 (4)	N1-C12-C16-F111	78.5 (15)
C7—C8—C9—C4	-0.5 (4)	C13-C12-C16-F111	-103.0 (16)
C5—C4—C9—C8	0.8 (4)	N1-C12-C16-F222	-60 (8)
C2—C4—C9—C8	-178.8 (2)	C13—C12—C16—F222	119 (9)
C11—O1—C10—C5	-179.7 (2)	N1-C12-C16-F22A	-56 (8)
C6-C5-C10-O1	1.9 (3)	C13—C12—C16—F22A	123 (8)
C4—C5—C10—O1	-177.5 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A	
O4—H41…O3 ⁱ	0.85 (4)	1.78 (4)	2.626 (3)	174 (4)	
С15—Н15…ОЗіі	0.93	2.58	3.392 (3)	146	
C17—H17A…F11A ⁱⁱⁱ	0.96	2.41	3.135 (14)	132	

Symmetry codes: (i) -*x*, -*y*+2, -*z*; (ii) -*x*, -*y*+1, -*z*; (iii) -*x*+1, -*y*+2, -*z*.