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Abstract 

Background:  Efforts toward the development of an effective vaccine against Acinetobacter baumannii, one of the 
most notorious nosocomial pathogens, are still ongoing. In this regard, virulence factors are interesting targets. Type 
VI secretion system (T6SS) participates in the pathogenicity of A. baumannii. VgrG is a crucial component of T6SS 
prevalent among A. baumannii strains. This study was conducted to evaluate the immunoprotectivity of recombinant 
VgrG (rVgrG) cloned and over-expressed in Escherichia coli BL21 (DE3). BALB/c mice were immunized with the purified 
rVgrG. Specific anti-VgrG IgG titers were assessed by ELISA. Actively and passively immunized mice were challenged 
with lethal doses of A. baumannii ATCC 19606. The survival rate, the bacterial burden, and histopathology of tissues in 
infected mice were examined.

Results:  Anti-VgrG IgG (p < 0.0001) was significantly increased in immunized mice. No death was seen in actively 
immunized mice infected with the lethal dose (LD) of 1.9 × 108 CFU of A. baumannii ATCC 19606 within 72 h. Chal-
lenge with 2.4 × 108 CFU of the pathogen showed a 75% survival rate. All immunized mice infected with 3.2 × 108 
CFU of the pathogen died within 12 h. In passive immunization, no death was observed in mice that received LD 
of the bacteria incubated with the 1:250 dilution of the immune sera. An increased number of neutrophils around 
the peribronchial and perivascular areas were seen in unimmunized mouse lungs while passively immunized mice 
revealed moderate inflammation with infiltration of mixed mononuclear cells and neutrophils. The livers of the unim-
munized mice showed inflammation and necrosis in contrast to the livers from immunized mice. Hyperplasia of the 
white pulp and higher neutrophils were evident in the spleen of unimmunized mice as against the normal histology 
of the immunized group.

Conclusions:  VgrG is a protective antigen that could be topologically accessible to the host antibodies. Although 
VgrG is not sufficient to be assigned as a stand-alone antigen for conferring full protection, it could participate in 
multivalent vaccine developments for elevated efficacy.
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Background
Acinetobacter baumannii, a successful nosocomial 
pathogen, is a serious health threat such that the Infec-
tious Diseases Society of America (IDSA) assigned the 
pathogen as one of the six most dangerous microbes [1]. 
Moreover, based on World Health Organization (WHO) 
ranking, this is the 1st pathogen that urgently needs new 
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antibiotics. However, no effective approved antibiotic is 
introduced against drug-resistant strains of A. bauman-
nii. Hence, active and passive immunizations could be 
invoked as an alternative solution against the notorious 
pathogen. Several studies nominated promising immu-
nogens for active and passive immunizations against A. 
baumannii [1–19]. However, none has been investigated 
in clinical trials. Animal studies have revealed that per-
fect protection could not be achieved by the adminis-
tration of a single antigen. In this regard, investigations 
about A. baumannii antigens are still ongoing. Virulence 
factors are among the most attractive targets for immuni-
zation against pathogens. Secretion systems have pivotal 
roles in the pathogenicity of bacteria. Type VI secretion 
system (T6SS), a weapon in many Gram-negative bac-
teria, is responsible for delivering many toxic protein 
effectors into prokaryotic and eukaryotic prey cells [20]. 
This apparatus comprised at least 13 conserved proteins 
consisting of a baseplate, a membrane-spanning struc-
ture, a contractile sheath, a cytoplasmic sheath recycling 
protein, and an injectable needle. However, various bac-
teria could produce their accessory proteins and secre-
tory effectors. The hemolysin co-regulated protein (Hcp), 
the proline-alanine-alanine-arginine repeat (PAAR) pro-
tein, and a trimer of valine-glycine-arginine G (VgrG) 
are involved in the formation of the injectable needle in 
which Hcp hexamers are from the main tube. The tube 
is capped with VgrG and, in some cases, the PAAR pro-
tein [20]. T6SS has also been identified in many strains 
of A. baumannii [21]. However, as a difference, it has no 
homolog for a conserved outer membrane lipoprotein, 
TssJ, of Escherichia coli [21]. Previous studies unveiled 
that, among components of T6SS, VgrG is an appropri-
ate candidate for the investigation of active and passive 
immunizations. This protein increases A. baumannii 
virulence and its adhesion to lung epithelial cells [22]. In 
silico analyses revealed that VgrG is present in most A. 
baumannii strains [23, 24]; T6SS-positive strains usually 
harbor 2–4 copies of the vgrG gene [23]. The C terminus 
of this crucial structural component of T6SS is essential 
for the functional assembly of T6SS nanomachine in A. 
baumannii [25]. Hence, VgrG is an impressive virulence 
factor to be explored with immunization. Recently, we 
studied the VgrG421-765 and VgrG421-536 regions regarding 
immunoprotective effects. Challenge with a lethal dose 
of A. baumannii ATCC 19606 in mice immunized with 
VgrG421-765 and VgrG421-536 showed 33% and 66% survival 
rates, respectively [2]. Surprisingly, VgrG421-536 devel-
oped higher protectivity; however, none of the selected 
regions conferred full protection against a lethal dose of 
the bacteria. Although immunoprotective effects of the 
selected regions were elucidated, protective effects of 
VgrG encompassing both N- and C-terminal domains 

remained to be addressed. The current study is con-
ducted to evaluate the immunoprotective efficacy of the 
recombinant VgrG in a murine model.

Methods
Overexpression of VgrG
In the current study, genomic DNA of A. baumannii 
ATCC 19606 was used as a source of the vgrG gene. A 
pair of primers (forward: CAA​GGA​TCC​ATG​GTA​TTC​
TTA​CAA​CGT​ATA​GAA​GGC​CAA​CATC and reverse: 
CCG​TCT​AGA​TTA​CAT​ACA​TTC​TTG​CTC​CAT​CTT​
GAG​CTG​CAA) was designed to amplify the vgrG gene 
by polymerase chain reaction (PCR). The primers were 
harboring restriction sites of BamHI and XbaI enzymes 
(underlined). The PCR product and the expression plas-
mid (e5044) were digested with BamHI and XbaI. The 
digested amplicon was ligated to the plasmid and trans-
formed to competent cells of Escherichia coli BL21 (DE3) 
strain. The transformants were grown overnight at 37 °C 
in an auto-induction medium [26] supplemented with 
100 μg/mL ampicillin. The cells were harvested by cen-
trifugation and resuspended in denaturing buffer (8 M 
urea, 10 mM Tris-HCl, 100 mM NaH2PO4, pH 8). The 
cell suspension was sonicated and then was centrifuged 
at 13000 rpm, for 20 min at 4 °C. The supernatant was 
used for the purification procedure. The recombinant 
protein was purified in denaturing conditions by the Ni-
NTA affinity column (Qiagen, Germany). The purified 
protein was analyzed by 9% sodium dodecyl sulfate-pol-
yacrylamide gel electrophoresis (SDS-PAGE). The dena-
tured protein was refolded by sequential dialysis against 
PBS containing 6, 4, 2, and 0 M urea + 0.5 mM l-argi-
nine (pH 7.4) at 4 °C for 2 h. Bradford protein assay [27] 
was used to estimate the concentration of the purified 
recombinant protein.

Mouse immunization
Twenty-four 6- to 8-week-old female BALB/c mice 
weighing 20–25 g were distributed into two groups of 12 
mice each in the control group and the test groups. In the 
first injection, the test group received subcutaneously 20 
μg of the purified recombinant protein mixed with 1:1 
(v/v) ratio of complete Freund’s adjuvant (Sigma-Aldrich, 
Merck KGaA, Germany). Boosters were administered 
on days 15 and 30 with 20 μg of the refolded recombi-
nant protein admixed with incomplete Freund’s adjuvant 
(Sigma-Aldrich) at a 1:1 (v/v) ratio. The control group 
received PBS mixed with 0.5 mg arginine and emulsified 
with a 1:1 (v/v) ratio of the adjuvants. The mice received 
100 μL of the prepared mixture in each injection. Blood 
samples of mice were collected on days 14, 29, and 44. 
The sera were separated and stored at 20 °C.
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Enzyme‑linked immunosorbent assay (ELISA)
Anti-VgrG-specific IgGs in the sera collected from 
the immunized mice were assessed by indirect ELISA. 
Briefly, the recombinant VgrG (2 μg/well) was coated in 
a 96-well ELISA plate. After incubation (overnight at 4 
°C), the wells were washed three times with PBST (PBS 
containing 0.05% Tween 20), and then 100 μL of blocking 
solution (5% skimmed milk in PBST) was added to the 
wells. The plate was incubated at 37 °C for 1 h followed 
by washing (3 times with PBST), after which 100 μL of 
serially diluted (1:250 to 1:64000) sera was added to the 
wells. The plate was incubated at 37 °C for 2 h, and then 
the washing step was repeated. A secondary antibody 
(horseradish peroxidase-conjugated antibody), diluted 
to 1:15000 in PBST, was added (100 μL/well). The plate 
was incubated at 37 °C for 1 h followed by a washing 
step. Then, 3,3-5,5-tetramethylbenzidine (TMB) solution 
was added as a substrate (100 μL/well) to develop color. 
The reaction was stopped by the addition of 3 M H2SO4, 
and the absorbance was read at 450 nm using an ELISA 
reader. The endpoint titer was defined as the highest dilu-
tion at which the optical density was 0.1 greater than that 
of control wells receiving control adjuvant serum.

Western blotting
The recombinant protein expression was validated by 
Western blotting with horseradish peroxidase (HRP)-
conjugated anti-polyhistidine antibodies (1:10,000 dilu-
tion) in which 0.5 μg of the recombinant protein was 
loaded onto the SDS-PAGE. The recombinant protein 
was separated on 9% sodium dodecyl sulfate-polyacryla-
mide gel electrophoresis and then transferred onto a 
nitrocellulose membrane using transfer buffer (150 mM 
glycine, 20 mM Tris-base, and 20% methanol). The mem-
brane was blocked with 5% skim milk in PBST at 4 °C 
overnight. The membrane was incubated with pooled 
antiserum samples at a dilution of 1:2000 for 2 h and then 
incubated with a horseradish peroxidase secondary anti-
body at a 1:10,000 dilution with gentle shaking for 2 h 
at room temperature. The membrane was washed three 
times with PBST, and the immunoblot was developed 
using 3,3-diaminobenzidine (Sigma).

Bacterial challenges
Actively immunized mouse group
A. baumannii ATCC 19606 was employed for challenges 
with viable bacteria in mice. The lethal dose of A. bau-
mannii ATCC 19606 was determined. The control and 
actively immunized mouse groups received intraperito-
neally 1.9 × 108 CFU, 2.4 × 108 CFU, and 3.2 × 108 CFU 
of A. baumannii ATCC 19606. The mouse survival was 
monitored for 72 h. The survived mice were sacrificed, 

and their spleens and lungs were removed aseptically. 
The organs were weighed and homogenized in sterile 
normal saline. The mixtures were serially diluted and 
plated on LB agar. The plates were incubated overnight 
at 37 °C.

Passive immunization and histopathology
In passive immunization, inocula for each mouse were 
prepared as follows: after inactivation of the complement 
system, the sera (1:250 dilutions) obtained from immune 
or non-immune mice were incubated with 1.9 × 108 CFU 
of A. baumannii ATCC 19606. The suspensions were 
incubated in a shaking incubator at 37 °C for 2 h. The bac-
teria were harvested by centrifugation and re-suspended 
in 100 μL sterile PBS. The suspensions were intraperi-
toneally injected into the mice. The mouse survival was 
monitored for 72 h followed by scarification of the surviv-
als. Their liver, spleen, and lungs were aseptically removed 
and processed for a histopathology examination. The 
biopsies were fixed in 10% buffered formalin followed by 
staining with hematoxylin-eosin. The histopathological 
changes were observed under a light microscope.

Statistical analyses
Statistical analyses were performed using the GraphPad 
Prism 8.0 software. The data were presented as mean 
with standard deviations represented as error bars. Com-
parison of antibody titers was performed using a Kruskal-
Wallis test followed by Dunn’s multiple comparison test. 
The bacterial burdens were compared with an unpaired 
Student’s t-test. Survival was compared using the non-
parametric log-rank test. Differences were considered 
significant if the p-value was < 0.05.

Results
Recombinant VgrG expression and purification
The vgrG gene was successfully amplified by PCR from 
the A. baumannii ATCC 19606 genome. The cloned gene 
into the e5044 plasmid was confirmed via sequencing. 
The purified recombinant VgrG expressed in E. coli BL21 
(DE3) revealed a band with an apparent molecular weight 
of approximately 126 kDa on 9% SDS-PAGE and con-
firmed by Western blot analysis (Fig. S1).

Anti‑VgrG immunoglobulin G (IgG)
ELISA data (Fig. 1) indicated that the levels of IgG raised 
to VgrG increased significantly after the second immuni-
zation (mean value = 18000) (p <0.01). Antibody titers 
were higher after the third immunization with a mean 
value of 32,000; the difference was significant compared 
to the control group (p < 0.001).
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Active immunization
LD50 and LD of A. baumannii ATCC 19606 were deter-
mined as 1.3 × 108 CFU and 1.9 × 108 CFU, respec-
tively. All control mice that received 1.9 × 108 CFU 
(LD), 2.4 × 108 CFU, and 3.2 × 108 CFU of A. bauman-
nii ATCC 19606 died within 12 h. No death was seen 
in the test group challenged with the lethal dose of A. 
baumannii ATCC 19606. In the test group that received 
2.4 × 108 CFU of A. baumannii ATCC 19606, 75% of 
mice survived within 72 h (Fig.  2). All the immunized 
mice that received 3.2 × 108 CFU of A. baumannii 
ATCC 19606 died within 12 h (Fig.  2). Immunization 
with the recombinant VgrG significantly (p < 0.001) 
reduced the bacterial burden in the lung and spleen 

by approximately 4–5 log cycles 12 h postinfection as 
compared to adjuvant control (Fig. 3).

Passive immunization
In passive immunization, 1.9 × 108 CFU of A. bauman-
nii ATCC 19606 incubated with the sera (1:250 dilu-
tions) obtained from immune or non-immune mice was 
used as inoculums for each mouse. All control mice died 
within 12 h while no death was seen in the test group 
within 72 h (Fig. 4).

Histopathology
Histopathological examinations showed that bacterial chal-
lenge caused an increasing number of neutrophils around 

Fig. 1  IgG titers determined by indirect ELISA against the recombinant VgrG. The endpoint titer was defined as the highest dilution at which the 
optical density was 0.1 greater than that of the control wells receiving control adjuvant serum. Comparisons between the groups were performed 
using a Kruskal-Wallis test followed by Dunn’s multiple comparison test (**p < 01, ***p < 001)

Fig. 2  The survival rate in actively immunized mice. The non-parametric log-rank test was used for the analyses of survival rates (p < 0.001)
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the peribronchial and perivascular areas in unimmunized 
mice while immunized mice revealed moderate inflam-
mation with infiltration of mixed mononuclear cells and 
neutrophils (Fig. 5). Passive immunization with anti-VgrG 
sera reduced liver pathology following challenge with the 

pathogen. The livers of unimmunized mice show inflam-
mation and necrosis. In contrast, the livers from immu-
nized mice showed no significant histopathologic changes 
(Fig. 5). The spleen of unimmunized mice showed hyper-
plasia of the white pulp and higher neutrophils (Fig. 5).

Fig. 3  Bacterial burden in the lungs and spleens of the control and actively immunized mouse groups

Fig. 4  The mouse survival rate in passive immunization. The non-parametric log-rank test was used for the analyses of survival rates (p < 0.001)

Fig. 5  Histopathological examinations of the lung (A1, A2), liver (B1, B2), and spleen (C1, C2) in unimmunized and passively immunized mice 
challenged with A. baumannii. The bacterial challenge caused an increasing number of neutrophils around the peribronchial and perivascular 
areas in unimmunized mouse lungs (A1) while immunized mice revealed moderate inflammation with infiltration of mixed mononuclear cells 
and neutrophils (A2). The livers of unimmunized mice show inflammation and necrosis (B1). In contrast, the livers from immunized mice showed 
no significant pathology (B2). The spleen of unimmunized mice showed hyperplasia of the white pulp and higher neutrophils (C1) as against the 
normal structure retained in the immunized group (C2)

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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Discussion
Secretion systems play pivotal roles in the pathogenic-
ity of bacteria. VgrG is a component of T6SS that could 
increase A. baumannii virulence and its adhesion to 
lung epithelial cells [22]. This virulence factor is present 
in most A. baumannii strains [23, 24]. VgrG is located at 
the tip of the injectable needle of T6SS; hence, it could 
be exposed to host antibodies. The recombinant protein 
encompassing both N- and C-terminal domains include 
most of the potential epitopes. In our recent study, mice 
immunized with VgrG421-765 showed a 33% survival rate 
in a challenge with LD of A. baumannii ATCC 19606 [2]. 
In the present study, overexpression of the recombinant 
VgrG resulted in the formation of inclusion bodies. So, 
the protein was purified in denaturing conditions. The 
purified VgrG was aggregated during dialysis against PBS 
buffer. Hence, l-arginine was added to prevent aggre-
gate formation [5]. Full protection was observed in the 
immunized mice against a lethal dose of A. bauman-
nii demonstrating that the N terminus of VgrG contains 
important epitopes which could elevate the immuno-
protective efficacy of VgrG. The conferred protection 
revealed that VgrG is expressed by the pathogen in the 
murine sepsis model. Since T6SS is energetically costly, 
many T6SS-positive strains tightly regulate its expres-
sion at various levels. In A. baumannii, some strains have 
a constitutively active T6SS which also express under 
standard laboratory conditions; some strains possess a 
silenced T6SS transcriptionally repressed by large con-
jugative plasmids (LCPs) of multidrug-resistance; the 
last strains are those regulating their T6SS by unknown 
mechanisms [25]. The immunoprotective efficacy of vac-
cination could be affected by the expression level of VgrG 
at the infection condition. Some antigens are associ-
ated with specific infection types of A. baumannii [28]. 
In contrast, some antigens are associated with differ-
ent infection types [28]. Immunization with VacJ, a 299 
amino acid lipoprotein, showed no significant protection 
against LD50 of A. baumannii ATCC 19606 in a murine 
sepsis model. However, in a murine pneumonia model, 
immunized mice showed a 600-fold reduction of the bac-
terial load in the lungs [29]. Protectivity levels of various 
antigens vary from one antigen to the other. rBauA could 
confer full protection against 100× LD50 of A. bauman-
nii ATCC 19606 in actively immunized mice [30]. Mice 
actively immunized with Bap had shown full protection 
against 100× LD50 of a clinical strain of A. bauman-
nii [31]. The survival rate of Bap-immunized mice chal-
lenged with 105× LD50 of the clinical strain was 60% 
[31]. Mice immunized with FimA had revealed full pro-
tection against 10× LD50 of A. baumannii ATCC 19606 
[32]. The present study demonstrated that VgrG could 
not develop full protection against more than minimal 

lethal doses of A. baumannii ATCC 19606. This dose is 
< 2× LD50 of the pathogen. Administration dose of the 
antigen is an important criterion in immune responses 
and immunoprotective efficacy. It has been shown that, 
in a sepsis model, immunization of mice with 50 μg and 
20 μg of Omp22 could provide 100% and 33% survival 
against a lethal dose of a clinical strain, respectively [1]. 
In our previous study, mice who received 40 μg of VacJ 
showed higher titers of specific antibodies in compari-
son with mice who received 20 μg of the antigen such 
that in mice received 40 μg of VacJ, 3 injections were suf-
ficient to trigger high titer of anti-VacJ antibodies [29]. 
Although only the dose of 20 μg VgrG was investigated 
in the present study, it would be expected that higher 
administration doses could increase immune responses 
and immunoprotective efficacy. Since VgrG is located at 
the tip of T6SS, it is highly accessible to host antibodies. 
It has been demonstrated that anti-OmpA monoclonal 
antibodies (MAbs) could not confer protection against 
encapsulated strains of A. baumannii, in a murine sepsis 
model, owing to shielding of OmpA by capsule polysac-
charide which could inhibit binding of anti-OmpA MAbs 
to the bacteria [33]. Anti-VgrG antibodies could over-
come this obstacle because VgrG is topologically more 
accessible than OmpA.

Conclusion
VgrG is found to be a protective antigen to take a part 
in vaccine developments. This antigen could be topologi-
cally accessible to host antibodies even in encapsulated 
strains of A. baumannii. However, some considerations 
such as species specificity need to be considered.
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