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a b s t r a c t 

In computer security, botnets still represent a significant cy- 

ber threat. Concealing techniques such as the dynamic ad- 

dressing and the domain generation algorithms (DGAs) re- 

quire an improved and more effective detection process. To 

this extent, this data descriptor presents a collection of over 

30 million manually-labeled algorithmically generated do- 

main names decorated with a feature set ready-to-use for 

machine learning (ML) analysis. This proposed dataset has 

been co-submitted with the research article ”UMUDGA: a 

dataset for profiling DGA-based botnet” [1], and it aims to 

enable researchers to move forward the data collection, or- 

ganization, and pre-processing phases, eventually enabling 

them to focus on the analysis and the production of ML- 

powered solutions for network intrusion detection. In this re- 

search, we selected 50 among the most notorious malware 

variants to be as exhaustive as possible. Inhere, each fam- 

ily is available both as a list of domains (generated by exe- 

cuting the malware DGAs in a controlled environment with 
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fixed parameters) and as a collection of features (generated 

by extracting a combination of statistical and natural lan- 

guage processing metrics). 

© 2020 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license. 

( http://creativecommons.org/licenses/by/4.0/ ) 
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Specification table 

Subject area Computer Network and Communications, Artificial Intelligence 

More specific subject area Network Security, Machine Learning, Natural Language Processing, Intrusion 

Detection Systems 

Type of data TXT , CSV , and ARFF files. 

How data were acquired Domain Generation Algorithms have been implemented, executed and their 

data have been collected and processed to extract the identified features. 

Data format Raw : list of Fully Qualified Domain Names (FQDNs) in form of TXT files. 

Analyzed : list of features in form of ARFF and CSV files. 

Parameters for data collection Domain Generation Algorithms (DGAs) have been executed to collect a 

fixed number of generated domains. Whenever required, the random 

generator has been initialized with the string 

“3138C81ED54AD5F8E905555A6623C9C9 ”. 

Description of data collection Phase 1 : 37 DGAs have been collected and executed to generate at least 

10,0 0 0 AGDs. One million legitimate FQDNs have also been added to the 

collection, for a total of 38 + million domain names. 

Phase 2 : Each FQDN has been processed and compared with the English 

language to extract 100+ numerical features. 

Data source location Faculty of Computer Science, University of Murcia, Murcia, Spain 

Data accessibility Data repository : UMUDGA: University of Murcia Domain Generation 

Algorithm Dataset [2] . Data identification number: 

10.17632/76knkx3fzv.1 Direct URL to data: 

https://data.mendeley.com/datasets/y8ph45msv8/1 Source code 

repository : UMUDGA - University of Murcia Domain Generation 

Algorithm Dataset [3] Source code URL: 

https://github.com/Cyberdefence- Lab- Murcia/UMUDGA 

Related research article Zago, Mattia and Gil Pérez, Manuel and Martínez Pérez, Gregorio. 

“UMUDGA: a dataset for profiling DGA-based botnet.” Computers & 

Security (2020): 101719. 

doi: 〈 12:monospace 〉 10.1016/j.cose.2020.101719 〈 /12:monospace 〉 [1] 

alue of the data 

• The proposed dataset aims to overcome the shortage of standard and publicly available data

regarding DGA-based malwares. Its value resides in serving as a foundation for benchmarks

that eventually might lead to replicable and comparable experiments. 

• The primary recipients of the data are the academic scientists that focus on machine-

learning-driven network security researches. They might greatly benefit from these freshly

generated and carefully reviewed data. 

• By shifting the researchers’ attention from the data to the possible solutions, this work aims

to ease the development of further experiments, which might eventually lead to innovation

in the field of network cybersecurity. 

• These data, methods, and code sources are distributed under an open license. We guarantee

essential properties such as the comparability and testability of each component. 

. Data 

The proposed dataset is publicly available through Mendeley Data [2] . As depicted in Fig. 1 ,

he dataset is composed of four root folders that encompass different functionalities and scopes.

n order of importance there are: 

http://creativecommons.org/licenses/by/4.0/
https://data.mendeley.com/datasets/y8ph45msv8/1
https://github.com/Cyberdefence-Lab-Murcia/UMUDGA
http://dx.doi.org/10.1016/j.eswa.2016.06.029
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Fig. 1. Dataset organization. 

 

 

 

 

 

 

 

 

 

 

 

• The domain generation algorithms – in this folder, for each malware variant, there are the

DGA executable, the source code, and the reference to the analysis. 

• The actual data folder (named Fully Qualified Domain Names) – in this folder, for each mal-

ware variant plus the legitimate domains, there are three subfolders: 

- Raw list – includes the TXT lists of Fully Qualified Domain Names (FQDNs) in dif-

ferent tiers (e.g., 10 0 0, 10,0 0 0); 

- ARFF features – includes the data processed and exported in the TXT (see [4] ) for-

mat. 

- CSV features – includes the data processed and exported as comma-separated CSV
files. 

• The language data – in this folder, there are the executables to preprocess any given

language and the preprocessed, ready-to-use data for the English language ( i.e ., the raw

wordlists obtained from the Leipzig Corpora [5] and the lists of extracted n Grams). 

• The utility folder – in this folder, there are the executables and the source codes for any

relevant package that might be helpful for the researchers, e.g ., the collision checker. 

In the following sections, we will refer to several figures and tables. Specifically: 

• Figures: 

- Dataset structure – the figure mentioned above ( Fig. 1 ) reports the Mendeley Data

[2] repository structure; 

- Framework architecture – from the main co-submitted article [1, Fig. 3] , describes

the implemented architecture and module names. 

• Tables: 

- The list of features generated by the NLP Processor for each FQDN ( Table 1 ) –

presents the feature code, description, and mathematical definition of each imple-

mented feature. Note that the n Grams features are described in Section 2.3.2 ; 
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Table 1 

List of features generated by the NLP Processor for each FQDN. 

Code Description Definition 

L- x String length of x domain level l x = | d x | 
N Number of domain levels n = | PARTS (d) | 
LC-C Longest consecutive consonant sequence lc c = LCS (d, C) 

LC-D Longest consecutive number sequence lc d = LCS (d, D) 

LC-V Longest consecutive vowel sequence lc v = LCS (d, V) 

R-CON- x Ratio of consonants characters r x,c = R (d, C) 

R-LET- x Ratio of letter characters r x,l = R (d, C ∪ V) 

R-NUM- x Ratio of numerical characters r x,n = R (d, D) 

R-SYM- x Ratio of symbolical characters r x,s = R (d, S) 

R-VOW- x Ratio of vowel characters r x, v = R (d, V) 

where x ∈ { FQDN , 2LD , OLD } denotes the domain levels. 

C = b , c , d , f , g , h , j , k , l , m , n , p , q , r , s , t , v , w , x , y , z 

V = a , e , i , o , u 

D = 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 

S = “- ”, “. ”
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- the general feature statistics ( Table 2 ) – presents the mean, standard deviation, min-

imum, and maximum metrics for each feature and each n Grams set. 

• Algorithms: 

- Algorithm 1 ( LCS (d, A ) )– presents the pseudocode for the Longest Consecutive Se-

quence algorithm; 

- Algorithm 2 ( PE (d, p) )– presents the pseudocode for the percentiles calculation al-

gorithm; 

- Algorithm 3 ( R (t, A ) )– presents the pseudocode for the ratio of characters algo-

rithm; 

Alongside with the Mendeley Data [2] , there is a duplicated copy of the source code, pack-

ges, executables, and documentation in a Github public repository [3] that serves as the official

roject page. Moreover, the Github wiki page “Feature Statistics” [3] also provides metrics and

harts for each feature calculated and available in the dataset. 

. Experimental design, materials and methods 

Before introducing the dataset, it is worth mentioning a few terms and definitions that will

e used throughout the article. Firstly, with botnet we identify an group of infected machines,

alled bots or zombies , that communicates with of one or more of the Command & Control (C&C)

ervers that act as a relay for the commands issued by the botmaster (botnet owner). Bots often

se pseudo-random domain generators, called domain generation algorithms (DGAs) , to commu-

icate with the C&C servers. These DGAs generate thousands of domain names, called algorith-

ically generated domains (AGDs) . A deep dive on the subject, with specific attention to machine

earning (ML) techniques, is offered by Plohmann et al. [6–8] . 

The primary research article [1] thoroughly describes the architecture of the data generation

ramework (see [1, Fig. 3] ). To be precise, the figure highlights both the required inputs (the

alware DGAs and the English Language Data) and the provided outputs (the AGD lists and

he AGD features sets) that have been implemented to guarantee the scientific accuracy and

eproducibility of the dataset. 

A selected list of 50 malware variants has been collected, analyzed, processed, and in-

luded in the proposed dataset to be as complete as possible. The primary research article

1, Table 1] presents these malware variants according to their tier level, i.e ., the number of

GDs generated for that specific malware variant. It is important to remark that several variants

uch as Pizd, Gozi , or Rovnix have wordlist-based DGAs; thus, their possible AGDs are limited. 
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Table 2 

General statistics for the features contained in this dataset. 

METRIC MEAN STD MIN MAX METRIC MEAN STD MIN MAX 

L-2DN 1.42e16 7.01e16 1.00e01 4.50e02 2G-DST-EU 2.75e15 4.13e15 1.69e16 7.45e15 

L-FQDN 1.90e16 6.34e15 4.00e01 4.80e02 2G-DST-JI 5.70e16 5.10e15 0 5.21e15 

L-ODN 9.00e14 3.39e15 0 2.30e02 2G-DST-KL 2.76e16 1.55e16 0 1.44e15 

LC-C 4.79e15 2.90e15 0 3.00e02 2G-DST-MA 1.98e16 2.00e15 1.80e16 2.00e15 

LC-V 1.71e16 1.12e16 0 1.90e02 2G-E 3.80e15 2.99e16 2.22e10 2.27e16 

N 2.07e16 2.63e15 2.00e01 4.00e01 2G-KEN 1.73e16 2.99e15 6.17e16 2.88e15 

R-CON-2DN 6.89e14 1.81e16 0 1.00e01 2G-KUR 9.51e14 3.83e15 2.39e15 1.07e15 

R-CON-FQDN 6.32e15 1.27e15 0 9.58e15 2G-MEAN 7.72e15 4.23e00 7.72e15 7.72e15 

R-CON-ODN 4.94e15 1.80e15 0 1.00e01 2G-NORM 3.57e16 2.52e16 5.62e08 2.17e15 

R-LET-2DN 9.45e15 1.43e16 0 1.00e01 2G-PEA 7.46e15 4.36e15 4.35e15 8.84e15 

R-LET-FQDN 8.90e15 1.18e15 1.62e16 9.74e15 2G-PRO 5.51e16 4.77e15 1.12e10 3.91e15 

R-LET-ODN 6.95e15 2.47e16 0 1.00e01 2G-PSTD 7.18e16 1.22e16 4.07e15 2.07e16 

R-NUM-2DN 5.25e16 1.44e16 0 1.00e01 2G-PVAR 5.31e09 1.83e11 1.66e09 4.28e15 

R-NUM-FQDN 4.71e16 1.22e15 0 8.11e15 2G-QMEAN 7.23e15 1.21e16 4.14e15 2.07e15 

R-NUM-ODN 5.21e15 3.97e14 0 1.00e01 2G-REP 4.48e15 8.23e15 0 1.20e02 

R-SYM-2DN 2.31e16 1.43e15 0 4.0 0e0 0 2G-SKE 9.49e15 1.71e16 5.09e16 3.16e16 

R-SYM-FQDN 6.34e15 2.34e16 2.08e15 3.33e15 2G-SPE 1.99e16 3.44e15 7.09e14 3.31e15 

R-SYM-ODN 7.05e09 9.08e15 0 2.0 0e0 0 2G-STD 7.19e15 1.22e15 4.07e15 2.07e16 

R-VOW-2DN 2.57e15 1.54e15 0 1.00e01 2G-SUMSQ 1.79e15 7.26e14 2.00e01 7.00e02 

R-VOW-FQDN 2.58e15 1.07e16 0 8.33e15 2G-TKUR 5.17e15 2.69e15 9.03e12 1.30e16 

R-VOW-ODN 2.00e16 8.54e15 0 1.00e01 2G-TPSTD 5.79e15 3.37e15 3.12e08 1.97e16 

1G-25P 3.68e11 8.53e15 0 2.70e16 2G-TPVAR 4.49e09 5.20e08 9.73E-01 3.89e09 

1G-50P 1.70e16 6.86e15 0 5.26e15 2G-TSKE 2.11e16 5.64e15 8.98e15 3.60e16 

1G-75P 5.36e15 2.08e15 0 1.0 0e0 0 2G-TSTD 5.79e15 3.37e15 3.12e07 1.97e15 

1G-COV 1.38e16 2.28e16 4.11e15 2.41e16 2G-TSUM 5.23e15 4.25e16 1.12e10 3.05e15 

1G-DIST 1.22e16 3.31e15 2.00e01 3.10e02 2G-TSUMSQ 5.85e15 6.80e15 1.26e04 5.11e15 

1G-DST-CA 3.17e15 1.81e14 1.95e15 3.60e15 2G-TVAR 4.49e09 5.21e08 9.74E-01 3.89e07 

1G-DST-CH 1.56e16 4.69e14 5.09e16 6.66e15 2G-VAR 5.31e10 1.83e10 1.66e11 4.28e16 

1G-DST-EM 7.15e15 2.46e16 1.01e16 1.90e15 3G-25P 0 0 0 0 

1G-DST-EU 3.34e16 4.50e15 1.61e15 7.86e15 3G-50P 0 0 0 0 

1G-DST-JI 1.64e16 5.35e15 9.73e15 4.76e15 3G-75P 0 0 0 0 

1G-DST-KL 8.41e15 9.72e15 -7.33e + 15 3.42e16 3G-COV 1.68e09 3.27e07 9.39e07 6.16e08 

1G-DST-MA 1.44e16 1.56e16 7.10e15 2.00e15 3G-DIST 1.59e14 6.28e15 1.00e01 4.40e02 

1G-E 3.28e15 1.23e16 2.88e15 9.55e15 3G-DST-CA 6.39e16 5.57e15 6.37e15 6.41e15 

1G-KEN 7.05e15 5.88e15 3.29e15 8.74e15 3G-DST-CH 7.43e15 2.90e16 2.88e16 1.00e01 

1G-KUR 2.54e16 2.86e15 -2.12e + 15 3.10e15 3G-DST-EM 1.01e15 3.55e16 1.19e16 2.58e15 

1G-MEAN 2.78e15 2.75e03 2.78e15 2.78e16 3G-DST-EU 2.69e15 4.82e14 1.58e16 1.00e16 

1G-NORM 4.71e15 1.40e15 6.52e15 9.53e14 3G-DST-JI 1.51e15 4.66e15 0 1.65e16 

1G-PEA 9.20e15 2.79e14 5.92e15 9.85e14 3G-DST-KL 1.27e16 2.28e15 0 4.86e15 

1G-PRO 8.28e14 3.45e15 5.05e15 2.65e16 3G-DST-MA 2.00e16 1.85e16 1.94e16 2.00e15 

1G-PSTD 4.56e15 8.32e14 1.53e16 1.21e16 3G-E 5.43e16 7.79e15 0 8.98e15 

1G-PVAR 2.15e15 7.88e15 2.33e15 1.47e16 3G-KEN 5.09e14 9.64e14 1.30e15 8.62e15 

1G-QMEAN 5.36e16 7.08e15 3.17e15 1.24e16 3G-KUR 3.41e15 1.32e16 1.06e16 4.67e16 

1G-REP 4.12e15 2.40e16 0 1.70e02 3G-MEAN 2.14e11 1.71E-02 2.14e11 2.14e10 

1G-SKE 1.66e16 5.57e14 - 

2.81e + 16 

5.41e15 3G-NORM 4.54e15 6.39e15 0 1.01e15 

1G-SPE 8.22e15 5.90e15 3.97e15 9.63e15 3G-PEA 6.25e15 1.72e15 5.93e15 7.89e15 

1G-STD 4.62e15 8.44e14 1.55e16 1.23e15 3G-PRO 6.38e15 1.09e16 0 1.64e16 

1G-SUMSQ 3.36e15 1.95e14 3.00e01 2.08e03 3G-PSTD 1.23e15 2.27e16 6.98e15 4.63e15 

1G-TKUR 4.14e15 2.93e15 - 

3.73e + 15 

3.56e15 3G-PVAR 1.55e10 6.00e08 4.87e08 2.14e10 

1G-TPSTD 2.81e16 4.52e15 5.29e15 3.50e16 3G-QMEAN 1.23e16 2.27e16 6.98e15 4.63e16 

1G-TPVAR 8.13e15 2.42e16 2.80e11 1.22e16 3G-REP 5.06e15 2.89e14 0 1.10e02 

1G-TSKE 2.14e15 5.14e15 1.03e16 5.95e16 3G-SKE 5.73e15 1.06e16 3.25e16 2.16e16 

1G-TSTD 2.85e16 4.59e15 5.36e15 3.55e15 3G-SPE 5.25e15 9.96e15 1.34e16 8.91e15 

1G-TSUM 5.32e15 1.45e15 3.80e15 9.61e15 3G-STD 1.23e16 2.27e16 6.98e15 4.63e15 

1G-TSUMSQ 3.77e15 1.27e16 1.07e15 6.45e15 3G-SUMSQ 1.60e16 6.46e15 1.00e01 5.80e02 

1G-TVAR 8.36e15 2.48e15 2.88e11 1.26e16 3G-TKUR 3.14e16 1.28e16 3.74e16 4.67e16 

1G-VAR 2.21e15 8.10e14 2.40e16 1.51e15 3G-TPSTD 1.55e10 2.50e11 0 1.65e16 

2G-25P 0 0 0 0 3G-TPVAR 8.65e05 3.30e07 0 2.71e08 

( continued on next page ) 
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Table 2 ( continued ) 

METRIC MEAN STD MIN MAX METRIC MEAN STD MIN MAX 

2G-50P 0 0 0 0 3G-TSKE 1.69e16 4.07e15 6.01e15 2.16e16 

2G-75P 0 0 0 0 3G-TSTD 1.55e11 2.50e11 0 1.65e16 

2G-COV 1.33e10 1.52e10 8.34e09 2.25e10 3G-TSUM 6.19e15 1.00e16 0 1.02e15 

2G-DIST 1.64e16 6.04e15 2.00e01 4.50e02 3G-TSUMSQ 4.04e10 1.54e16 0 1.26e16 

2G-DST-CA 7.42e15 2.96e15 7.34e15 7.61e15 3G-TVAR 8.65e05 3.30e06 0 2.71e08 

2G-DST-CH 8.41e15 3.42e14 2.86e16 6.59e15 3G-VAR 1.55e10 6.00e08 4.87e08 2.14e11 

2G-DST-EM 2.66e16 9.27e14 2.73e16 6.69e15 
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Firstly, each of the 50 malware variant DGAs included in the dataset has been collected from

nline sources [9–11] and implemented in a module named Domain List Generation . Their fixed

nitialization parameters are described in the following dedicated subsection. To be more precise,

henever a malware variant, such as Gozi , needs one or more wordlists in order to generate

he domain names, we have considered each wordlist as a separate variant and memorized the

ordlist itself in the corresponding DGA folder. 

Secondly, the raw lists of AGDs are then processed by the secondary module, named Feature

xtraction , that calculates the features according to their formal definitions as described in the

ollowing dedicated subsection. 

The generated AGDs lists present 551 collisions, which are available in a separate file in the

oot of the project. To be more precise: 

• The variant Gozi (Nasa wordlist) shares 

- 14 AGDs with the variant Matsnu 
- 5 AGDs with the variant Gozi (RFC 4343 wordlist) 

• The variant Gozi (RFC 4343 wordlist) shares 

- 5 AGDs with the variant Gozi (Nasa wordlist) 
- 1 AGD with the variant Nymaim 
- 24 AGDs with the variant Matsnu 

• The variant Matsnu shares 

- 14 AGDs with the variant Gozi (Nasa wordlist) 
- 24 AGDs with the variant Gozi (RFC 4343 wordlist) 
- 53 AGDs with the variant Nymaim 

• The variant Nymaim shares 

- 1 AGD with the variant Gozi (RFC 4343 wordlist) 
- 53 AGDs with the variant Matsnu 
- 3 AGDs with the variant Suppobox (1st version) 
- 5 AGDs with the variant Suppobox (2st version) 

• The variant Pizd shares 

- 441 AGDs with the variant Suppobox (1st version) 
• The variant Proslikefan shares 

- 1 AGD with the variant Simda 
- 1 AGD with the variant Pykspa (noise) 

• The variant Pykspa (noise) shares 

- 1 AGD with the variant Proslikefan 
- 3 AGDs with the variant Simda 

• The variant Simda shares 

- 1 AGD with the variant Proslikefan 
- 3 AGDs with the variant Pykspa (noise) 

• The variant Suppobox (1st version) shares 

- 3 AGDs with the variant Nymaim 
- 441 AGDs with the variant Pizd 

• The variant Suppobox (2st version) shares 
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- 5 AGDs with the variant Nymaim 

2.1. Domain list generation 

Several independent executables that implement each malware variant DGA constitute the

backbone of the Domain List Generation module. The main output of this module is a list of

AGDs generated by the malware variants, and to be as precise as possible, each DGA implemen-

tation utilizes a fixed seed for the pseudorandom number generator (PRNG) and firstly analyzes,

whenever available, the original initialization vectors for the specific malware sample analyzed.

Each malware family also includes the links fo the source code and the related analysis. 

2.2. Feature extraction 

The Feature Extraction module is composed by two independent processes, namely the NLP

Processor and the nGrams Processor . The features extracted are the ones belonging to Context-Free

family, defined as specified in Def. 1 , quoting Zago et al . [7] : 

Family 1 (Context-Free Feature) . A feature that is related only to a Fully Qualified Domain Name

(FQDN) and thus is independent of contextual information, including, but not limited to, timing,

origin or any other environment configuration. First and foremost example of this family is the

lexical analysis of the domain name. 

The Domain Inspector processes each AGD generated, as presented in [1, Fig. 3] . To be precise,

the two primary submodules mentioned above require validated FQDNs augmented with their

n Grams sets. Specifically, as reported in [1] , this research only focuses on the first three sets of

n Grams ( i.e ., n = 1 , 2 , 3 ). 

The first process ( i.e ., the NLP Processor ) extracts a total of 22 features by analyzing the do-

main name as a string. Table 1 presents the extracted list with their formal definitions. 

The second process ( i.e ., the nGrams Processor ), compares the different sets of n Grams gener-

ated by the Domain Inspector with the ones provided by the Leipzig Corpora [5] for the English

language (one million words from Wikipedia, 2016 update), generating a total of 29 features per

n Grams. Section 2.3 presents the formal definitions and the algorithms required for extending

and validating the feature set. 

2.3. Feature definitions 

In order to provide a formal declaration of the proposed features, it is necessary to establish

a set of standard definitions. Firstly, it is necessary to introduce a series of well-defined terms

that will be used through most of the definitions. Intuitively, these definitions will refer to the

set of n Grams ( Def. 1 ) and its distributions, either absolute ( Def. 3 ) or relative ( Def. 4 ), and the

formula that calculates it ( Def. 2 ). Moreover, since most of the features aim to compare this

distribution with the one obtained from the English language, another series of definitions is

necessary, namely the absolute ( Def. 6 ) and relative ( Def. 8 ) distributions and the formulae that

calculates them ( Def. 5 and Def. 7 , respectively). To avoid symbols ambiguity, with | · | we will

refer to the size of the collection “ · ”, while with ABS (·) we will refer to the absolute value of

the variable “ · ”. 

Definition 1 ( n Grams Set). Let n be the length of the n Grams. Then we define as G the set of

all literals ( a-z ), digits ( 0-9 ) and permitted symbols ( - ) of length n . Thus, G is represented by

the following regular expression: [a-z0-9-]{n} . The set is then lexicographically sorted. 
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It is important to notice that the Def. 1 explicitly excludes the dot (“. ”) character, due to its

eserved use as hierarchical separator [12] , and the underscore (“_ ”) character, as per the RFC

034 [12] . 

Having the definition of then n Grams set, we define the application that transforms any

QDN in a vector of fixed length representing the occurrences of each n Grams. 

efinition 2 ( n Grams Application). Let d be a FQDN, G its sorted n Grams set (See Def. 1 ), n

he size of the n Grams and let F ( g, d ) be the absolute frequency for all the n Grams g ∈ G of the

omain d . 

Then we define as ρ the linear application that associate each element of G of the domain d

ith a real number, in form of a vector of absolute frequencies: 

ρ : G → R : ∀ g ∈ G, ρ(g) = F (g, d) 

efinition 3 ( n Grams Vector). Let d be a FQDN. Then we define as w d the vector resulting of

pplying ρ( · ) to the n Grams set G obtained from the domain d . Formally: 

ρ(G ) = w d = 

{ 

F (g, d) 

∣∣∣∀ g ∈ G 

} 

efinition 4 ( n Grams Relative Vector). Let w 

′ 
d 

be the vector of relative frequencies obtained by

ividing each element of w d by the total sum. Mathematically: 

w 

′ 
d = 

{ 

w ∑ 

(w d ) 

∣∣∣w ∈ w d 

} 

xample 1. Let n = 1 and d = google.com . Then w d has w d [ o] = 3 , w d [ g] = 2 , w d [ e ] = w d [ l] =
 d [ c] = w d [ m ] = 1 and has 0 as result for any other g ∈ G . It also holds that w 

′ 
d 
[ o] = 0 . 33 , w 

′ 
d 
[ g] =

 . 22 , w 

′ 
d 
[ e ] = w 

′ 
d 
[ l] = w 

′ 
d 
[ c] = w 

′ 
d 
[ m ] = 0 . 11 , having 0 for any other element of w 

′ 
d 
. 

The obtained n Grams vector can be compared with virtually any language data, namely the

 Grams relative frequency, i.e ., the frequency of the n Grams in the target language. 

efinition 5 ( n Grams Language Application). Let d be a FQDN, G its sorted n Grams set (See

ef. 1 ), n the size of the n Grams and let L ( g, T ) be the absolute frequency in the target language

ictionary T for all the n Grams g ∈ G of the domain d . Within the scope of this article, T is the

nglish language dictionary [5] . 

Then we define as σ the linear application that associate each element of G of the domain d

ith a real number, in form of a vector of absolute frequencies:: 

σ : G → R : ∀ g ∈ G, σ (g) = L (g, T ) 

efinition 6 ( n Grams Language Vector). Let d be a FQDN. Then we define as φd the vector

esulting of applying σ ( · ) to the n Grams set G obtained from the domain d . Formally: 

σ (G ) = φd = 

{ 

L (g, T ) 

∣∣∣∀ g ∈ G 

} 

efinition 7 ( n Grams Language Relative Application). Let d be a FQDN, G its sorted n Grams

et (See Def. 1 ), n the size of the n Grams and let L ′ ( g, T ) be the relative frequency in the target

anguage dictionary T for all the n Grams g ∈ G of the domain d . Within the scope of this article,

 is the English language dictionary [5] . 

Then we define as σ ′ the linear application that transforms the domain d in a vector of

elative frequencies: 

σ ′ : G → R : ∀ g ∈ G, σ (g) = L ′ (g, T ) 

efinition 8 ( n Grams Language Relative Vector). Let d be a FQDN. Then we define as φ′ 
d 

the

ector resulting of applying σ ′ ( · ) to the domain d . Formally: 

σ ′ (d) = φ′ 
d = 

{ 

L ′ (g, T ) 

∣∣∣∀ g ∈ G 

} 

Using [5] as source for the English language, the following example holds. 
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Example 2. Let n = 1 and d = google.com . 

Then, φd has φd [ o] = 85 , 719 , φd [ g] = 20 , 867 , φd [ e ] = 140 , 497 , φd [ l] = 47 , 521 , φd [ c] =
37 , 454 , φd [ m ] = 27 , 780 and has 0 as result for any other g ∈ G . 

Moreover, φ′ 
d 

has φ′ 
d 
[ o] = 7 . 68 , φ′ 

d 
[ g] = 2 . 03 , φ′ 

d 
[ e ] = 12 . 02 , φ′ 

d 
[ l] = 3 . 98 , φ′ 

d 
[ c] = 2 . 71 ,

φ′ 
d 
[ m ] = 2 . 61 with 0 as result for any other g ∈ G . 

2.3.1. Domain name as string 

The first set of features are the ones that do not depend on the size of the chosen n Grams,

and they are presented in Table 1 . In the table, we make use of three algorithms: i) the Longest

Consecutive Sequence ( LCS (d, A ) ), Algorithm 1 ), that extracts the longest consecutive sequence

Algorithm 1 Longest Consecutive Sequence – LCS (d, A ) . 

Ensure: | d| > 0 � d is the domain to be analyzed.

Ensure: d is lowercase 

Ensure: |A| > 0 � A is the alphabet to be used for comparison.

Ensure: A is lowercase 

l ⇐ 0 � Longest sequence 

l c ⇐ 0 � Candidate longest sequence 

for all c ∈ d do 

if A contains c then 

l c ⇐ l c + 1 

else 

if l < l c then 

l ⇐ l c 
end if 

l c ⇐ 0 

end if 

end for 

if l < l c then 

l ⇐ l c 
end if 

return l 

composed by the elements in the alphabet passed as argument; ii) the Percentiles calculation

( PE (d, p) , Algorithm 2 ), that calculates the desired percentile from a domain name; and iii) the

Ratio of characters ( R (t, A ) , Algorithm 3 ), that calculates the ratios between the tokens contained

in the provided alphabet and the target string. 

Finally, we indicate with PARTS (d) the list of all the FQDN parts of the domain name, for ex-

ample, if d = www.um.es , then PARTS (d) = [ www , um , es ] . These parts are generically called Domain

Levels (LD), and in this article we will refer to “es ” as the top level domain (TLD), to “um ” as

the second level domain (2LD) and to “www ” concatenated to any other subdomain level as the

other level domain (OLD). 

The features defined in Table 1 include properties such as the number of domain levels; the

longest consecutive sequence of consonants, vowels and numbers; and multiple ratios between

set of characters and the domain name. 

2.3.2. Domain name as n GRAM 

With regards to the features that depend on the size of the n Grams, the following paragraphs

introduce their formal definitions with the relative description and mathematical notation. Each

feature is repeated for each distinct value of n , in this proposed dataset (available at [2] ) the

values of n are n = 1 , 2 , 3 . In the following paragraphs, each feature is individually formalised. 
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Algorithm 2 Percentiles calculation – PE (d, p) . 

w d ⇐ ρ(d) � The n Grams array 

Ensure: w d is sorted 

Ensure: 0 < p ≤ 100 � The desired percentile 

n ⇐ | w d | � Size of the n Grams array 

if n = 1 then 

return w d [0] � Regardless of p 

else 

i ⇐ p · (n + 1) / 100 � The estimated percentile position 

if i < 1 then 

return w d [0] � Return the smallest element 

else if i ≥ 1 then 

return w d [ n − 1] � Return the greatest element 

else 

l ⇐ FLOOR (i ) � The integer part of i 

d ⇐ i − l � The fractional part of i 

return w d [ f + d · (l + 1 − l)] 

end if 

end if 

Algorithm 3 Ratio of characters – R (t, A ) . 

Ensure: | t| > 0 � t is the string to be analyzed. 

Ensure: t is lowercase 

Ensure: |A| > 0 � A is the alphabet to be used for comparison. 

Ensure: A is lowercase 

r ⇐ 0 

for all c ∈ t do 

if A contains c then 

r ⇐ r + 1 

end if 

end for 

return r/ | t| 

F  

p  

x

F  

D

F  

a  

o

F  

s

 

e

eature n G- x P: Frequencies Percentiles. A percentile indicates the value below which a given

ercentage of observations in a group of observations falls. For each value of n , calculates the

 = { 25 , 50 , 75 } percentile value using Algorithm 2 . 

eature n G-DIST: Number of distinct. n Grams Let d be a FQDN and G its n Grams set (See

ef. 1 ). The number of distinct n Grams is defined as the size of G : 

n G - DIST = | G | 
eature n G-REP: Number of repeated. n Grams Let d be a FQDN, G its n Grams set (See Def. 1 )

nd w d the n Grams vector (See Def. 3 ). The number of repeated n Grams is defined as the count

f the elements of w d that are greater than one. Formally: 

n G - REP = COUNT (w ∈ w d | w ≥ 1) 

eature n G-E: Entropy. Entropy is the average rate at which information is produced by a

tochastic source of data. 

Mathematically, let φ′ 
d 

be the English relative vector (See Def. 8 ) of the domain d ., then the

ntropy of the domain is defined as: 

nG - E = −
∑ 

φ∈ φ′ 
d 

φ · log 2 φ
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Feature n G-COV: Covariance. The sample covariance is a measure of the joint variability of two

random variables. 

Let w 

′ 
d 

be the n Grams relative vector (See Def. 4 ) and φ′ 
d 

be the n Grams language vector (See

Def. 6 ). Covariance allows us to determine if exists dependence between w 

′ 
d 

and φ′ 
d 

by a given

d . We will use the following formula: 

n G - COV = 

1 

| G | − 1 
·
| w 

′ 
d 
| ∑ 

i 

(w 

′ 
d i 

− w 

′ 
d 
)(φd i 

− φ′ 
d 
) 

Where: · = arithmetic mean of “ · ”. 

Feature n G-KEN: Kendall’s Correlation. Kendall’s Tau-b rank correlation of the domain d with

respect to the English language. 

Let i, j be two independent indexes running from 0 to the size | w 

′ 
d 
| = | φ′ 

d 
| (See Def. 4 and

Def. 8 ). Then, for any two pair (w i ∈ w 

′ 
d 
, φi ∈ φ′ 

d 
) and (w j ∈ w 

′ 
d 
, φ j ∈ φ′ 

d 
) , Kendall’s Correlation

defines them as: 

• concordant if it holds that w i < φj and φi < φj or w j < φi and φj < φi ; 

• discordant if it holds that w i < w j and φj < φi or w j < w i and φi < φj ; 

• neither concordant nor discordant if it holds that w i = w j or φi = φ j . 

It follows: 

n G - KEN = 

n c − n d √ 

(n 0 − n h )(n 0 − n k ) 

where: n 0 = 

n (n −1) 
2 ; 

n c = Number of concordant pairs; 

n d = Number of discordant pairs; 

n k = 

∑ 

k 
t k (t k −1) 

2 ; 

n h = 

∑ 

h 
u h (u h −1) 

2 ; 

t k = Number of tied values in the k th group of ties in w 

′ 
d 
; 

t h = Number of tied values in the h th group of ties in φ′ 
d 
. 

Feature n G-PEA: Pearson’s Correlation. Computes Pearson’s product-moment correlation coef- 

ficients of the domain d with respect to the English language. 

Let w 

′ 
d 

be the n Grams relative vector (See Def. 4 ) and φ′ 
d 

be the n Grams language vector

(See Def. 8 ), let also m = | w 

′ 
d 
| = | φ′ 

d 
| be the size of the two vectors. We define as the Pearson’s

Correlation the following: 

n G - PEA = 

1 

| d| − 1 
· 1 

σ (w 

′ 
d 
) 

· 1 

σ (φ′ 
d 
) 

·
m ∑ 

i 

(
w 

′ 
d i 

− w 

′ 
d 

)(
φd i 

− φ′ 
d 

)
where: · = arithmetic mean of “ · ”; 

| d | = length of the domain name; 

σ ( · ) = standard deviation of “ · ”. 

Feature n G-SPE: Spearman’s Correlation. Computes Spearman’s rank correlation of the do-

main d with respect to the English language. It is implemented with Apache Commons Math

SpearmansCorrelation class [13] . 

Feature n G-MEAN: Mean of frequencies Represents the arithmetic mean of the relative fre-

quencies for the domain d . Mathematically, let w 

′ 
d 

be the n Grams relative vector (See Def. 4 )

of the domain d : 

n G - MEAN = 

1 

| d| ·
∑ 

w ∈ w 

′ 
d 

w 

We will refer to this feature also with the symbol of “w ”. 
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eature n G-QMEAN: Quadratic mean of frequencies. Represents the quadratic mean (or root

ean square) of the relative frequencies for the domain d . Let w 

′ 
d 

be the n Grams relative vector

See Def. 4 ) of the domain d : 

n G - QMEAN = 

√ 

1 

| d| ·
∑ 

w ∈ w 

′ 
d 

w 

2 

eature n G-SUMSQ: Squared sum of frequencies. Represents the squared sum of the relative

requencies of the domain d . Mathematically, let w 

′ 
d 

be the n Grams relative vector (See Def. 4 )

f the domain d : 

n G - SUMSQ = 

∑ 

w ∈ w 

′ 
d 

w 

2 

eature n G-VAR: Variance of frequencies Represents the variance of the relative frequencies

f the domain d . Mathematically, let w 

′ 
d 

be the n Grams relative vector (See Def. 4 ) of the do-

ain d : 

n G - VAR = 

1 

| d| − 1 
·

∑ 

w ∈ w 

′ 
d 

(w − w ) 2 

eature n G-PVAR: Population variance of frequencies. Represents the population variance of

he relative frequencies of the domain d . Mathematically, let w 

′ 
d 

be the n Grams relative vector

See Def. 4 ) of the domain d : 

n G - PVAR = 

1 

| d| ·
∑ 

w ∈ w 

′ 
d 

(w − w ) 2 

eature n G-STD: Standard deviation of frequencies. Represents the variance of the relative fre-

uencies of the domain d . Mathematically, let w 

′ 
d 

be the n Grams relative vector (See Def. 4 ) of

he domain d : 

n G - STD = 

√ 

1 

| d| − 1 
·

∑ 

w ∈ w 

′ 
d 

(w − w ) 2 

eature n G-PSTD: Population standard deviation of frequencies. Represents the variance of

he relative frequencies of the domain d . Mathematically, let w 

′ 
d 

be the n Grams relative vector

See Def. 4 ) of the domain d : 

n G - PSTD = 

√ 

1 

| d| ·
∑ 

w ∈ w 

′ 
d 

(w − w ) 2 

eature n G-KUR: Kurtosis of frequencies. Computes the unbiased kurtosis of the relative fre-

uencies of the domain d . Let w 

′ 
d 

be the n Grams relative vector (See Def. 4 ) of the domain d and

et m = | w 

′ 
d 
| be its size. It follows: 

n G - KUR = − 3(m − 1) 2 

(m − 2)(m − 3) 
+ 

m (m + 1) 

(m − 1)(m − 2)(m − 3) 
·

∑ 

w ∈ w 

′ 
d 

(
w − w 

σ (w 

′ 
d 
) 

)
4 

he kurtosis is not defined for those collections with less than 3 elements. Such event cannot

ccur in our environment because the size of the vector | w 

′ 
d 
| is always greater than 3. 

eature n G-SKE: Skewness of frequencies. Computes the unbiased skewness of the relative fre-

uencies of the domain d . Let w 

′ 
d 

be the n Grams relative vector (See Def. 4 ) of the domain d and

et m = | w 

′ 
d 
| be its size. It follows: 

n G - SKE = 

m 

(m − 1)(m − 2) 
·

∑ 

w ∈ w 

′ 
d 

(
w − w 

σ (w 

′ 
d 
) 

)
3 
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The skeweness is not defined for those collections with less than 2 elements. Such event cannot

occur in our environment because the size of the vector | w 

′ 
d 
| is always greater than 2. 

Feature n G-TSUM: Sum of target language frequencies. Represents the sum of the English lan-

guage frequencies for the n Grams of d . Mathematically, let φ′ 
d 

be the English relative vector (See

Def. 8 ) of the domain d : 

n G - TSUM = 

∑ 

φ∈ φ′ 
d 

φ

Feature n G-TSUMSQ: Squared sum of target language frequencies. Represents the squared

sum of the English language frequencies for the n Grams of d . Mathematically, let φ′ 
d 

be the

English relative vector (See Def. 8 ) of the domain d : 

n G - TSUMSQ = 

∑ 

φ∈ φ′ 
d 

φ2 

Feature n G-TVAR: Variance of target language frequencies. Represents the variance of the En-

glish language frequencies for the n Grams of d . Mathematically, let φ′ 
d 

be the English relative

vector (See Def. 8 ) of the domain d : 

n G - TVAR = 

1 

| d| − 1 
·

∑ 

φ∈ φ′ 
d 

(w − φ) 2 

Feature n G-TPVAR: Population variance of target language frequencies. Represents the popu-

lation variance of the English language frequencies for the n Grams of d . Mathematically: 

n G - TPVAR = 

1 

| d| ·
∑ 

φ∈ φ′ 
d 

(φ − φ) 2 

Feature n G-TSTD: Standard deviation of target language frequencies. Represents the variance

of the English language frequencies for the n Grams of d . Mathematically, let φ′ 
d 

be the English

relative vector (See Def. 8 ) of the domain d : 

n G - TSTD = 

√ 

1 

| d| − 1 
·

∑ 

φ∈ φ′ 
d 

(φ − φ) 2 

Feature n G-TPSTD: Population standard deviation of target language frequencies. Represents

the variance of the English language frequencies for the n Grams of d . Mathematically, let φ′ 
d 

be

the English relative vector (See Def. 8 ) of the domain d : 

n G - TPSTD = 

√ 

1 

| d| ·
∑ 

φ∈ φ′ 
d 

(φ − φ) 2 

Feature n G-TKUR: Kurtosis of target language frequencies. Computes the unbiased kurtosis of

the English language frequencies for the n Grams of d . Let φ′ 
d 

be the English relative vector (See

Def. 8 ) of the domain d and let m = | φ′ 
d 
| be its size. It follows: 

n G - TKUR = − 3(m − 1) 2 

(m − 2)(m − 3) 
+ 

m (m + 1) 

(m − 1)(m − 2)(m − 3) 
·

∑ 

φ∈ φ′ 
d 

(
φ − φ

σ (φ′ 
d 
) 

)
4 

The kurtosis is not defined for those collections with less than 3 elements. Such event cannot

occur in our environment because the size of the vector | φ′ 
d 
| is always greater than 3. 

Feature n G-TSKE: Skewness of target language frequencies. Computes the unbiased skewness

of the English language frequencies for the n Grams of d . Let φ′ be the English relative vector

d 
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See Def. 8 ) of the domain d and let m = | φ′ 
d 
| be its size. It follows: 

n G - TSKE = 

m 

(m − 1)(m − 2) 
·

∑ 

φ∈ φ′ 
d 

(
φ − φ

σ (φ′ 
d 
) 

)
3 

he skeweness is not defined for those collections with less than 2 elements. Such event cannot

ccur in our environment because the size of the vector | φ′ 
d 
| is always greater than 2. 

eature n G-PRO: Pronounceability Score. This feature calculates how pronounceable a domain

 is, as described by [14, Linguistic Filter 2] , it quantifies “the extent to which a string adheres

o the phonotactics of the English language”. However, we do consider the whole FQDNs as base

or the computation, not only the 2LD. 

Let φ′ 
d 

be the English relative vector (See Def. 8 ) of the domain d and n the n Grams size. It

ollows: 

n G - PRO = 

∑ 

(φ′ 
d 
) 

| d| − n + 1 

eature n G-NORM: Normality Score. This feature calculates a score that reflects the attribute of

he English language, as defined by [15, Feature 9] . Mathematically, let w d be the n Grams vector

See Def. 3 ) of the domain d , let φ′ 
d 

be the English relative vector (See Def. 8 ) of the domain d ,

et m = | w d | = | φ′ 
d 
| be their sizes and n the n Grams size. Thus, the normality score is defined

s: 

n G - NORM = 

∑ m 

i =1 w d i 
· φ′ 

d i 

| d| − n + 1 

eature n G-DST-KL: Kullback-Leiber divergence. For a domain d , computes the Kullback-Leiber

ivergence for the vectors w 

′ 
d 

and φ′ 
d 
. This feature measures how different is w 

′ 
d 

from φ′ 
d 
. Math-

matically, let w 

′ 
d 

be the n Grams relative vector (See Def. 4 ) of the domain d , let φ′ 
d 

be the

nglish relative vector (See Def. 8 ) of the domain d , let m = | w 

′ 
d 
| = | φ′ 

d 
| be their sizes. The fea-

ure is defined as: 

n G - DST - KL = 

m ∑ 

i 

w 

′ 
d i 

ln ( 
w 

′ 
d i 

φ′ 
d i 

) 

eature n G-DST-JI: Jaccard Index Measure. Computes the Jaccard Index Measure for the vectors

 

′ 
d 

and φ′ 
d 
, for a given domain d . Mathematically, let w 

′ 
d 

be the n Grams relative vector (See

ef. 4 ) of the domain d , let φ′ 
d 

be the English relative vector (See Def. 8 ) of the domain d , let

 = | w 

′ 
d 
| = | φ′ 

d 
| be their sizes. The feature is defined as: 

n G - DST - JI = 1 − J(w 

′ 
d , φ

′ 
d ) . 

here J(w 

′ 
d 
, φ′ 

d 
) is the Jaccard similarity coefficient given by the following expression: 

J(w 

′ 
d , φ

′ 
d ) = 

∑ m 

i =1 min (w 

′ 
d i 

, φ′ 
d i 
) ∑ m 

i =1 max (w 

′ 
d i 

, φ′ 
d i 
) 

eature n G-DST-CA: Canberra Distance. Computes the Canberra Distance. Mathematically, let

 

′ 
d 

be the n Grams relative vector (See Def. 4 ) of the domain d , let φ′ 
d 

be the English relative

ector (See Def. 8 ) of the domain d , let m = | w 

′ 
d 
| = | φ′ 

d 
| be their sizes. The feature is defined

s: 

n G - DST - CA = 

m ∑ 

i =1 

ABS (w 

′ 
d i 

− φ′ 
d i 
) 

ABS (w 

′ 
d i 
) + ABS (φ′ 

d i 
) 

here: ABS (·) = absolute value of “ · ”. 

eature n G-DST-CH: Chebyshev Distance. Computes the Chebyshev Distance between the do-

ain d and the English language. Mathematically, let w 

′ be the n Grams relative vector (See

d 
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Def. 4 ) of the domain d , let φ′ 
d 

be the English relative vector (See Def. 8 ) of the domain d , let

m = | w 

′ 
d 
| = | φ′ 

d 
| be their sizes. The feature is defined as: 

n G - DST - CH = max ∀ i ≤m 

( ABS (w 

′ 
d i 

− φd i 
)) 

where: ABS (·) = absolute value of “ · ”. 

Feature n G-DST-EM: Earth Movers Distance. Calculates the Earth Movers distance (also known

as 1 st Wasserstein distance) of the relative frequencies w 

′ 
d 

with respect to the English language.

It is implemented with Apache Commons Math EarthMoversDistance class [13] . 

Feature n G-DST-EU: Euclidean Distance. Computes the Euclidean Distance. Mathematically, let

w 

′ 
d 

be the n Grams relative vector (See Def. 4 ) of the domain d , let φ′ 
d 

be the English relative

vector (See Def. 8 ) of the domain d , let m = | w 

′ 
d 
| = | φ′ 

d 
| be their sizes. The feature is defined

as: 

n G - DST - EU = 

√ 

m ∑ 

i =1 

(w 

′ 
d i 

− φ′ 
d i 
) 2 

Feature n G-DST-MA: Manhattan Distance. Computes the Manhattan Distance. Mathematically,

let w 

′ 
d 

be the n Grams relative vector (See Def. 4 ) of the domain d , let φ′ 
d 

be the English relative

vector (See Def. 8 ) of the domain d , let m = | w 

′ 
d 
| = | φ′ 

d 
| be their sizes. The feature is defined

as: 

n G - DST - MA = 

m ∑ 

i =1 

ABS (w 

′ 
d i 

− φ′ 
d i 
) 

where: ABS (·) = absolute value of “ · ”. 

2.3.3. Feature Statistics 

Table 2 presents classic statistical measures for the features, considering the whole dataset

altogether. It is worth mentioning that, for each feature, the class-wise boxplot distribution is

available at [3] . 

By looking at Table 2 , it is worth noticing a few values that stand out for two different rea-

sons, namely having a zero value for either the minimum value or the standard deviation one: 

• Having a minimum value equal to zero – The reason behind these values are to be searched

in the nature of the feature. For example, the NLP-1G-MED feature reports the me-

dian value of the frequency distribution, which in most of AGDs is zero. However, when

considering the NLP-3G-E feature, the reason is quite different. That is, if each 3Gram

have zero probability, e.g. the AGD “dajsrmdwhv.tv ” belonging to the Kraken (2nd
version) variant, then the entropy is defined as zero. 

• Having standard deviation value equal to zero – In order to have zero standard deviation,

all the values of the features must be equals. This is the case of a group of feature calcu-

lated over 2Grams and 3Grams, namely NLP- n G-25P , NLP- n G-50P , NLP- n G-75P and

NLP- n G-MED , where n = 2 , 3 . Once again, having most of the terms at zero in the AGDs

distributions, cause these features to have themselves a zero value. However, it is not the

case for the 1Gram case because of the non-zero probability of each term. However, for

completeness, these features are still included in the dataset. 

2.4. Code and data availability 

As specified in the previous section, there are two main code components that interact to

generate the proposed dataset, namely the Domain List Generation and the Feature Extraction

modules. The dataset with the released code has been published on the well-known platform

Mendeley Data [2] . Fig. 1 highlights the structure of the repository. 
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.4.1. Domain list generation module 

This module is mainly realized in Python 2.7 and it has been released under the MIT license.

As specified before, the PRNGs have been initialized with a specific seed (either integer or

tring), available within each DGA source code. 

Specifically, the fixed parameters for each DGA are: 

• PRNG Seed – Each random generator has been initialized with the hardcoded integer value

“521496385 ”. 

• String Seed – Whenever a DGA requires a string seed as initialization vector, the module

uses the string: 

“3138C81ED54AD5F8E905555A6623C9C9 ”. 

• Malware variant specific seeds – Security vendors often release, along with the relative

signatures, also the initialization vectors for each variant discovered in the wild (either

TLDs, numbers, strings, or wordlists). In such cases, the initialization vectors are coded in

the generator and marked with online source for reference. 

• Random date range – Most of the DGAs require a random date in order to generate the

AGDs. When not fixed by some internal constraint, the dates are generated randomly from

01/01/1970 01:00 AM to 01/01/3000 01:10 AM . 

.4.2. Feature extraction module 

This module implements the feature definitions as described in Section 2.3 . It has been re-

lised in Java 1.8 making use primarily of Apache Commons Math [13] as main library for sta-

istical and mathematical purposes. 

The code, however, is closed source and is not, and will not released to the general public. 

.4.3. Technical validation 

When considering the list of FQDNs that we assume legitimate, two main problems are to be

onsidered. As specified before, each domain is firstly validated by the Apache Domain Validator

ibrary. A total of 178 FQDNs fail to pass the validation procedure. To be more precise: 

• 38 of them use one of the new generic top level domains (gTLDs) which are still

not included in the list of accepted gTLDs as per the last update of the library (v1.6,

04/02/2017). Namely, .africa (delegated on 14/02/2017), .charity (04/06/2018),

.hotels (03/04/2017), .inc (16/07/2018), .sport (08/01/2018); 

• 140 domains are technically invalid because of the presence of at least one underscore

character (“_ ”): the validation library checks the domains against the RFC 1123 [16] , which

limits host names to letters, digits and hyphen. The policy for the underscore character

has been clarified later with the RFC 2181 [17, Section 11] ; 
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