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SPECIAL SECTION: OVARIAN TUMORS

A radiomic nomogram based on arterial phase of CT for differential 
diagnosis of ovarian cancer

Yumin Hu1 · Qiaoyou Weng1 · Haihong Xia1 · Tao Chen1 · Chunli Kong1 · Weiyue Chen1 · Peipei Pang2 · Min Xu1 · 
Chenying Lu1 · Jiansong Ji1

Received: 17 March 2021 / Revised: 27 April 2021 / Accepted: 6 May 2021 / Published online: 4 June 2021 
© The Author(s) 2021

Abstract
Purpose To develop and validate a radiomic nomogram based on arterial phase of CT to discriminate the primary ovarian 
cancers (POCs) and secondary ovarian cancers (SOCs).
Methods A total of 110 ovarian cancer patients in our hospital were reviewed from January 2010 to December 2018. 
Radiomic features based on the arterial phase of CT were extracted by Artificial Intelligence Kit software (A.K. software). 
The least absolute shrinkage and selection operation regression (LASSO) was employed to select features and construct the 
radiomics score (Rad-score) for further radiomics signature calculation. Multivariable logistic regression analysis was used 
to develop the predicting model. The predictive nomogram model was composed of rad-score and clinical data. Nomogram 
discrimination and calibration were evaluated.
Results Two radiomic features were selected to build the radiomics signature. The radiomics nomogram that incorporated 
2 radiomics signature and 2 clinical factors (CA125 and CEA) showed good discrimination in training cohort (AUC 0.854), 
yielding the sensitivity of 78.8% and specificity of 90.7%, which outperformed the prediction model based on radiomics 
signature or clinical data alone. A visualized differential nomogram based on the radiomic score, CEA, and CA125 level 
was established. The calibration curve demonstrated the clinical usefulness of the proposed nomogram.
Conclusion The presented nomogram, which incorporated radiomic features of arterial phase of CT with clinical features, 
could be useful for differentiating the primary and secondary ovarian cancers.
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Abbreviations
POC  Primary ovarian cancer
SOC  Secondary ovarian cancer
LASSO  Least absolute shrinkage and selection opera-

tion regression
CA125  Carbohydrate antigen 125
CEA  Carcino-embryonic antigen
PACS  Picture archiving and communication systems

DCA  Decision curve analysis
GLSZM  Grey-level size zone matrix
RLM  Run-length matrix
ANOVA  Analysis of variance
KW  Kruskal–Wallis

Introduction

Ovarian cancer is the fifth leading cause of cancer deaths 
in women in the USA; nearly 300,000 new ovarian cancer 
patients and 190,000 deaths were found worldwide [1], with 
five-year survival rate around 40% [2]. Secondary cancers 
of the ovary account for 10–25% of all ovarian malignan-
cies. The most common cancers that give rise to ovarian 
metastases include breast, colorectal, endometrial, stomach, 
and appendix cancer [3]. The primary ovarian cancer (POC) 
shares similar morphological features with secondary ovar-
ian cancer (SOC), however making it difficult to distinguish 
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on diagnostic imaging [4, 5]. Once identified as SOC, the 
treatment strategies will be greatly changed [6]. Therefore, 
differentiating SOC from POC is critical for the identifica-
tion of precise, personalized treatment, and follow-up plans 
that prolong patient survival.

Contrast-enhanced computed tomography (CT) is a rou-
tinely used tool for diagnosing ovarian cancer non-invasively 
[7]. Radiomics is an emerging translational field of research 
aiming to extract mineable high-dimensional data from 
clinical images, which was followed by subsequent data 
analysis for decision support [8–10]. It has been success-
fully employed in the research of oncology, especially for 
differentiating the primary and metastatic cancer [11, 12]. 
Because the difference in morphology between POC and 
SOC may be reflected in CT invisibly, we hypothesized that, 
by applying radiomics, we could extract and quantify the 
difference in CT images between POC and SOC.

In this retrospective study, we aimed to evaluate the fea-
sibility of radiomic analysis on contrast-enhanced CT imag-
ing in identifying computer-extracted texture differences 
between POC and SOC that may not be visually appreciable 
on conventional CT.

Methods

Patients

Our institutional review board approved this retrospective 
study with a waiver of informed consent. We reviewed 

electric database of POC and SOC from January 2010 to 
December 2018 and retrieved the images of enrolled patients 
from the picture archiving and communication system 
(PACS) system. The exclusion criteria of this study are as 
follows: (1) Patients with poor image quality; (2) patients 
without enhanced scanning; (3) patients with unclear bound-
ary and unable to outline. Eligible patients including 62 
POC patients and 48 SOC patients were randomly divided 
into the training cohort and the validation cohort. We col-
lected 48 SOC patients, including 20 metastasis of gastric 
cancer, 15 metastasis of colorectal cancer, and 13 metastasis 
of sigmoid colon cancer. Among the 48 SOC patients, 18 
patients were found to have ovarian masses before the pri-
mary malignancy revealed. The post-processing process of 
the image is shown in Fig. 1, and the flow chart of the whole 
study is shown in Fig. 2.

CT image acquisition

Preoperative abdominal CT scans were obtained using a 
Brilliance ICT (Philips Medical Systems, the Netherlands). 
The scanning protocol includes unenhanced and contrast-
enhanced CT with arterial phase after intravenous admin-
istration of iodine-contrast agent (320 mg I/mL) at a rate of 
3.0 mL/s with a dose of 2 mL/kg using an automated power 
injector. The scan parameters were tube voltage of 120 kVp, 
a pitch value of 0.99, a matrix of 512 × 512, slice thickness 
and interval both of 5 mm, and milliamperage was adjusted 
automatically according to the patient’s size (ranged between 
220 and 400 mA).

Fig. 1  The CT radiomics analysis process from extraction to model building. Workflow can be divided into four steps: image acquisition, lesion 
segmentation, feature selection, and model construction
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Lesion segmentation and feature selection

The contrast-enhanced CT images of enrolled patients 
were exported in Digital Imaging and Communication 
in Medicine (DICOM) format. Then ITK-SNAP was 
employed for tumor segmentation. We used the polygon 
mode to delineate cystic and solid component of tumors 
at each slice manually. All segmentations were conducted 
by a radiologist (C.L.) who had 16 years of imaging diag-
nosis experience and re-checked by H.Z. (15 years of 
experience).

Radiomics features including Histogram, Formfactor, 
Grey-level size zone matrix(GLSZM), and Run-length 
matrix (RLM) were extracted by AK software (Artificial 
Intelligence Kit V3.0.0. R, GE Healthcare, China) [13]. The 
preprocessing before feature selection was divided into three 
steps. Firstly, we sought to identify the features that con-
tribute to the model using the ANOVA + KW test. And then 
we used the binary logistic regression analysis to rule out 
features, in which the correlation coefficient was greater than 
0.9. Finally, the LASSO Cox logistic regression model was 
used to select the most useful prediction features. Then, the 
radiomics score (Rad-score) was computed for each patient 
through a linear combination of selected features weighted 
by their respective coefficients [14].

Development of individualized radiomics 
nomogram

Multivariate logistic regression analysis was used to evalu-
ate the significant clinical factors for distinguishing POC 
and SOC. Radiomics signature was applied to develop a 
distinguish model by using the training cohort. Then we 
combine the rad-score with clinical indicators and estab-
lished a combination model. The normal reference range for 
CEA values is 0–10U/ML, for CA125 value is 0–35U/ML, 
and for CA199 value is 0–37U/ML. Finally, we constructed 
a visualized nomogram based on the combination model. 
The calibration curve was used to assess the nomogram. 
The Hosmer–Lemeshow test was performed to evaluate the 
goodness-of-fit of the nomogram.

Statistical analysis

Continuous and categorical variables were compared using 
the t test and chi-square test, respectively. Multivariable 
logistic regression analysis was used to select the independ-
ent prognostic factors. The performance of the model was 
assessed in the primary and validation cohorts. The discrimi-
nation of the signature was measured by the area under the 
curve (AUC). Statistical analysis was performed with SPSS 
(version 19.0, IBM, Armonk, NY, USA). A two-sided p 
value was always computed, and a difference was considered 
significant at P < 0.05.

Fig. 2  The flow chart of patient 
selection
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Results

Characteristics of patients in the training 
and the validation cohorts

A total of 110 ovarian cancer patients were eligible for this 
study. The 110 patients were divided into a training cohort 
(N = 76) and a testing cohort (N = 34) (Fig. 2). The base-
line of enrolled patients in training and validation cohorts 
is displayed in Table 1. There were 56.6% (43/76) of POC 
patients in the training cohort and 55.9% (19/34) in the vali-
dation cohort. The mean age of the patients in the training 
cohort was 54.74 ± 11.01 years for patients with POC and 
50.79 ± 10.24 years with SOC (P = 0.114). Significance 
differences between POC and SOC were found in CEA 
and CA125 level in the training and validation cohort (all 
P < 0.05).

Radiomics signature development

A total of 396 radiomic features were extracted by AK 
software. After dimensionality reduction, which included 
ANOVA and KW, univariate logistic regression (14 fea-
tures) removes the redundancy with correlation coef-
ficient more than 0.90 (5 features) (Fig. 3a) and after the 
LASSO algorithm with λ value of 0.0245 and log (λ) value 
of 3.71, two significant radiomic features were identified 
[15, 16] (Fig. 3b). Two potential radiomic features includ-
ing Percentile15 and Inverse Difference Moment_AllDirec-
tion_offset1_SD remained after dimension reduction with 
LASSO. The contribution of the selected features and their 
corresponding regression coefficients are shown in Fig. 3c. 
The two characteristics of the ROC curve of training and 

validation are shown in Fig. 3d–e.These features were pre-
sented in the rad-score calculated by using the following 
formula:

rad-score =  − 0.220 + 0.621*Percentile15 + 0.994*Inver-
seDifferenceMoment_AllDirection_offset1_SD.

The Rad-score for each patient presented as a waterfall 
plot demonstrated significant differences between POC 
and SOC in both training (P = 0.001) and testing cohorts 
(P = 0.015) (Fig. 3f–g). The radiomics signature also showed 
a favorable predictive efficacy, with an AUC of 0.734 in the 
training cohort (95% CI 0.620–0.847, sensitivity = 51.5%, 
specificity = 83.7%) and 0.733 in the validation cohort (95% 
CI 0.549–0.917, sensitivity = 60%, specificity = 89.5%).

Nomogram building and validation

The rad-score, CEA, and CA125 were identifed as independ-
ent factors to distinguish POC and SOC by logistic regres-
sion. Then, we integrated the above factors into a predic-
tion model. As shown in Fig. 4a–b, the combination model 
outperformed the radiomic features only model and clinical 
features only model with a greater AUC of 0.854 in train-
ing cohort and 0.751 in testing cohort. Finally, a radiomic-
based nomogram for individualized differentiation was built 

Table 1  Baseline of patients in 
training and validation cohorts

Characteristics Training cohort 
(n = 76)

Valida-
tion cohort 
(n = 34)

POC (n = 43) SOC (n = 33) P value POC (n = 19) SOC (n = 15) P value

Age, mean ± SD 54.74 ± 11.01 50.79 ± 10.24 0.114 58.21 ± 8.92 53.53 ± 13.01 0.223
CEA level (n) 0.031 0.047
Normal 41 25 17 9
Abnormal 2 8 2 6
CA125 level (n) 0.000 0.019
Normal 5 26 2 7
Abnormal 38 7 17 8
CA199 level (n)
Normal 38 25 0.914 14 7 0.113
Abnormal 5 8 5 8
Radiomics 

score(mean ± SD)
 − 1.08 ± 1.26 2.65 ± 7.54 0.002  − 0.64 ± 0.87 0.311 ± 1.28 0.015

Fig. 3  a Graph shows correlation analysis between the parameters 
of training data. b Tuning parameters (λ) selected in the LASSO 
model applied tenfold cross-validation via the minimum criteria. The 
Y-axis indicates the binomial deviances. The lower X-axis indicates 
the log(λ). c Histogram showing the contribution of each feature to 
the radiomic signature. d–e ROC curves of the radiomic signature in 
the training and validation cohorts. f–g The two figures showed that 
the rad-score for patients in training and validation cohort. Red bars 
represent the scores for POC patients, while blue bars represent the 
scores for SOC patients

◂
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by corporating the above radiomic features and 2 clinical 
factors (Fig. 5a). The total points accumulated by vari-
ous variables correspond to the predicted probability for a 
patient. The calibration curve of the radiomics nomogram 
demonstrated good agreement in both training and validation 
cohorts. (Fig. 5b–c).

Discussion

Since the POC and SOC representing the different origins 
and histopathology, differentiating these two sets is espe-
cially crucial due to their rather different treatments and 
prognoses [10, 17]. POC shares overlapping morphological 
with SOC, making the differential diagnosis rather difficult 
by conventional imaging modalities. In the present retro-
spective study, we developed and validated a diagnostic 
model, radiomics signature–based nomogram in a training 
cohort for the individualized distinguish the POC and SOC. 
The nomogram incorporates two items of the radiomics sig-
nature, CEA status, and CA125 status. To the best of our 
knowledge, this is the first study to develop a radiomics-
based nomogram to distinguish POC and SOC.

Radiomics is designed to develop decision support tools; 
therefore, it involves combining radiomic data with other 
patient characteristics, as available, to increase the perfor-
mance of the decision support models [18–20]. With the 
growth of clinical data and advanced machine-learning 

methodologies, it is playing an increasingly important role 
in precision diagnostics and oncology. Besides, radiomics 
has the capability to mine differentiation information from 
CT [21, 22].

Serum CA-125 is elevated in about 80% of advanced 
ovarian cancers, which has been considered as a specific 
marker for the diagnosis of ovarian cancer cells [23]. CEA 
is a classic broad-spectrum tumor marker mainly used in 
the diagnosis of digestive tract cancer and lung cancer. CEA 
levels are elevated in some patients with ovarian cancer [24]. 
However, serum CA-125 levels and CEA levels do not pro-
vide any information about the locations or extent of cancers 
[25]. Therefore, combining radiomic features with clinical 
features could provide added diagnostic value in identifying 
POC and SOC. This was first confirmed in our article that 
the AUC of combination model was much higher than that 
of clinical features or radiomic features model.

This study has several limitations. First, owing to the 
insufficient sample size, the differentiation performance 
may be limited. Further studies are required to include more 
patients from multi-institution to fully assess the generali-
zation ability of the radiomics model in future. Second, as 
the nature of retrospective study, selection bias would be 
existed; thus, a prospective external validation is required. 
Third, manual segmentation for ROI is time-consuming and 
may not completely avoid the interference caused by the 
partial volume effect.

Fig. 4  Receiver operating characteristic (ROC) curve of clinical features model, radiomic features model, and combination model in training 
cohort (a) and testing cohort (b)
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Conclusion

In summary, by comparing the clinical features model, radi-
omic features model, and combination model, we found that 

the combination model achieved the best diagnostic perfor-
mance. Therefore, we believe that the combination model, 
which integrated clinical and radiomic features, could be used 
as non-invasive and reliable tool for differentiating POC and 

Fig. 5  Constructed multiparametric radiomics nomogram and cali-
bration curves. a The developed radiomic nomogram for differenti-
ating POC and SOC. b–c Calibration curves for differentiating POC 
and SOC in the training and validation cohort, respectively. The cali-
bration curve illustrates the calibration of the nomogram in terms of 

the agreement between the predicted risk of SOC and the observed 
outcomes. The diagonal dotted line represents a perfect prediction, 
and the dotted line represents the predictive performance of the nom-
ogram. Closer fit to the diagonal dotted line indicates a better predic-
tion
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SOC pre-treatment. In addition, we successfully developed and 
validated a convenient prediction nomogram that can be used 
to identify SOC patients.
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