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Abstract

ATP-binding cassette (ABC) transporters constitute a superfamily of 48 structurally similar membrane transporters that
mediate the ATP-dependent cellular export of a plethora of endogenous and xenobiotic substances. Importantly, genetic
variants in ABC genes that affect gene function have clinically important effects on drug disposition and can be predictors
of the risk of adverse drug reactions and efficacy of chemotherapeutics, calcium channel blockers, and protease inhibitors.
Furthermore, loss-of-function of ABC transporters is associated with a variety of congenital disorders. Despite their clini-
cal importance, information about the frequencies and global distribution of functionally relevant ABC variants is limited
and little is known about the overall genetic complexity of this important gene family. Here, we systematically mapped the
genetic landscape of the entire human ABC superfamily using Next-Generation Sequencing data from 138,632 individuals
across seven major populations. Overall, we identified 62,793 exonic variants, 98.5% of which were rare. By integrating five
computational prediction algorithms with structural mapping approaches using experimentally determined crystal struc-
tures, we found that the functional ABC variability is extensive and highly population-specific. Every individual harbored
between 9.3 and 13.9 deleterious ABC variants, 76% of which were found only in a single population. Carrier rates of patho-
genic variants in ABC transporter genes associated with autosomal recessive congenital diseases, such as cystic fibrosis or
pseudoxanthoma elasticum, closely mirrored the corresponding population-specific disease prevalence, thus providing a
novel resource for rare disease epidemiology. Combined, we provide the most comprehensive, systematic, and consolidated
overview of ethnogeographic ABC transporter variability with important implications for personalized medicine, clinical
genetics, and precision public health.

Introduction a plethora of drug substrates, including calcium channel

blockers, HIV protease inhibitors, vinca alkaloids, topoi-

ATP-binding cassette (ABC) transporters are a superfamily
of membrane proteins that, in humans, comprise 48 genes.
ABC transporters catalyse the translocation of a wide spec-
trum of endogenous substrates across biological membranes,
including amino acids, sugars, nucleosides, vitamins, lipids,
bile acids, leukotrienes, prostaglandins, uric acid, antioxi-
dants, as well as a multitude of natural toxins (Liang et al.
2015). In addition, ABC transporters mediate the export of
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somerase inhibitors, methotrexate, anthracyclines, and taxa-
nes, into the extracellular space and are thus key modulators
of drug resistance, particularly in oncology (Robey et al.
2018). Hence, ABC transporters are of specific clinical and
regulatory interest for their involvement in drug—drug inter-
actions (Konig et al. 2013; Marquez and Van Bambeke 2011;
Zhang et al. 2018).

Genetic variants in ABC transporters contribute to the inter-
individual variability in the risk of adverse drug reactions and
treatment efficacy, and are key modulators of drug resistance.
Arguably, the most studied are polymorphisms in ABCBI
(encoding MDR1, P-gp), which have been associated with
methotrexate clearance (Kim et al. 2012a), response to antiret-
roviral protease inhibitors (Coelho et al. 2013), as well as with
pharmacokinetics, response, and toxicity of imatinib (Dulucq
et al. 2008; Ma et al. 2017). Similarly, variants in ABCG2
(encoding BCRP) were reproducibly associated with exposure
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and response to statins (Bailey et al. 2010; Chasman et al.
2012; Hu et al. 2011) and allopurinol (Roberts et al. 2017; Wen
et al. 2015). In addition to their pharmacogenetic importance,
genetic variation in 21 ABC transporters can cause congenital
diseases, the most common of which is cystic fibrosis (OMIM
219700) caused by variants in ABCC7 (CFTR).

Importantly, while many studies have provided critical data
about the clinical importance of ABC polymorphisms (Bosch
et al. 2005; Fukushima-Uesaka et al. 2007; Honjo et al. 2002;
Leschziner et al. 2006; Pramanik et al. 2014; Saito et al. 2002;
Stomka et al. 2015), information about their population fre-
quencies is limited and mostly derived from relatively small,
heterogeneous cohorts. Furthermore, most studies only inter-
rogated a few selected candidate variants and did not map the
entire landscape of rare genetic variability that is characteristic
for pharmacogenes (Bush et al. 2016; Fujikura et al. 2015;
Gordon et al. 2014; Ingelman-Sundberg et al. 2018; Kozyra
et al. 2017; Wright et al. 2018; Zhou and Lauschke 2018).
Importantly, the increasing prevalence of Next-Generation
Sequencing (NGS) projects on a population scale allows for
the first time to systematically parse the inter-individual and
inter-population variability in ABC transporter superfamily.

In the current study, we systematically parsed the inter-indi-
vidual and inter-population variability in the ABC transporter
superfamily by analyzing whole-exome and whole-genome
sequencing (WES and WGS, respectively) data from 138,632
individuals across seven major human populations. Using this
large data set, we provide frequencies of 51 ABC variants and
haplotypes frequencies with demonstrated clinical relevance.
In addition to these well-characterized variations, we identi-
fied 62,793 exonic variants, the vast majority of which were
rare and have not been characterized. Computational analyses
using five partly orthogonal algorithms predicted that 19,309
of these (31%) resulted in functional alterations of the respec-
tive transporter protein. To substantiate these estimates, we
mapped the identified genetic variability onto experimentally
determined or homology-modeled transporter structures and
found multiple amino acid exchanges in residues important for
substrate binding and transporter function. The present study
constitutes the most comprehensive analysis of genetic vari-
ation in the ABC superfamily published to date and the iden-
tified genetic complexity might have important implications
for the evaluation of drug transporter variability during drug
development and the personalized prediction of drug disposi-
tion, response, and toxicity.

Methods
Data collection and definitions

Single-nucleotide variant (SN'V) and indel frequency data
across 48 human ABC transporters were collected from
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WES and WGS data from 138,632 individuals (12,020
Africans, 17,210 Latinos, 5076 Ashkenazi Jews, 9435 East
Asians, 15,391 South Asians, 12,897 Finns, 63,369 non-
Finnish Europeans, and 3234 from other ethnic groups)
acquired from the Genome Aggregation Database (Lek
et al. 2016). Variants with MAF < 1% or MAF <0.1% were
defined as rare and very rare, respectively. Copy-number
variation (CNV) data were extracted from the Exome
Aggregation Consortium database using genomic informa-
tion from 59,451 individuals and analyzed as previously
described (Santos et al. 2018). Linkage disequilibria were
computed by leveraging linkage from the 1000 Genomes
Project using LDLink (Machiela and Chanock 2015). The
Online Mendelian Inheritance in Man (OMIM) database was
used to identify ABC genes associated with Mendelian dis-
ease, as well as their mode of inheritance (Amberger et al.
2015). One-way ANOVA was used to compare the difference
between variant number across ABC subfamilies.

Variant effect predictions

To predict the functional consequences of missense variants,
we used a panel of computational algorithms that analyze
sequence conservation, as well as variant effects on physico-
chemical amino acid properties, solvent accessibility, and
structural features. Specifically, we selected SIFT (Ng and
Henikoff 2001), Polyphen2 (Adzhubei et al. 2010), Mutatio-
nAssessor (Reva et al. 2011), VEST3 (Carter et al. 2013),
and Eigen (Ionita-Laza et al. 2016), as they showed the best
predictive performance in three independent benchmarking
data sets (Li et al. 2018a). Variants were categorized as del-
eterious when the > 50% of algorithms predicted effects on
transporter function. In addition, all frameshifts, in-frame
deletions or insertions, start-lost, stop-gained, or canonical
splice site variants were regarded as putatively deleterious.
For Mendelian disease analyses, ClinVar (Landrum et al.
2014) was used to remove benign variants from disease-
associated ABC genes.

Structural analysis

We analyzed the impact of genetic variation on ABC trans-
porter structures for the entire ABCA, ABCB, and ABCC
transporter families (35 proteins in total). Experimentally
determined crystal structures were available for 18 ABC
transporter proteins and were extracted from PDB (Berman
et al. 2000) and the available literature. The remaining 16
transporter structures were modeled based on homology
using Phyre2 (Kelley et al. 2015). The structure of ABCA13
could not be modeled reliably and was thus excluded.
PyMOL (version 2.1.1) was used to map the genetic vari-
ability data onto the corresponding transporter structures.
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Results

Genetic variability of the human ABC transporter
superfamily

We systematically analyzed the genetic variability pro-
files of all 48 members of the human ABC transporter
gene superfamily using NGS data from 138,632 individu-
als. In total, we identified 62,793 variants in exons, the
majority of which were missense (n=33,340; 53%), fol-
lowed by synonymous (n=14,503; 23%) and UTR vari-
ations (n=10,495; 17%; Fig. 1a). Importantly, the vast
majority of variations (n=61,876; 98.5%) were rare with
minor allele frequencies (MAF) < 1%, whereas only 917
(1.5%) variations were common (Fig. 1b). In addition, we
found 1003 deletions or duplications spanning at least one
ABC exon, jointly referred to as CN'Vs, as well as 32,333
intronic variants. The latter were, however, not systemati-
cally covered and thus excluded from further analyses.

Notably, the number of genetic variations differed con-
siderably between ABC subfamilies and genes. Overall,
the number of variants in the ABCA family of lipid trans-
porters was significantly higher than in other ABC sub-
families (p =0.002; fold difference =1.9; Fig. 1¢). Of all
members of the human ABC superfamily of genes, the
lipid transporters ABCAI3 (n=4310), ABCA7 (n=274),
and ABCA4 (n=2224) harbored the highest number of
variants, whereas > 10-fold less variations were found in
ABCDI (n=496), ABCEI (n=407), and ABCB7 (n=271;
Fig. 1d). However, when the number variants were normal-
ized by gene length, no significant differences were identi-
fied between the subfamilies (Supplementary Figure 1A).
In contrast, variability varied more than sevenfold between
different ABC genes with ABCB9 (n=_802.4 variants/kb) and
ABCBS8 (n=537.4 variants/kb) being most polymorphic,
whereas ABCB7 was most invariant (n=120.1 variants/kb;
Supplementary Figure 1B). To directly compare the evolu-
tionary constraint, we compared the observed number of
missense and loss-of-function variants in ABC genes with
the expected numbers based on the genetic background vari-
ability. Missense variations in ABCC9, ABCA2, and ABCE]
were most depleted, whereas, surprisingly, CFTR was least
conserved and harbored 30% more missense variations than
expected by chance (Supplementary Figure 2A; Supple-
mentary Table 1). Based on genetic constraints on loss-of-
function variations, 4 genes, including ABCA2 and ABCE]I,
as well as ABCB7 and ABCD1 were considered as haploin-
sufficient, whereas little constraint on loss-of-function vari-
ations was detected in the remaining 44 ABC transporters
(Supplementary Figure 2B; Supplementary Table 1).

In addition to SNVs, 46 of the 48 ABC transporter genes
(96%) harbored CNVs, in which multiple exons up to the

entire were deleted or duplicated (Fig. 1e). Overall, most
CNVs were detected for ABCC6 (230 CNVs), ABCCI (178
CNVs), and ABCA6 (81 CNVs), whereas no CNVs were
identified in ABCB7 and ABCDI. While these CNVs are
very likely to result in functional alterations, all deletions
and duplications were found to be very rare with minor
allele frequencies < 0.1%.

Worldwide frequencies of human ABC transporter
polymorphisms with putative clinical relevance

Next, we systematically analyzed the global and population-
specific frequencies of clinically important variants in ABC
transporters linked to drug response or ADR risk. Specifi-
cally, we considered all variants as putatively clinically rele-
vant for which an association with drug-response phenotypes
or related traits, such as overall or disease-specific survival
upon chemotherapy, have been reported. In ABCBI, we
assessed the population frequencies of 10 SNPs (Table 1).
The missense variant rs2032582 and the synonymous poly-
morphisms rs1045642 constitute arguably the most exten-
sively studied ABCBI variants and have been associated
with risk of adverse reactions upon fluoropyrimidine therapy
(Gonzalez-Haba et al. 2010) as well as toxicity to taxanes
(Kim et al. 2012b) and anthracyclines (Ji et al. 2012; Wu
et al. 2012). These variants are in strong linkage disequi-
librium (Horinouchi et al. 2002) and have been shown to
be associated with altered mRNA levels and protein folding
(Cascorbi 2006). Rs2032582 constitutes a triallelic vari-
ant of amino acid position 893 with the reference sequence
encoding an alanine and variants giving rise to a serine or
threonine, respectively (Supplementary Figure 3). Ala893 is
the predominant allele in Africans and East Asians, whereas
in South Asians, Ser893 is most abundant (frequency 60.9%
compared to 34.8% for Ala893). Thr893 is less prevalent
ranging in frequencies between 0.4% in Africans and 13.3%
in East Asians. Further ABCBI variants of clinical rel-
evance are the missense variants rs2229109 and rs9282564,
which are associated with increased risk of relapse of acute
lymphoblastic leukemia (Gregers et al. 2015) and paclitaxel
toxicity (Bergmann et al. 2012), respectively. Both variants
are most frequently found in Europeans (MAF =4.3% and
10.8%) and least prevalent in Africans (MAF=0.7% and
1.6%) and East Asians (MAF=0 and <0.1%). Linkage anal-
yses revealed one haplotype block of four SNPs (rs1128503,
rs4148737, rs12720066 and rs1045642) with moderate-link-
age disequilibrium, which could have potentially important
implications for clinical associations of these variants (Sup-
plementary Figure 4A).

In the ABCC subfamily, we analyzed the population-
specific frequencies of 25 SN'Vs that were correlated with
chemotherapy outcomes or toxicity (Table 2). Interestingly,
frequencies of risk variants for anthracycline-induced
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Fig. 1 Overview of the genetic germline variability in the human
ABC transporter family. a In total 62,793 exonic variants and 1003
copy-number variations (CNVs) were identified across all 48 human
ABC genes in 138,632 individuals. b The vast majority of exonic
ABC variants were rare with 98.5% occurring in less than 1% of
alleles worldwide. In addition, 51.1% of all variants were only found

cardiotoxicity (ACT) were highly population-specific and
differed > 100-fold between populations. The cardiopro-
tective synonymous variant rs246221 in ABCCI (Semsei
et al. 2012) was most common with frequencies between
20.3% and 65.2% in South Asians and Africans, respec-
tively. By contrast, East Asians did not harbor the risk
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in a single individual. ¢ ABCA genes harbour significantly more vari-
ations than members of other ABC subfamilies (p=0.002; ANOVA).
These differences were mostly related to gene length (compare Sup-
plementary Figure 1). d Stacked column plot depicting the number of
variants across variants classes for all 48 ABC genes. e The number
of CNVs that affect at least one exon are shown

variants rs8187710 (ABCC2) and rs45511401 (ABCC1),
which are common in all other populations with fre-
quencies up to 5.6% and 15.7%, respectively. Notably,
rs45511401 is in linkage disequilibrium with the intronic
ACT risk variant rs4148350 (R>=0.153; Supplementary



627

Human Genetics (2020) 139:623-646

(9100
L0T1 "[& 10 0ISAIOIN

(L107) Te e
17 JBOLIOA-SBISOIA

(€102)
0S2 ‘e 19 BIRIN 2

8C0=4Y0

K[oanoadsar
‘SYAV [eual
pue oneday 10§
['S PUB 6'C=Y0
S[O1IU0D UI 9%()/,
0} paredwod
SIOLLIED JUBLIEA
Ul %8L JO [eAlA
-Ins yuow-g |

syuaned
Ksdojooreu ur
[Tugepow 0}
asuodsar paseardoq
BIWAYNI]
projeAw ajnoe ur
(surqerejko snid
uroiqnrepr) Ade
-I9Y}OWAYd UoT}
-onpur Jo AJoIXog,
Juowean 114
-10d [uIf-IsIy
3urareoar syuaned
190URD [B10310[0
onejselow ul ur SO
[exesroed
)M pojean

0102) syuaned 1oued
ey Te 10 Suey) 9C=4H oLnses ut Sqd
A[oATy
-0adsar ‘K3101%0) syuaned
[eunsayuronsesd JI9OUBD UBLIBAO
pue [eo1301 ur spunodwod
(96002) -0JReWY J0J wnunerd pue
801 TeRwry  L6Pue ['g=yY0O seuexe) jo AdIxo,
SIOLLIBD
-uou Jo %', BILINI|
sns1oA asuodsax pIo[oAw J1uoIyd
Te[nosrour Ut qrunewt o3 9C 145 £y el 70 ge
(8002 Jofewr pasaryoe osuodsorre]  :LiGE:S  L'0F:S L 609 \L6°8¢ (LgL L§ 1P (Lg68V 10 (o191
98 ‘[ejebonng  SIOLLIED JO %8/ -MQOW IOfRIN 9V 9PSIV IS8PEV  SUQLYIV SI6V SILPSIV  SE68V) FSUISSIA -[BLN) 78STEOTS
I ANV SVS Svd q4v adnd
J[9[[e Iourw Y} JO
az1s ordweg SOOUQIQJY  OMSTE)S 10 JOPH UONRIOOSSE [BIIUID) (9 ur) seroudnbaiy daTe JoUIN adAL, JUBLIEA

syuerrea (d3-q STYAIN) 190gV wentodur A[pestur)d jo sarouanbaiy oyroads-uoneindod | sjqel

pringer

a's



Human Genetics (2020) 139:623-646

(S100)

SJOJIUOD "SA SI9

Kdeloypowrayd 03
sjuoned eruayno|
onserqoydwA|
Jnoe jo asdefar

628

(ponunuoo) | sjqey

8IS ‘[ 19 198210 -11IBD JO 6'7=¥O JO YSLI paseaIdu|
syuaned
Ksdojooreu ur
(9100 [rugepout 0}
LOT ‘[B 19 09SAIOIN 1€°0=¥0 osuodsar pasearnog
Adeoyy
Ky101%0) -OwaYd J9OUBD
(€100 ¢ apeIs Isealq DFA 0
007  ‘Te 19 IpaaImey) 0] 6'T=¥0 £KIoIxo) paseardog
Kdeoyy
-OWaYD J9OUBD
(€100 1sealq DHA 0
001 ‘[e 19 IpaAInIeyD) 9=y asuodsal paseardxdq
BILINI|
pIo[oAw 2)noe Ut
A[oAnyoadsar (aurqerejko snid
‘SYQYV [euaa uroiqniepr) Ade
(L107) T8 pue oneday 1og -Ioylowayd uon
§ee JEOLIGA-SEISOIN  §'¢ PUE G'9=(Q  -onpur jo AIdIXO,
A[oATy
-0adsar ‘eoyr
-IRIP pUE ysel syuaned ) TOSN
unys 10} §°01 padsueApe ur
65 (LT0D) RPN PURSSI=¥O QqIUnYas jo AoxoL,
%L’ L SNSIoA BILINI|
asuodsar 1e| pIO[oAW JTUOIYD
-nogdjow Jofew ur qrurjew! oy
(8002) PARIYIE SIALI asuodsar 1|
S8 ‘Tey bonng  -res woy jo %68 -noojour JofejA
K[eanoadsar syuaned
‘SAH pue eru JOOUED [B}OI0[0D
(0102) TB ¥ -odonnau 10§ ur aurqejroaded
123 BQeH-Z9[BZUOD  ¢'C PUB ¢y =YO Jo Korxog, L9¢ ey L09 €19 6'81 £ey snowuoukg €0S8TI st
I\ ANV SVS Svd q4v Adnd mo
J[9[[e Iourw Y} JO &
9z1s o[dweg SOOUQIQJY  ONSTE)S IO JOPH UONRIOOSSE [BIIUI) (9 ur) seroudnbaiy daTe JoUIN adAL, JUBLIEA 5,
wv
|



629

Human Genetics (2020) 139:623-646

(9100

SIOLIIRD AV SA
woy Jurredwod

syuaned
Ksdojooreu ur
[luyepow o}

LOT ‘[e19 00SAIO]N UM [Z'0=YO 2suodsar pasearouy
syuaned
Io0URD JSBRIq
esnedouaunsod
ur Adexoy o[0z
-onseue uodn
(L102) eIS[eIy)IE UO

8L ‘[e 19 TUISBATOD) €0=40 199JJ2 2A1}99)01]
[oxejrpoed
)im pajean)
0102 syuaned 100ued

9% ‘Te 30 Suey) 9v=4H oLnses ur SAd
syuaned
ewoydwA] ury
A1oAn -3poy -uou 10
-0adsar ‘K3101%0) BIWIYNI[ ONSB[q
oneday pue -oydwAy 9noe
s[oA9] ewsed ur 9jexanoyIow
#102) Te 10 10} SI9LLIED JO Jo Kyo1%0) pue

1L WeIpueying 9'g pue G'g=yO Insodxa pasearouy
Adexay) uononpur
(woy quojostupaid
"SA [0U0D) PUE QUIISLIOUIA
10000>d ‘unIqnIoXop
(S102) pue (397 'sA Surmp Kyorxo)

LIS ‘[e1e s108210  [onuod) [:0=d Molew suog 9'6e 1494 S'6¢ L'9¢ 0c y'es snowuoukg oSO8t
v ANV SVS Svd qdv and
J[9[[e Jourw Ay} Jo
azrs ojdureg SOOUQIOJY  ONSHE)S 10 JO9PH UOTIBIOOSSE [BOTUI]) (9 ur) serouanbaiy o79[Te JOUT adAT, JUBLIEA

(ponunuoo) | sjqey

pringer

a's



Human Genetics (2020) 139:623-646

630

Q[qR[TRAR JOU "Y'N ‘SMIf IZBUMYSY [V ‘SOUNET YNV ‘SURISY YINOS SV ‘SUBISY IS SV ‘SUBILIYY Y7V ‘sueadoing y/)7 ‘ORI SPPO YO ‘[BATAINS [[RISAO SO ‘[RAIAINS 9a1j-uoIssaidord §.7J

89L

66

8L

89L

£0¢l

€91

6

(€100) Te 10
y3nouo o

(r100)
“Te 30 oZuoy N

(1100
‘e 10 eruoIe))

(a8102) Te R 1T
(€100) Te 10
y3nouo o

(r100)
‘e 30 weyeIqy

(8100) ‘e @ nH

(T102)
‘Te 30 uuew3Iog

[o[oua)e 0}
900'0=d 9suodsal pasea1da(]

syuaned [-ATH
Ur ZUQIIABJQ JO
100°0=d QdoUeIRI[O PIseaIdU]
Kdeloyowrayd
1913 syuaned
e BUWIOOIBSO)SO
wod ¢ =¥H J0 SO paonpay
eruad
-oInau paonpur
-UBO3JOULIT JO
982°0=9¢ YSLI Pasearnaq
Koeoryjo
2000°0=d  [O[oudle paseaIou]
[oxeypoed yim
porean syuaned
I90URD JSBAIq
ur saryredoInou
[F0=40O  JO SLI paseardnsq
uonejue[dsuen
Kaupry 191je
S[OA9] SNWI[0IOR)

10000=d  WNIdS Paseardo

SIsA[eue
K103B10[dXQ UI
sjuaned 190ued
uerreAo ur Aderoy)
unerdoqred

pue [axejroed

Jo Ay1o1X0)

c00=d M PARIOOSSY

SeL

G'LI

981

(49

0¢

e

£98

vl

Vv

ge

LY

6C

V'N

V'N

V'N

V'N

V'N

¥

L'66

9c

6'8C

8¢

o>

[2%]

691

6'vv

'8

91

1°LL uonuy

9°¢l dLN.C

6'Th uonuy

s uonuy

(U4 41n.s

801 (ATTN) FSUISSIN

660L9C01s1

y8est

LELBYTYST

9900CLTIs!

619¢Icest

¥96C8C6S1

az1s opdureg

SOOUQIRYY

[o[[e JouTw Y} JO

o1sHelS 10 JO9PH  UONBIOOSSE [BIIUI]D)

I\

ANV

SVS

Svd

q4v

adnd

(% ur) seroudnbaiy daTe JOUIN adAy,

JUBLIEA

(ponunuoo) | sjqey

b
)
)
5
et
|9
A
&l



631

Human Genetics (2020) 139:623-646

syuoned D TDSN Ul UBd
LOT (6000) 'Te 19 ey 9°'¢=¥O -2IOULI JO AJDIX0} AIAJS C'HE  6'HE 9°CE € 6'SC Lt snowkuoukg 9900¥7LEST
Aderaypouowr usjrxowre)
0} JOJUBD JSBAIq QAISEAUT
8¢ (0107) ‘T 10 uel0ATy 90I=¥H ymsiuaned jooasuodsay L1 0¥l VN I¥€ 91T L6 uonuyg §9001LEST
A1o1X0101pIRD
Paonpur-aurokorIyUE
¥ (S000) 'Te 30 Dismoulop £€C=40 Jo ystrpasealdu] 6°CI I't 61 10> LSI 96 (ASISID) ISUSSSIA OILL8IBST
(zddn) 229V
eruadoydwAf
paonpur-ouridoryjeze
1€l (S107) T8 10997 y'e€=d0 Jo ystrpesealdu] O0°LL  6'8L T8 S8 SI8 P48 uonuy L80¥LOTST
SIQLIIED 1Y SA WOy Sur BUIYISE UT JSEYN[IUOWT
6V (9000) ‘e 10 vwry  -redwoo uoym 400" 0=d oyosuodsarpaseardu] 69 ¥ VN €0 9T 89 uonug VLLOTTST
sjuoned ATH Ul
SUQWISAI J0YQIYUT 5B}
L8 (€107) T8 19 040D ¥'$=¥0 -oxdjoomyrejqesrSoorA  L'6  TOI VN +ST OCl 641 dLNe 160CITst
eruadonnou
PoONPUI-UBIIOULI]
8L (Q8100) B9 I'T S620— =4 JO NS pasearou] L[] 8¢ V'N 0 Tt €0l uonuy 1€€T10SLTST
(%€ 6€) sjonuod pue
1oy 03 paredwod (%) K)IO1X0)OIPIRD
SIOLLIBD SNO3AZowoy paonpuI-auI[oAdRIyIULR
891 (T100) e 10 1oswog JO SHAT pesealdeq Joystpesealdu] 8¢ 0LC VN LSy €Vl 97TC dln . LTSEYLEST
(%1°8€)
S[OTIUOD PUE 3o 0}
paredwod (%,°0F) sIo Ky1orxojo1pred
-11180 snogAzowoy PpoonpuI-auI[oAdRIyIUL
91 (ZT100) T8 10 1oswag JO SHA'T pasealduf Joysupesealdad ['ce  ¢Se €0C STy TS9 S0¢ snowAuoukg [CCorest
BIWIYNI[ PIO[oAW d)noe
ur (surqere)kd snid urorq
(L10D) Ky1orx0) onjedoy -nrepr) Aderoyjowayd
STT "Te 39 TeOLIOA-SBISOIN +—¢ opeI3 10} ¢'S=Y0 uononpur Jo AJoIXoy,
K)1O1X0)OIpIRD
paonpuI-auIoAdRIYIUR
96 Pue 88 pue 9¢| (T107) T 10 1oYIsSIA y'e=¥0 joysupeseadu] 99 '8 VN 0¥ vO0I €L uonuy 0SE8Y 1181
K)101X0)01pIRD
paonpur-aul[oAdRIyIuL
o (S007) Te 12 Dismoulop 9¢=¥0 Joysupeseawul  ¢'¢ LT 9T 10> TI 96 (AIL9D) ISUSSSIA (42889528
(IddW) 1209V
[V JAV SVS Svd ddv dnd
J[o[[e Jouru
ozrs ordwreg SOOUAIAJIY O1SIIL)S 1O JOO)J AU} JO UOTRIOOSSE [BITUID) (9 ur) sorouanbaiy o[o[Te JOUTA adA1, JUBLIRA

Arurejqns DOV 9yl Jo soudd ul sjuerrea jueytodur AJ[eorur]d jo sarouanbaiy oyroads-uonendod g ajqel

pringer

a's



Human Genetics (2020) 139:623-646

632

syuanyed

J9OUED [B}ORI0[0D O1E)S
-BJOW UI AJIOTX0) QIQAS
PRONPUI-UBIA)OULIL

CCE PuB ¢Sy (8S100) Te 10 uay) 1'¢-6'1=40 JodsupasealdU] L'6¢ ¥'8C VN 90vy CT9C 19¢ 41N .¢ 8EYOYLEST
(O-LVOW ‘Sd¥W) D04V
S[O13U0D 0} Kdeoyy paseq
paredwod ‘A[panoadsax -wnunerd oy syusned
‘SIQLIIED WOY pue Joy Io0ued [eadeydosa
ol (9100) ‘Te 19 orerwny JO 10 PUE 96°0=4d0O Jo osuodsarpesearou] 9% LTy 19¢ 'Ly €0€ IHE snowuoukg SOYyLTTST
(G-LVOW ‘Pd¥W) $D0V
apisodoa pue
QuIqeIRIAD Y)IM pajean)
sjuaned erwoyna|
PpIO[oAW )Nk UT [BAIA
€SI (€100) Te 10 99K CTe=¥H -msoaly-esessip lyoys  [¢  Q'IC VN L'IT Lev VI uonuy SOv8yIyst
sjuaned
BWOOILSO)SO0 UT Aderay)
St (£107) 'Te 32 Suex g'¢=¥0O -owayd o0} asuodsar Joog
Aderoyowrayd
19)Je sjuanjed ewoores
16 (1100) T8 10 eruore) opre 1od 18 =¥H -09150 JO SO padonpay 'S¢ ¥v¥I 88 0CI 961 v'¢ snowAuoukg 918y 111
Sso[ Jur
-Ieqy peonpul-une[dsio
L¥T  (€107) T 10 epoZassng 8'1=40 JO ySLIpasearou] /'] 98 €01 9¢ 98 T8I snowAuoukg 09160181
(A-LVON ‘€ddW) €209V
Adexoy) paseq
-wnuped oy syuaned
s[onuod 03 paredwod I90ued Teageydos
911 (9707) 'Te 10 oreruuny SIOLLIED JO [T°'0=¥O Jo osuodsar pasearou] 871 9¢ 8T 10> 09 9G (ASSITA) SUSSSIN €CLTTTLIST
Kde1oyy poseq-wnunerd
Jo/pue ap1sodoje Jur
Aoanoadsor -o31opun syuoned
‘SO pue asuodsax DIDS JO SO paonpar
LTI pue L9] (2107) 'Te 10 eduwre) 10} 6'1 PUB ['C=¥H pue osuodsariood (0'0¢ 0€l €11 #1IT 8S 66l d1n.s 0C9LILST
Aderay [oxe1900p
qur| puodas 0} syuaned
[43 (L107) 'Te 10 Ya1kz0zg £L=¥0 OTOSN jo asuodsay
Kdeoy) [oxeI000p
ell (8007) "Te 10 Ue10ATy] 1'e=40 uodn ysurerwadoyne] LIS €6 VN S9S 0¢r 89% otuaSrauy 6¥STILTIST
[V JAV SVS Svd ddv dnd
J[o[[e Jour
azrs ordwreg SOOUAIRJIY O1SIILIS 1O J0O)J AU} JO UONRIOOSSE [BITUID) (9 ur) sorouanbaiy oo JOUTA adA1, JUBLIEA

(ponunuoo) zsjqey

pringer

Qs



633

Human Genetics (2020) 139:623-646

J[qQE[IBAR JOU "Y' ‘SMI[ IZBUNYSY [V ‘SOUNET YWV ‘SUBISY JINOS
SVS ‘SueIsy iseq Sy ‘SueoLyy ¥V ‘sueadoing y,7 ‘10oued Sunj [[90 [[EWS-UOU JTHSN ‘TEATAINS [[BISAO SO ‘SUTUSIIOYS UONOBIJ JR[NOLIIUAA-)J] SAT ‘OIeI SPPO YO ‘TOOUERD [€)02I0[0 DY)

€79

6

Ly

19¢

154

8 PUe 8¢¢

(0107) T 10 eInWAN
pue (6002) T8 19 ono

(9107) Te ¥ dey

(2107) ‘Te 10 uuewdrog

(6007) e 19 unjeag

(11027) T8 19 eyRUR],

(9107) Te 30 d1aoutferyy

(eS100) T8 19 UYD

woy Jo suonoely Sur
-UQ)I0YS pue uonoafo
JO uononpar %71-8

SY'0—¥'0=40

Aderoypowrayd
paseq-aprsos[onu uodn
[BAIAINS 991J-9SLASIP
paseaIoul pue uols

€00>d  -saxdxo §QYIN pPoonpay

Kdeloyowrayd
paseq -unedijexo
PaAIROAI oYM sjudned
D¥D Ul SO poseaidu]
stsAfeue A1oyerofdxe ut
sjuaned 190uLRd UBLIBAO
ur Aderoyy unejdoqres
pue [oxesrjoed jo
BISNEU )M PJRIOOSSY

9¢'0=4d0

2000=4d

sjuaned 190ued Sreysord
JUB)SISQI-UOTJET)SED Ul
SpIWOPI[EY} pUL [9XEBId

900°'0=d -00p Jo AJIOIX0} PaseaIdu]

Adeiayjorperowayd

Paseq-ouIqe)Iowdd

ym pajean sjusned

BUIOUIDIBOOUIPE JNe

-aroued ur SO pue

L'1=¥0 asuodsai pasearouy

SIOLLIBD

K101X0)01pIRD
PaoNPUI-UIIGNIOXOP

JO YSLI paseaIou]
sjuaned
JIOOUED [8)0310[0D O1JE1S
-BjowW Ur AJI0IX0) 9I9AS
PoONPUI-UBII)OULIT

JO YSLI pasea1da

801 T9I 90v

€1c  L81 08I

0Ll €1¢ T8I

60y 69C ¥9¢

9L S8l VN

€es OIS VN

L8

601

£l

Sy

6'v¢e

098

8C

6'1¢

[0l

8'9C

09¢

LvL

€1 (J08TD) ISUISSIN

16T (L8Y6I) dSUSSSIA

7'8C (D89TTY) dSUSSSIA

6'9¢ SNOWAUOUAS

11 I9j0W01g

vbS uonuy

1€6TT8LIST
(8d¥N) 11229V

6€LSTITST
(Ld¥W) 01229V

TLY8ETTSI
(HLVOW 9dYN) 9929V

0169€9L81

YSLLTILSE

8CILE6OTST

az1s oidureg

SOUQIJOY

J[[[e Jourw

o1S1IE)S 10 JOPH  QY) JO UONBIOOSSE [BITUI[D

v 4NV SVS

Svd ¥dv dnd

(9, ur) sorouanbaig da[[e JOUIN

adAy,

JUBLIEA

(ponunuoo) zsjqey

pringer

a's



634

Human Genetics (2020) 139:623-646

Figure 4B), indicating that both associations might to
some extent be traced back to the same genetic signal.

Multiple ABCC variants associated with irinote-
can (rs3740066 in ABCC2, rs4148405 in ABCC3 as
well as rs3749438 and rs10937158 in ABCC)5) or taxane
(rs12762549 in ABCC2 as well as rs2238472 and rs2125739
in ABCC6) toxicity or response were overall less population-
specific and differed only by < 3-fold across populations with
the exception of rs17501331 in ABCC1, which was not iden-
tified in East Asians (MAF =0%) but reached frequencies of
11.7% and 10.3% in Ashkenazim and Europeans. By con-
trast, variants associated with response to platinum-based
therapy differed substantially between ethnicities, including
rs717620 (MAF between 21.4% in East Asians and 5.8%
in Africans), rs17222723 (MAF between 12.8% in Ashke-
nazi Jews and < 0.1% in East Asians), and rs1051640 (MAF
between 18.7% in Jews and 5.6% in East Asians). MRP8
encoded by ABCC11 is an export pump for nucleotide ana-
logues (Oguri et al. 2007) and is associated with pemetrexed
resistance (Uemura et al. 2010). The variant rs17822931
that results in proteasomal degradation of MRP8 (Toyoda
et al. 2009) differs > 30-fold between populations with rela-
tively low frequencies in Africans (MAF=2.8%), whereas
the variant constitutes the dominant genotype in East Asian
populations (MAF=87%).

The ABCG?2 gene, encoding the BCRP transporter, har-
bors two important missense polymorphisms, which have
been consistently implicated in response and toxicity of
TKIs (Table 3). Rs2231142 results in increased risk of gefi-
tinib toxicity (Cusatis et al. 2006) and increased rates of
major molecular response to imatinib (Jiang et al. 2017).
Similar effects on response and overall survival were found
for rs2231142 (Chen et al. 2015b; Kim et al. 2009a), which
is not linked with rs2231137 (Supplementary Figure 4C).
Notably, both variants were most prevalent in East Asian
and Latin Americans, whereas their frequencies were sub-
stantially lower in all other populations analyzed. Only a few
associations of pharmacological or toxicological phenotypes
with genetic variants in ABC transporters beyond ABCBI,
ABCG?2, and the ABCC subfamily have been presented to
date (Supplementary Table 2).

Functional consequences of rare genetic variation
in human ABC transporters

Next, we aimed to estimate the functional importance of
rare ABC variations for which no experimental analyses or
clinical association data were available. To this end, we used
five partly orthogonal algorithms to predict the functional
consequences. Of all 37,467 variants affecting the amino
acid sequence of the encoded polypeptide, 19,309 variants
(51.5%) were predicted to result in functional alterations of
the respective ABC transporter (Fig. 2a; see methods). While

@ Springer

functional effects can comprise both, variations that result in
increased or decreased transporter function, previous studies
showed that computational algorithms are significantly bet-
ter at predicting loss-of-function effects compared to gain-
of-function effects (Flanagan et al. 2010). We thus refer to
variants with putative functional impacts as “deleterious”
throughout this manuscript; however, we would like to alert
the reader that the inclusion of some variants that result in
increased transporter function cannot be excluded. Most del-
eterious variants were found in ABCA13 (n=1183), ABCA7
(n=953), and ABCA4 (n=865), whereas ABCEI (n=60)
and ABCB7 (n=43) harbored least (Fig. 2b). The multi-drug
resistance transporters ABCBI (n=344), ABCCI (n=453),
and ABCG2 (n=315) harbored medium numbers of variants
with functional consequences.

Notably, only 14.8% (30 of 203) of common ABC mis-
sense variants with MAF > 1% were putatively deleterious,
compared to 45.7% (15,152 of 33,137) for rare variations.
The burden of functional genetic variability differed drasti-
cally between genes with an average diploid human genome
harboring on average 1.8 and 1.2 variants with functional
effects in ABCBS5 and ABCBI, respectively, whereas 29
transporters were highly conserved with <0.1 functional
variants per individual genome (Fig. 2c). In some transport-
ers, including ABCBI and ABCG2, rare variations explained
less than 10% of the genetically encoded functional variabil-
ity. In contrast, rare variants are estimated to account for all
variants with functional consequences in half (24 out of 48)
of all human ABC transporter genes. Interestingly, the frac-
tion of genetically encoded functional variability correlated
significantly with the genetic constraint on the respective
genes (r=0.4; p=0.005), suggesting that high evolution-
ary pressure tends to select against common variations that
alter ABC transporter function. Overall, each individual was
found to harbour 9.8 variants in the ABC gene family that
entail functional alterations, of which 21% were attributed
to by rare genetic variants (Fig. 2d).

Genetic ABC transporter variability is highly
population-specific

The genetic landscape of the ABC transporter superfam-
ily differed considerably between human populations. Of
the putatively deleterious variants, only 24% were shared
between two or more ethnicities, whereas 76% were popu-
lation-specific (Fig. 3a). Most population-specific variants
were found in Europeans (6815), whereas least were found
in Ashkenazim (136). These differences are likely, at least in
part, due to the unequal distribution of available sequencing
data and the differences in genetic heterogeneity between
the populations (Fig. 3b). The ratios of population-specific
variants differed between ABC genes from 70% in ABCA7 to
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Fig.2 ABC transporter genes harbor a plethora of genetic variants
with functional consequences, many of which are rare. a In total,
37,467 variants affected the amino acid sequence of the correspond-
ing gene product (missense and frameshift variants, variants that
resulted in gain of a stop or loss of a start codon or that affected
splice sites) of which 19,309 were predicted to result in functional
consequences. b The number of deleterious and functionally neutral
variants differs drastically between ABC transporter genes. Error bars
indicate standard error of the mean (SEM) across five computational

92% in ABCEI, whereas only 0.3% of variants were shared
between all seven populations (Fig. 3c).

The observed population specificity is estimated to trans-
late into inter-ethnic differences in ABC transporter function.
The largest differences in variants with putative functional
impacts across populations were identified for ABCAI0O
where Africans harbor 2.4 putatively functional variations
per individual compared to 0.3 in Europeans (Fig. 3d). Simi-
lar differences were observed for the breast cancer risk gene
ABCCI1 (1.8 in East Asians compared to 0.5 in Africans),
as well as the multi-drug resistance genes ABCBI (1.4 in
South Asians compared to 0.2 in Africans) and ABCG2 (1.3
in East Asians compared to 0.1 in Europeans). In contrast,

@ Springer

n
Rare

algorithms (see methods for details). ¢ The average number of delete-
rious variants per ABC transporter are shown per individual (stacked
columns; left ordinate). Note that the relative importance of rare
genetic variations with frequencies < 1% differs substantially between
genes (indicated by black dots; right ordinate). Calculations con-
sider a diploid human genome. d Overall, each individual was found
to harbour on average 9.8 genetic variations in the ABC transporter
superfamily that affect transporter function. Rare variants accounted
for 21% of this genetically encoded functional variability

inter-ethnic variability in ABCCI was less pronounced (0.16
in Europeans compared to 0.02 in East Asians). Overall,
across the entire ABC transporter family Africans harbored
most variations with putative functional impacts (13.9 del-
eterious variants per individual), whereas least variations
were observed in South Asians (9.3 deleterious variants per
individual; Fig. 3e).

Structural consequences of genetic ABC variability
Next, we characterized the distribution of genetic vari-

ability across ABC transporter domains by mapping the
identified genetic variants onto the tertiary structures of
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Fig.3 The genetically encoded functional variability of ABC trans-
porters is highly population-specific. a The majority of genetic vari-
ations (76%) with putative functional impacts on ABC transporter
function are population-specific. b Most of these population-specific
variations were identified in Europeans. Numbers in bold indicate the
total number of identified population-specific variations, while num-
bers in brackets denote the number of sequenced individuals for the
respective population. ¢ Stacked column plot showing the fraction of
putatively functional variants specific to Europeans (red), Africans

(orange), East Asians (yellow), South Asians (light green), Ashkenazi
Jews (dark green), Finns (blue), and Latinos (purple). The fraction of
variations that are found in at least two populations are shown in grey.
d The number of ABC variants with functional consequences per
individual is shown across populations. e Column plot depicting the
functional ABC transporter variability when all putatively deleterious
ABC transporter variants are aggregated. Note that African individu-
als harbour most functionally relevant ABC variants per individual,
whereas functional variability in South Asians was overall lowest
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the respective. We used experimentally determined crys-
tal structures for all transporters of the ABCA, ABCB, and
ABCC families for which such information was available
(n=18), while the remaining 16 structures were predicted
using homology modeling. Typical ABC transporters con-
sist of two a-helix transmembrane domains (TMDs) and
two cytoplasmic nucleotide-binding domains (NBDs) that
catalyse ATP hydrolysis (Fig. 4a). In addition to this back-
bone, some transporters have additional domains. ABCA

@ Springer

transporters have two large extracellular domains (ECDs),
while transporters of the ABCB and ABCC subfamilies con-
tain an additional N-terminal TMDO domain with unclear
functional relevance. Furthermore, seven ABC genes of the
ABCB subfamily encode only half-transporters (one NBD
and one TMD domain) that require homo- or heterodimeri-
zation for transporter activity.

When stratifying by domains, we found that genetic vari-
ability differed substantially between transporters (Fig. 4b).
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«Fig. 4 Structural analysis of putatively deleterious genetic variants
of ABC transporter superfamily. a Illustration of the tertiary struc-
tures of ABCA, ABCB, and ABCC transporters. As representa-
tive examples, the structures of ABCA1 (PDB identifier 5XJY),
ABCB10 (ABCB half transporter; PDB identifier 4AYT), ABCB11
(BSEP; ABCB full transporter), and ABCC7 (CFTR; PDB identi-
fier SUAK) are shown. Transmembrane domains (TMDs) are shown
in red, nucleotide-binding domains (NBDs) are depicted in blue
and turquoise, Walker motifs are colored in salmon and the N-ter-
minal Lasso motif is depicted in yellow. b Overview of the geneti-
cally encoded structural variability stratified by ABC subfamily and
domain. ¢ Schematic topology models as well as 3D protein struc-
tures of MDR1 encoded by ABCBI. Different domains in the topol-
ogy models are shaded based on the identified number of deleterious
variants per amino acid in the respective domain. MDR1 constitutes
two pseudo-symmetrical TMDs and NBDs encoded in a single poly-
peptide, colored in orange and blue, respectively. Detailed 3D struc-
ture of key protein domains with functionally relevant variants (sticks
in cyan or magenta) and substrates (sticks in yellow) are shown as
insets under the topology model. In the 3D model, all putatively del-
eterious variants with MAF>0.1% are shown as light red spheres,
whereas the corresponding part of the secondary structure motif is
highlighted in salmon in case of variants with MAF<0.1%. Note
that N21D localizes to the lasso motif for which no crystallographic
data were available and the variant is thus not shown. ECD extracel-
lular domain, TMD transmembrane domain, NBD nucleotide-binding
domain

The lowest numbers of variants per residue were found in the
TMDO domains of ABCB transporters with 0.21 variants/
amino acid. In contrast, the NBD2 domains of ABCB and
ABCC transporters are more variable (0.35 variants/amino
acid). For individual genes, the TMD1 (0.05 variants/amino
acid) and NBD1 domains (0.07 variants/amino acid) of
ABCB7 were most conserved, while the TMD1 and TMD2
domains of ABCC7 (0.65 variants/amino acid) and ABCA7
(0.56 variants/amino acid), respectively, were > 10-fold more
variable.

Finally, we aimed to corroborate our computational
variant predictions using structural mapping approaches
by focussing on the pharmacogenetically most important
ABC transporter, MDR1 (also known as P-gp; encoded by
ABCBI), for which high-resolution crystal structures are
available (Kim and Chen 2018) (Fig. 4c). The clinically
important missense variation A893S/T is located in the
second intracellular loop of TMD?2, which interacts with
NBDI, and is necessary for structural stability. The S400N
polymorphism is localized directly adjacent to the criti-
cal tyrosine at position 401, which coordinates the ATP
in its binding pocket in NBD1 by direct van-der-Waals
interactions with the adenine of the bound ATP molecule.
Q1107P resides within the NBD2 Q-loop, which is neces-
sary for ATPase activity and stabilizes the NBD dimer. No
common variants were identified in any transmembrane
helix or extracellular domain. However, we found a vari-
ety of rare variations in structurally important residues,
including variants at the catalytic glutamate residue 556,

which is required for ATP hydrolysis (Sauna et al. 2002),
as well as various amino acid exchanges in the functionally
critical NBD1 and NBD2 Q-loops (Zolnerciks et al. 2014).

Ethnogeographic distribution of pathogenic
ABC alleles can inform about Mendelian disease
epidemiology

We previously showed that the frequency of loss-of-func-
tion variants in SLC transporter genes implicated in reces-
sive Mendelian disorders are suitable proxies to estimate
population-specific disease risk (Schaller and Lauschke
2019). Here, we analyzed whether similar associations
could be identified for ABC transporter genes. To this
end, we comparatively analyzed the frequencies of loss-
of-function variants, defined as frameshifts, start-lost or
stop-gain variations or variants that affected critical splice
site residues, in ABC transporter genes with or without
implication in hereditary disease (Fig. 5).

Overall, 17 of 48 ABC genes are linked to autosomal
recessive Mendelian disorders (Supplementary Table 3).
Reduced CFTR (ABCC?7) function is associated with cystic
fibrosis (CF; OMIM 219700). We calculated homozygo-
sity frequencies for ABCC7 loss-of-function variants of
1 in 1850 and 1 in 4300 in Ashkenazim and European
individuals, whereas frequencies in individuals of Africans
and Asian ancestry were 1 in 24,000 and < 1 in 40,000,
respectively. Impaired function variants in ABCC6 are
associated with pseudoxanthoma elasticum (PXE; OMIM
264800). In our data set, we find the highest aggregated
ABCCG6 loss-of-function frequency in individuals of East
Asian ancestry (0.5%), resulting in estimates of affected
individuals of 1 in 42,530. Similarly, high carrier rates
were identified in Europeans (0.4%; 1 in 52,000) and Finns
(0.4%; 1 in 82,000), whereas risk allele prevalence was
significantly lower in all other populations. Congenital
generalized hypertrichosis (OMIM 135400) is a rare dis-
ease with varying presentations and comorbidities that is
speculated to be, at least in part, caused by loss of ABCAS
function (DeStefano et al. 2014). While global prevalence
rates have, to our knowledge, not been reported, the dis-
ease was originally described in individuals of Mexican
ancestry (Pavone et al. 2015), aligning with our finding
of highest ABCAS loss-of-function frequencies in Latino
populations (0.7%; 1 in 20,500).

In conclusion, these data provide an overview of the
frequency of ABC loss-of-function variants in the general
population that can be used to estimate population-specific
Mendelian disease risk, thus providing valuable informa-
tion for epidemiological rare disease research and clinical
geneticists.
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Fig.5 Genetic variability in ABC genes associated with genetic dis-
orders can inform about population-specific disease risk. The gene-
wise aggregated frequencies of loss-of-function (LoF) variants

Discussion

The ABC superfamily of transporters is of importance for
drug response and toxicity, and genetic rare disease research.
ABC transporters translocate a wide spectrum of endoge-
nous substrates and medications. Consequently, identifica-
tion of ABC transporters that interact with a drug candidate
constitutes a critical step in drug discovery and development
(Benadiba and Maor 2016; Yee et al. 2018). Previous clini-
cal studies implicated genetic germline polymorphisms in
at least 12 ABC genes with risk of adverse drug reactions
or altered chemotherapy efficacy (Tables 1, 2, 3 and Sup-
plementary Table 2). In addition, genetic variations in 21
ABC genes are causative for Mendelian disorders. Therefore,
understanding the genetic landscape of ABC transporters
constitutes a potentially important area for the personaliza-
tion of oncological therapy and risk allele epidemiological
study of relevant Mendelian diseases.

In this study, we detected a total of 62,793 exonic vari-
ants, the vast majority (98.5%) of which are rare and func-
tionally poorly understood. In addition to these single-nucle-
otide variants and indels, we identified 1003 ABC alleles in
which at least one exon was deleted or duplicated. Notably,
somatic ABC gene CNVs have been implicated in acquired
drug resistance. Studies of drug-resistant cell lines derived
from human neoplasms identified amplifications of at least
13 ABC transporter genes, including ABCBI, ABCCI and
ABCC4 (Yasui et al. 2004). Conversely, deletions of the
multi-drug resistance transporters predicted response to
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for ABC genes with known associations with congenital diseases (a)
as well as for non-disease-associated genes (b)

neoadjuvant therapy in breast cancer patients (Litviakov
et al. 2016). Notably, while drug resistance is primarily char-
acterized by somatic amplification events, the majority of
CNVs in our data set were deletions and it will be interesting
to observe whether patients with germline deletions of phar-
macologically important drug transporters are predisposed
to favorable therapeutic responses using drugs, which are
substrates of the deleted transporter.

There is an increasing body of evidence describing differ-
ences in drug response, ADRs and clinical outcomes from
chemotherapy based on genetic differences between ethnic
groups (Phan et al. 2011). For instance, Caucasian colon
cancer patients were at significantly higher risk to develop
diarrhea, nausea, vomiting, and stomatitis during adjuvant
5-fluorouracil-based chemotherapy compared to African
Americans (McCollum et al. 2002). Moreover, the risk of
dose-limiting ADRs due to taxanes or platinum therapy
was significantly lower in Caucasian lung cancer patients
compared to patients of Asian descent, whereas response
rates consistently showed inverse correlations (Gandara et al.
2009; Lara et al. 2009, 2010). This variability is likely to be
at least in part caused by differences in the allelic distribu-
tion for genes involved in the disposition of the respective
chemotherapeutics.

Mounting evidence suggests that the targeted interroga-
tion of candidate pharmacogenetic polymorphisms is not
sufficient to accurately predict the drug response of a given
patient (Lauschke and Ingelman-Sundberg 2016, 2018).
Importantly, our previous data indicate that variant burden
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rather than allele status of specific ABC variants is a predic-
tor of clinical outcomes, thus corroborating that NGS-based
approaches can add value to personalized cancer prognostics
(Xiao et al. 2020). One plausible interpretation of this obser-
vation is that multiple ABC variants with individually small-
effect sizes act modulate bioavailability of orally adminis-
tered substrates and/or intra-tumoral drug concentrations in
concert, thereby impacting treatment efficacy. These findings
have important implications for cancer pharmacogenomics
and incentivize studies into the underlying mechanisms.

Interestingly, mapping of clinically impactful vari-
ants onto the 3D structure of MDR1 revealed a preferen-
tial localization in NBDs. Generally, the NBDs in MDR1
are highly conserved compared to the substrate-binding
domains, indicating that NBDs might be more sensitive to
functional alterations, whereas impacts of variations in the
substrate-binding domain or translocation channel seem to
be less pronounced (Wolf et al. 2011). The two synonymous
variants indicated here (G412G and 111451), although not
resulting in amino acid exchange, have been suggested to
affect transporter function by disrupting the cotranslational
folding process via introduction of rare codons (Kimchi-
Sarfaty et al. 2007). The triallelic variation at position A893,
which localizes to a less conserved transmembrane helix,
has not been reported to affect transporter function in vitro
(Kimchi-Sarfaty et al. 2002). Thus, functional effects associ-
ated with this variant might be due to the strong linkage with
G412G and 111451 (Fung and Gottesman 2009).

Overall, we found that the ABC transporter superfamily
was highly population-specific and inter-ethnic variability is
commensurate with other genetically diverse pharmacogene
families, including CYPs (Zhou et al. 2017), SLCOs (Zhang
and Lauschke 2019) and UGTs (Kaniwa et al. 2005). Over-
all, 74.9% of all variants that were predicted to affect the
functionality of the respective ABC transporter were spe-
cific to a single population and the overall load of functional
genetic variability differed considerable between the ana-
lyzed populations. Inter-ethnic variability was furthermore
reflected in differences in population-specific prevalence of
ABC-associated Mendelian diseases with autosomal reces-
sive inheritance. For instance, frequencies of CF are around
1 in 2500-3500 newborns of Caucasian ancestry, whereas
only 1 in 17,000 and 1 in 31,000 children of African and
Asian ancestry are affected, which closely aligns with pre-
dictions based on loss-of-function carrier rates (1 in 1850
in Europeans, 1 in 24,000 in Africans, and < 1 in 40,000 in
East Asians). Similarly, PXE has been reported to have a
prevalence around 1 in 50,000 Dutch individuals (Kranen-
burg et al. 2019), compared to our estimates of 1 in 52,000
in Europeans based on ABCC6 loss-of-function allele fre-
quencies. Interestingly, ABCC6 was also the ABC gene that
was found to harbour most CNVs, which is aligned with
the previous studies describing genomic deletions in this

locus in PXE patients (Costrop et al. 2010; Katona et al.
2005). Combined, these data suggest that population-scale
sequencing data provide an important tool to predict Men-
delian ABC disease risk. Notably, however, this approach is
only suitable for diseases in which heterozygous loss of gene
function is phenotypically silent, thus excluding autosomal
dominant or X-linked modes of inheritance. Taken together,
our analyses revealed striking ethnogeographic differences
in ABC variability profiles that might explain at least part
of the observed variability in chemotherapy response and
incidence of Mendelian disorders between populations. Fur-
thermore, the population-scale genomic data set presented
here promises to provide a powerful resource for the evalu-
ation of genetic ABC disease epidemiology.

In summary, we comprehensively profiled the genetic
variability of the human ABC transporter superfamily and
revealed a surprising extent of rare and population-specific
variations. Computational evaluations of the functional
impacts of these variants indicate that these variants con-
tribute considerably to the variability in ABC transporter
function with potentially important consequences for chemo-
therapeutic treatment regimens. Thus, these data incentivize
the consideration of sequencing-based genotypes for patient
stratification, particularly in the current era of clinical trial
globalization. Furthermore, we expect that a deeper under-
standing of the functional consequences of ABC transporter
variability might be useful to improve public health strate-
gies and flag patients at risk of not responding appropriately
to treatment with ABC substrates.
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