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Abstract
ATP-binding cassette (ABC) transporters constitute a superfamily of 48 structurally similar membrane transporters that 
mediate the ATP-dependent cellular export of a plethora of endogenous and xenobiotic substances. Importantly, genetic 
variants in ABC genes that affect gene function have clinically important effects on drug disposition and can be predictors 
of the risk of adverse drug reactions and efficacy of chemotherapeutics, calcium channel blockers, and protease inhibitors. 
Furthermore, loss-of-function of ABC transporters is associated with a variety of congenital disorders. Despite their clini-
cal importance, information about the frequencies and global distribution of functionally relevant ABC variants is limited 
and little is known about the overall genetic complexity of this important gene family. Here, we systematically mapped the 
genetic landscape of the entire human ABC superfamily using Next-Generation Sequencing data from 138,632 individuals 
across seven major populations. Overall, we identified 62,793 exonic variants, 98.5% of which were rare. By integrating five 
computational prediction algorithms with structural mapping approaches using experimentally determined crystal struc-
tures, we found that the functional ABC variability is extensive and highly population-specific. Every individual harbored 
between 9.3 and 13.9 deleterious ABC variants, 76% of which were found only in a single population. Carrier rates of patho-
genic variants in ABC transporter genes associated with autosomal recessive congenital diseases, such as cystic fibrosis or 
pseudoxanthoma elasticum, closely mirrored the corresponding population-specific disease prevalence, thus providing a 
novel resource for rare disease epidemiology. Combined, we provide the most comprehensive, systematic, and consolidated 
overview of ethnogeographic ABC transporter variability with important implications for personalized medicine, clinical 
genetics, and precision public health.

Introduction

ATP-binding cassette (ABC) transporters are a superfamily 
of membrane proteins that, in humans, comprise 48 genes. 
ABC transporters catalyse the translocation of a wide spec-
trum of endogenous substrates across biological membranes, 
including amino acids, sugars, nucleosides, vitamins, lipids, 
bile acids, leukotrienes, prostaglandins, uric acid, antioxi-
dants, as well as a multitude of natural toxins (Liang et al. 
2015). In addition, ABC transporters mediate the export of 

a plethora of drug substrates, including calcium channel 
blockers, HIV protease inhibitors, vinca alkaloids, topoi-
somerase inhibitors, methotrexate, anthracyclines, and taxa-
nes, into the extracellular space and are thus key modulators 
of drug resistance, particularly in oncology (Robey et al. 
2018). Hence, ABC transporters are of specific clinical and 
regulatory interest for their involvement in drug–drug inter-
actions (König et al. 2013; Marquez and Van Bambeke 2011; 
Zhang et al. 2018).

Genetic variants in ABC transporters contribute to the inter-
individual variability in the risk of adverse drug reactions and 
treatment efficacy, and are key modulators of drug resistance. 
Arguably, the most studied are polymorphisms in ABCB1 
(encoding MDR1, P-gp), which have been associated with 
methotrexate clearance (Kim et al. 2012a), response to antiret-
roviral protease inhibitors (Coelho et al. 2013), as well as with 
pharmacokinetics, response, and toxicity of imatinib (Dulucq 
et al. 2008; Ma et al. 2017). Similarly, variants in ABCG2 
(encoding BCRP) were reproducibly associated with exposure 
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and response to statins (Bailey et al. 2010; Chasman et al. 
2012; Hu et al. 2011) and allopurinol (Roberts et al. 2017; Wen 
et al. 2015). In addition to their pharmacogenetic importance, 
genetic variation in 21 ABC transporters can cause congenital 
diseases, the most common of which is cystic fibrosis (OMIM 
219700) caused by variants in ABCC7 (CFTR).

Importantly, while many studies have provided critical data 
about the clinical importance of ABC polymorphisms (Bosch 
et al. 2005; Fukushima-Uesaka et al. 2007; Honjo et al. 2002; 
Leschziner et al. 2006; Pramanik et al. 2014; Saito et al. 2002; 
Słomka et al. 2015), information about their population fre-
quencies is limited and mostly derived from relatively small, 
heterogeneous cohorts. Furthermore, most studies only inter-
rogated a few selected candidate variants and did not map the 
entire landscape of rare genetic variability that is characteristic 
for pharmacogenes (Bush et al. 2016; Fujikura et al. 2015; 
Gordon et al. 2014; Ingelman-Sundberg et al. 2018; Kozyra 
et al. 2017; Wright et al. 2018; Zhou and Lauschke 2018). 
Importantly, the increasing prevalence of Next-Generation 
Sequencing (NGS) projects on a population scale allows for 
the first time to systematically parse the inter-individual and 
inter-population variability in ABC transporter superfamily.

In the current study, we systematically parsed the inter-indi-
vidual and inter-population variability in the ABC transporter 
superfamily by analyzing whole-exome and whole-genome 
sequencing (WES and WGS, respectively) data from 138,632 
individuals across seven major human populations. Using this 
large data set, we provide frequencies of 51 ABC variants and 
haplotypes frequencies with demonstrated clinical relevance. 
In addition to these well-characterized variations, we identi-
fied 62,793 exonic variants, the vast majority of which were 
rare and have not been characterized. Computational analyses 
using five partly orthogonal algorithms predicted that 19,309 
of these (31%) resulted in functional alterations of the respec-
tive transporter protein. To substantiate these estimates, we 
mapped the identified genetic variability onto experimentally 
determined or homology-modeled transporter structures and 
found multiple amino acid exchanges in residues important for 
substrate binding and transporter function. The present study 
constitutes the most comprehensive analysis of genetic vari-
ation in the ABC superfamily published to date and the iden-
tified genetic complexity might have important implications 
for the evaluation of drug transporter variability during drug 
development and the personalized prediction of drug disposi-
tion, response, and toxicity.

Methods

Data collection and definitions

Single-nucleotide variant (SNV) and indel frequency data 
across 48 human ABC transporters were collected from 

WES and WGS data from 138,632 individuals (12,020 
Africans, 17,210 Latinos, 5076 Ashkenazi Jews, 9435 East 
Asians, 15,391 South Asians, 12,897 Finns, 63,369 non-
Finnish Europeans, and 3234 from other ethnic groups) 
acquired from the Genome Aggregation Database (Lek 
et al. 2016). Variants with MAF < 1% or MAF < 0.1% were 
defined as rare and very rare, respectively. Copy-number 
variation (CNV) data were extracted from the Exome 
Aggregation Consortium database using genomic informa-
tion from 59,451 individuals and analyzed as previously 
described (Santos et al. 2018). Linkage disequilibria were 
computed by leveraging linkage from the 1000 Genomes 
Project using LDLink (Machiela and Chanock 2015). The 
Online Mendelian Inheritance in Man (OMIM) database was 
used to identify ABC genes associated with Mendelian dis-
ease, as well as their mode of inheritance (Amberger et al. 
2015). One-way ANOVA was used to compare the difference 
between variant number across ABC subfamilies.

Variant effect predictions

To predict the functional consequences of missense variants, 
we used a panel of computational algorithms that analyze 
sequence conservation, as well as variant effects on physico-
chemical amino acid properties, solvent accessibility, and 
structural features. Specifically, we selected SIFT (Ng and 
Henikoff 2001), Polyphen2 (Adzhubei et al. 2010), Mutatio-
nAssessor (Reva et al. 2011), VEST3 (Carter et al. 2013), 
and Eigen (Ionita-Laza et al. 2016), as they showed the best 
predictive performance in three independent benchmarking 
data sets (Li et al. 2018a). Variants were categorized as del-
eterious when the ≥ 50% of algorithms predicted effects on 
transporter function. In addition, all frameshifts, in-frame 
deletions or insertions, start-lost, stop-gained, or canonical 
splice site variants were regarded as putatively deleterious. 
For Mendelian disease analyses, ClinVar (Landrum et al. 
2014) was used to remove benign variants from disease-
associated ABC genes.

Structural analysis

We analyzed the impact of genetic variation on ABC trans-
porter structures for the entire ABCA, ABCB, and ABCC 
transporter families (35 proteins in total). Experimentally 
determined crystal structures were available for 18 ABC 
transporter proteins and were extracted from PDB (Berman 
et al. 2000) and the available literature. The remaining 16 
transporter structures were modeled based on homology 
using Phyre2 (Kelley et al. 2015). The structure of ABCA13 
could not be modeled reliably and was thus excluded. 
PyMOL (version 2.1.1) was used to map the genetic vari-
ability data onto the corresponding transporter structures.
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Results

Genetic variability of the human ABC transporter 
superfamily

We systematically analyzed the genetic variability pro-
files of all 48 members of the human ABC transporter 
gene superfamily using NGS data from 138,632 individu-
als. In total, we identified 62,793 variants in exons, the 
majority of which were missense (n = 33,340; 53%), fol-
lowed by synonymous (n = 14,503; 23%) and UTR vari-
ations (n = 10,495; 17%; Fig. 1a). Importantly, the vast 
majority of variations (n = 61,876; 98.5%) were rare with 
minor allele frequencies (MAF) < 1%, whereas only 917 
(1.5%) variations were common (Fig. 1b). In addition, we 
found 1003 deletions or duplications spanning at least one 
ABC exon, jointly referred to as CNVs, as well as 32,333 
intronic variants. The latter were, however, not systemati-
cally covered and thus excluded from further analyses.

Notably, the number of genetic variations differed con-
siderably between ABC subfamilies and genes. Overall, 
the number of variants in the ABCA family of lipid trans-
porters was significantly higher than in other ABC sub-
families (p = 0.002; fold difference = 1.9; Fig. 1c). Of all 
members of the human ABC superfamily of genes, the 
lipid transporters ABCA13 (n = 4310), ABCA7 (n = 274), 
and ABCA4 (n = 2224) harbored the highest number of 
variants, whereas > 10-fold less variations were found in 
ABCD1 (n = 496), ABCE1 (n = 407), and ABCB7 (n = 271; 
Fig. 1d). However, when the number variants were normal-
ized by gene length, no significant differences were identi-
fied between the subfamilies (Supplementary Figure 1A). 
In contrast, variability varied more than sevenfold between 
different ABC genes with ABCB9 (n = 802.4 variants/kb) and 
ABCB8 (n = 537.4 variants/kb) being most polymorphic, 
whereas ABCB7 was most invariant (n = 120.1 variants/kb; 
Supplementary Figure 1B). To directly compare the evolu-
tionary constraint, we compared the observed number of 
missense and loss-of-function variants in ABC genes with 
the expected numbers based on the genetic background vari-
ability. Missense variations in ABCC9, ABCA2, and ABCE1 
were most depleted, whereas, surprisingly, CFTR was least 
conserved and harbored 30% more missense variations than 
expected by chance (Supplementary Figure 2A; Supple-
mentary Table 1). Based on genetic constraints on loss-of-
function variations, 4 genes, including ABCA2 and ABCE1, 
as well as ABCB7 and ABCD1 were considered as haploin-
sufficient, whereas little constraint on loss-of-function vari-
ations was detected in the remaining 44 ABC transporters 
(Supplementary Figure 2B; Supplementary Table 1).

In addition to SNVs, 46 of the 48 ABC transporter genes 
(96%) harbored CNVs, in which multiple exons up to the 

entire were deleted or duplicated (Fig. 1e). Overall, most 
CNVs were detected for ABCC6 (230 CNVs), ABCC1 (178 
CNVs), and ABCA6 (81 CNVs), whereas no CNVs were 
identified in ABCB7 and ABCD1. While these CNVs are 
very likely to result in functional alterations, all deletions 
and duplications were found to be very rare with minor 
allele frequencies < 0.1%.

Worldwide frequencies of human ABC transporter 
polymorphisms with putative clinical relevance

Next, we systematically analyzed the global and population-
specific frequencies of clinically important variants in ABC 
transporters linked to drug response or ADR risk. Specifi-
cally, we considered all variants as putatively clinically rele-
vant for which an association with drug-response phenotypes 
or related traits, such as overall or disease-specific survival 
upon chemotherapy, have been reported. In ABCB1, we 
assessed the population frequencies of 10 SNPs (Table 1). 
The missense variant rs2032582 and the synonymous poly-
morphisms rs1045642 constitute arguably the most exten-
sively studied ABCB1 variants and have been associated 
with risk of adverse reactions upon fluoropyrimidine therapy 
(Gonzalez-Haba et al. 2010) as well as toxicity to taxanes 
(Kim et al. 2012b) and anthracyclines (Ji et al. 2012; Wu 
et al. 2012). These variants are in strong linkage disequi-
librium (Horinouchi et al. 2002) and have been shown to 
be associated with altered mRNA levels and protein folding 
(Cascorbi 2006). Rs2032582 constitutes a triallelic vari-
ant of amino acid position 893 with the reference sequence 
encoding an alanine and variants giving rise to a serine or 
threonine, respectively (Supplementary Figure 3). Ala893 is 
the predominant allele in Africans and East Asians, whereas 
in South Asians, Ser893 is most abundant (frequency 60.9% 
compared to 34.8% for Ala893). Thr893 is less prevalent 
ranging in frequencies between 0.4% in Africans and 13.3% 
in East Asians. Further ABCB1 variants of clinical rel-
evance are the missense variants rs2229109 and rs9282564, 
which are associated with increased risk of relapse of acute 
lymphoblastic leukemia (Gregers et al. 2015) and paclitaxel 
toxicity (Bergmann et al. 2012), respectively. Both variants 
are most frequently found in Europeans (MAF = 4.3% and 
10.8%) and least prevalent in Africans (MAF = 0.7% and 
1.6%) and East Asians (MAF = 0 and < 0.1%). Linkage anal-
yses revealed one haplotype block of four SNPs (rs1128503, 
rs4148737, rs12720066 and rs1045642) with moderate-link-
age disequilibrium, which could have potentially important 
implications for clinical associations of these variants (Sup-
plementary Figure 4A).

In the ABCC subfamily, we analyzed the population-
specific frequencies of 25 SNVs that were correlated with 
chemotherapy outcomes or toxicity (Table 2). Interestingly, 
frequencies of risk variants for anthracycline-induced 
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cardiotoxicity (ACT) were highly population-specific and 
differed > 100-fold between populations. The cardiopro-
tective synonymous variant rs246221 in ABCC1 (Semsei 
et al. 2012) was most common with frequencies between 
20.3% and 65.2% in South Asians and Africans, respec-
tively. By contrast, East Asians did not harbor the risk 

variants rs8187710 (ABCC2) and rs45511401 (ABCC1), 
which are common in all other populations with fre-
quencies up to 5.6% and 15.7%, respectively. Notably, 
rs45511401 is in linkage disequilibrium with the intronic 
ACT risk variant rs4148350 (R2 = 0.153; Supplementary 
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Figure 4B), indicating that both associations might to 
some extent be traced back to the same genetic signal.

Multiple ABCC variants associated with irinote-
can (rs3740066 in ABCC2, rs4148405 in ABCC3 as 
well as rs3749438 and rs10937158 in ABCC5) or taxane 
(rs12762549 in ABCC2 as well as rs2238472 and rs2125739 
in ABCC6) toxicity or response were overall less population-
specific and differed only by < 3-fold across populations with 
the exception of rs17501331 in ABCC1, which was not iden-
tified in East Asians (MAF = 0%) but reached frequencies of 
11.7% and 10.3% in Ashkenazim and Europeans. By con-
trast, variants associated with response to platinum-based 
therapy differed substantially between ethnicities, including 
rs717620 (MAF between 21.4% in East Asians and 5.8% 
in Africans), rs17222723 (MAF between 12.8% in Ashke-
nazi Jews and < 0.1% in East Asians), and rs1051640 (MAF 
between 18.7% in Jews and 5.6% in East Asians). MRP8 
encoded by ABCC11 is an export pump for nucleotide ana-
logues (Oguri et al. 2007) and is associated with pemetrexed 
resistance (Uemura et al. 2010). The variant rs17822931 
that results in proteasomal degradation of MRP8 (Toyoda 
et al. 2009) differs > 30-fold between populations with rela-
tively low frequencies in Africans (MAF = 2.8%), whereas 
the variant constitutes the dominant genotype in East Asian 
populations (MAF = 87%).

The ABCG2 gene, encoding the BCRP transporter, har-
bors two important missense polymorphisms, which have 
been consistently implicated in response and toxicity of 
TKIs (Table 3). Rs2231142 results in increased risk of gefi-
tinib toxicity (Cusatis et al. 2006) and increased rates of 
major molecular response to imatinib (Jiang et al. 2017). 
Similar effects on response and overall survival were found 
for rs2231142 (Chen et al. 2015b; Kim et al. 2009a), which 
is not linked with rs2231137 (Supplementary Figure 4C). 
Notably, both variants were most prevalent in East Asian 
and Latin Americans, whereas their frequencies were sub-
stantially lower in all other populations analyzed. Only a few 
associations of pharmacological or toxicological phenotypes 
with genetic variants in ABC transporters beyond ABCB1, 
ABCG2, and the ABCC subfamily have been presented to 
date (Supplementary Table 2).

Functional consequences of rare genetic variation 
in human ABC transporters

Next, we aimed to estimate the functional importance of 
rare ABC variations for which no experimental analyses or 
clinical association data were available. To this end, we used 
five partly orthogonal algorithms to predict the functional 
consequences. Of all 37,467 variants affecting the amino 
acid sequence of the encoded polypeptide, 19,309 variants 
(51.5%) were predicted to result in functional alterations of 
the respective ABC transporter (Fig. 2a; see methods). While 

functional effects can comprise both, variations that result in 
increased or decreased transporter function, previous studies 
showed that computational algorithms are significantly bet-
ter at predicting loss-of-function effects compared to gain-
of-function effects (Flanagan et al. 2010). We thus refer to 
variants with putative functional impacts as “deleterious” 
throughout this manuscript; however, we would like to alert 
the reader that the inclusion of some variants that result in 
increased transporter function cannot be excluded. Most del-
eterious variants were found in ABCA13 (n = 1183), ABCA7 
(n = 953), and ABCA4 (n = 865), whereas ABCE1 (n = 60) 
and ABCB7 (n = 43) harbored least (Fig. 2b). The multi-drug 
resistance transporters ABCB1 (n = 344), ABCC1 (n = 453), 
and ABCG2 (n = 315) harbored medium numbers of variants 
with functional consequences.

Notably, only 14.8% (30 of 203) of common ABC mis-
sense variants with MAF > 1% were putatively deleterious, 
compared to 45.7% (15,152 of 33,137) for rare variations. 
The burden of functional genetic variability differed drasti-
cally between genes with an average diploid human genome 
harboring on average 1.8 and 1.2 variants with functional 
effects in ABCB5 and ABCB1, respectively, whereas 29 
transporters were highly conserved with < 0.1 functional 
variants per individual genome (Fig. 2c). In some transport-
ers, including ABCB1 and ABCG2, rare variations explained 
less than 10% of the genetically encoded functional variabil-
ity. In contrast, rare variants are estimated to account for all 
variants with functional consequences in half (24 out of 48) 
of all human ABC transporter genes. Interestingly, the frac-
tion of genetically encoded functional variability correlated 
significantly with the genetic constraint on the respective 
genes (r = 0.4; p = 0.005), suggesting that high evolution-
ary pressure tends to select against common variations that 
alter ABC transporter function. Overall, each individual was 
found to harbour 9.8 variants in the ABC gene family that 
entail functional alterations, of which 21% were attributed 
to by rare genetic variants (Fig. 2d).

Genetic ABC transporter variability is highly 
population‑specific

The genetic landscape of the ABC transporter superfam-
ily differed considerably between human populations. Of 
the putatively deleterious variants, only 24% were shared 
between two or more ethnicities, whereas 76% were popu-
lation-specific (Fig. 3a). Most population-specific variants 
were found in Europeans (6815), whereas least were found 
in Ashkenazim (136). These differences are likely, at least in 
part, due to the unequal distribution of available sequencing 
data and the differences in genetic heterogeneity between 
the populations (Fig. 3b). The ratios of population-specific 
variants differed between ABC genes from 70% in ABCA7 to 
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92% in ABCE1, whereas only 0.3% of variants were shared 
between all seven populations (Fig. 3c).

The observed population specificity is estimated to trans-
late into inter-ethnic differences in ABC transporter function. 
The largest differences in variants with putative functional 
impacts across populations were identified for ABCA10 
where Africans harbor 2.4 putatively functional variations 
per individual compared to 0.3 in Europeans (Fig. 3d). Simi-
lar differences were observed for the breast cancer risk gene 
ABCC11 (1.8 in East Asians compared to 0.5 in Africans), 
as well as the multi-drug resistance genes ABCB1 (1.4 in 
South Asians compared to 0.2 in Africans) and ABCG2 (1.3 
in East Asians compared to 0.1 in Europeans). In contrast, 

inter-ethnic variability in ABCC1 was less pronounced (0.16 
in Europeans compared to 0.02 in East Asians). Overall, 
across the entire ABC transporter family Africans harbored 
most variations with putative functional impacts (13.9 del-
eterious variants per individual), whereas least variations 
were observed in South Asians (9.3 deleterious variants per 
individual; Fig. 3e).

Structural consequences of genetic ABC variability

Next, we characterized the distribution of genetic vari-
ability across ABC transporter domains by mapping the 
identified genetic variants onto the tertiary structures of 

N
um

be
r o

f V
ar

ia
nt

s

0

5000

10000

15000

20000

25000

30000

35000

40000

19309

17524

Missense
Deleterious

&
Nonsense

Missense
Neutral

No prediction
(634)

A

D
el

et
er

io
us

 v
ar

ia
nt

s
pe

r i
nd

iv
id

ua
l

Common
79%

Rare
21%

0

2

4

6

8

10 Total: 9.8C

A
B
C
E
1

A
B
C
D
1

A
B
C
F2

A
B
C
D
3

A
B
C
F1

A
B
C
D
2

A
B
C
D
4

A
B
C
F3

A
B
C
G
4

A
B
C
G
1

A
B
C
G
5

A
B
C
G
2

A
B
C
G
8

A
B
C
C
9

A
B
C
C
5

A
B
C
C
4

A
B
C
C
11

A
B
C
C
8

A
B
C
C
12

A
B
C
C
1

A
B
C
C
10

A
B
C
C
2

A
B
C
C
6

A
B
C
C
3

A
B
C
C
7

A
B
C
B
7

A
B
C
B
10

TA
P
1

A
B
C
B
9

A
B
C
B
8

A
B
C
B
6

A
B
C
B
5

A
B
C
A
9

A
B
C
A
8

A
B
C
A
2

A
B
C
A
3

A
B
C
A
1

A
B
C
A
12

A
B
C
A
7

A
B
C
A
4

A
B
C
A
13

A
B
C
A
5

A
B
C
A
6

A
B
C
B
11

A
B
C
B
1

A
B
C
B
4

A
B
C
A
10

0

0.5

1

1.5

TA
P
2

0%

20%

40%

60%

80%

100%2

ABCA ABCB ABCC ABCG Others

D
el

et
er

io
us

 v
ar

ia
nt

s
pe

r i
nd

iv
id

ua
l

Entire ABC
gene family

Functional variability
alloted to rare variants

D

Deleterious
Rare

Deleterious
Common

0

A
B
C
A
9

A
B
C
A
8

A
B
C
A
2

A
B
C
A
3

A
B
C
A
1

A
B
C
A
12

A
B
C
A
7

A
B
C
A
4

A
B
C
A
13

A
B
C
A
5

A
B
C
A
6

A
B
C
A
10

A
B
C
C
9

A
B
C
C
5

A
B
C
C
4

A
B
C
C
11

A
B
C
C
8

A
B
C
C
12

A
B
C
C
1

A
B
C
C
10

A
B
C
C
2

A
B
C
C
6

A
B
C
C
3

A
B
C
C
7

A
B
C
B
7

TA
P
1

A
B
C
B
10

TA
P
2

A
B
C
B
9

A
B
C
B
8

A
B
C
B
6

A
B
C
B
5

A
B
C
B
11

A
B
C
B
1

A
B
C
B
4

A
B
C
E
1

A
B
C
D
1

A
B
C
F2

A
B
C
D
3

A
B
C
F1

A
B
C
D
2

A
B
C
D
4

A
B
C
F3

A
B
C
G
4

A
B
C
G
1

A
B
C
G
5

A
B
C
G
2

A
B
C
G
8

ABCA ABCB ABCC ABCG Others

B

N
um

be
r o

f V
ar

ia
nt

s

1000

2000

3000

4000

5000

Deleterious
Neutral

Fig. 2  ABC transporter genes harbor a plethora of genetic variants 
with functional consequences, many of which are rare. a In total, 
37,467 variants affected the amino acid sequence of the correspond-
ing gene product (missense and frameshift variants, variants that 
resulted in gain of a stop or loss of a start codon or that affected 
splice sites) of which 19,309 were predicted to result in functional 
consequences. b The number of deleterious and functionally neutral 
variants differs drastically between ABC transporter genes. Error bars 
indicate standard error of the mean (SEM) across five computational 

algorithms (see methods for details). c The average number of delete-
rious variants per ABC transporter are shown per individual (stacked 
columns; left ordinate). Note that the relative importance of rare 
genetic variations with frequencies < 1% differs substantially between 
genes (indicated by black dots; right ordinate). Calculations con-
sider a diploid human genome. d Overall, each individual was found 
to harbour on average 9.8 genetic variations in the ABC transporter 
superfamily that affect transporter function. Rare variants accounted 
for 21% of this genetically encoded functional variability



637Human Genetics (2020) 139:623–646 

1 3

E

Fr
ac

ti
on

 o
f d

el
et

er
io

us
va

ri
an

ts

0%

20%

40%

60%

80%

100%

A
B
C
E
1

A
B
C
D
1

A
B
C
F2

A
B
C
D
3

A
B
C
F1

A
B
C
D
2

A
B
C
D
4

A
B
C
F3

A
B
C
G
4

A
B
C
G
1

A
B
C
G
5

A
B
C
G
2

A
B
C
G
8

A
B
C
C
9

A
B
C
C
5

A
B
C
C
4

A
B
C
C
11

A
B
C
C
8

A
B
C
C
1

A
B
C
C
2

A
B
C
C
6

A
B
C
C
3

A
B
C
C
7

A
B
C
B
7

TA
P
1

A
B
C
B
10

TA
P
2

A
B
C
B
9

A
B
C
B
8

A
B
C
B
6

A
B
C
B
5

A
B
C
A
9

A
B
C
A
8

A
B
C
A
2

A
B
C
A
3

A
B
C
A
1

A
B
C
A
12

A
B
C
A
7

A
B
C
A
4

A
B
C
A
13

A
B
C
A
5

A
B
C
A
6

A
B
C
B
11

A
B
C
B
1

A
B
C
B
4

A
B
C
A
10

ABCA ABCB ABCC ABCG Others

A
B
C
C
12

A
B
C
C
10

Africans

Ashkenazim

East Aisans

Finns

South Aisans

Latinos

Shared

Europeans

A

Af
ric

an
s

As
hk

en
az

im

Ea
st

 A
is

an
s

Fi
nn

ssnaepor uE

So
ut

h 
Ai

sa
ns

La
tin

os

D
el

et
er

io
us

  A
BC

va
ri

an
ts

 p
er

 in
di

vo
di

al

0 

5 

10 

15 

C

Population specific 
Shared 

76%

24%

0% 

20% 

40% 

60% 

80% 

100% 
B

Europeans
(n=63,369)

Africans
(n=12,020)East Asians

(n=9,435)

6,815

1,6901,479

South Asians
(n=15,391)

2,413

136

Ashkenazim
(n=5,076)

Finns
(n=12,897)

368

Latinos
(n=17,210)

1,781

Fr
ac

ti
on

 o
f d

el
et

er
io

us
 v

ar
ia

nt
s

A
B
C
A
6

A
B
C
A
9

A
B
C
A
10

A
B
C
A
13

A
B
C
A
4

A
B
C
A
8

A
B
C
A
7

A
B
C
A
12

A
B
C
A
3

A
B
C
A
1

A
B
C
A
5

A
B
C
A
2

0

1

2

3

A
B
C
G
2

A
B
C
G
5

A
B
C
G
8

A
B
C
G
1

A
B
C
G
4

A
B
C
F3

A
B
C
D
4

A
B
C
F2

A
B
C
D
1

A
B
C
D
2

A
B
C
F1

A
B
C
D
3

A
B
C
E
1

A
B
C
B
5

A
B
C
B
1

TA
P
1

A
B
C
B
4

A
B
C
B
6

A
B
C
B
8

A
B
C
B
11

TA
P
2

A
B
C
B
7

A
B
C
B
9

A
B
C
B
10

A
B
C
C
11

A
B
C
C
12

A
B
C
C
4

A
B
C
C
7

A
B
C
C
1

A
B
C
C
6

A
B
C
C
3

A
B
C
C
2

A
B
C
C
10

A
B
C
C
8

A
B
C
C
5

A
B
C
C
9

ABCA ABCB ABCC ABCG Others

D
el

et
er

io
us

 v
ar

ia
nt

s 
pe

r i
nd

iv
id

ua
l

Latinos

Europeans South Asians
Ashkenazim

East Asians
Africans

D

Fig. 3  The genetically encoded functional variability of ABC trans-
porters is highly population-specific. a The majority of genetic vari-
ations (76%) with putative functional impacts on ABC transporter 
function are population-specific. b Most of these population-specific 
variations were identified in Europeans. Numbers in bold indicate the 
total number of identified population-specific variations, while num-
bers in brackets denote the number of sequenced individuals for the 
respective population. c Stacked column plot showing the fraction of 
putatively functional variants specific to Europeans (red), Africans 
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functional ABC transporter variability when all putatively deleterious 
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the respective. We used experimentally determined crys-
tal structures for all transporters of the ABCA, ABCB, and 
ABCC families for which such information was available 
(n = 18), while the remaining 16 structures were predicted 
using homology modeling. Typical ABC transporters con-
sist of two α-helix transmembrane domains (TMDs) and 
two cytoplasmic nucleotide-binding domains (NBDs) that 
catalyse ATP hydrolysis (Fig. 4a). In addition to this back-
bone, some transporters have additional domains. ABCA 

transporters have two large extracellular domains (ECDs), 
while transporters of the ABCB and ABCC subfamilies con-
tain an additional N-terminal TMD0 domain with unclear 
functional relevance. Furthermore, seven ABC genes of the 
ABCB subfamily encode only half-transporters (one NBD 
and one TMD domain) that require homo- or heterodimeri-
zation for transporter activity.

When stratifying by domains, we found that genetic vari-
ability differed substantially between transporters (Fig. 4b). 
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The lowest numbers of variants per residue were found in the 
TMD0 domains of ABCB transporters with 0.21 variants/
amino acid. In contrast, the NBD2 domains of ABCB and 
ABCC transporters are more variable (0.35 variants/amino 
acid). For individual genes, the TMD1 (0.05 variants/amino 
acid) and NBD1 domains (0.07 variants/amino acid) of 
ABCB7 were most conserved, while the TMD1 and TMD2 
domains of ABCC7 (0.65 variants/amino acid) and ABCA7 
(0.56 variants/amino acid), respectively, were > 10-fold more 
variable.

Finally, we aimed to corroborate our computational 
variant predictions using structural mapping approaches 
by focussing on the pharmacogenetically most important 
ABC transporter, MDR1 (also known as P-gp; encoded by 
ABCB1), for which high-resolution crystal structures are 
available (Kim and Chen 2018) (Fig. 4c). The clinically 
important missense variation A893S/T is located in the 
second intracellular loop of TMD2, which interacts with 
NBD1, and is necessary for structural stability. The S400N 
polymorphism is localized directly adjacent to the criti-
cal tyrosine at position 401, which coordinates the ATP 
in its binding pocket in NBD1 by direct van-der-Waals 
interactions with the adenine of the bound ATP molecule. 
Q1107P resides within the NBD2 Q-loop, which is neces-
sary for ATPase activity and stabilizes the NBD dimer. No 
common variants were identified in any transmembrane 
helix or extracellular domain. However, we found a vari-
ety of rare variations in structurally important residues, 
including variants at the catalytic glutamate residue 556, 

which is required for ATP hydrolysis (Sauna et al. 2002), 
as well as various amino acid exchanges in the functionally 
critical NBD1 and NBD2 Q-loops (Zolnerciks et al. 2014).

Ethnogeographic distribution of pathogenic 
ABC alleles can inform about Mendelian disease 
epidemiology

We previously showed that the frequency of loss-of-func-
tion variants in SLC transporter genes implicated in reces-
sive Mendelian disorders are suitable proxies to estimate 
population-specific disease risk (Schaller and Lauschke 
2019). Here, we analyzed whether similar associations 
could be identified for ABC transporter genes. To this 
end, we comparatively analyzed the frequencies of loss-
of-function variants, defined as frameshifts, start-lost or 
stop-gain variations or variants that affected critical splice 
site residues, in ABC transporter genes with or without 
implication in hereditary disease (Fig. 5).

Overall, 17 of 48 ABC genes are linked to autosomal 
recessive Mendelian disorders (Supplementary Table 3). 
Reduced CFTR (ABCC7) function is associated with cystic 
fibrosis (CF; OMIM 219700). We calculated homozygo-
sity frequencies for ABCC7 loss-of-function variants of 
1 in 1850 and 1 in 4300 in Ashkenazim and European 
individuals, whereas frequencies in individuals of Africans 
and Asian ancestry were 1 in 24,000 and < 1 in 40,000, 
respectively. Impaired function variants in ABCC6 are 
associated with pseudoxanthoma elasticum (PXE; OMIM 
264800). In our data set, we find the highest aggregated 
ABCC6 loss-of-function frequency in individuals of East 
Asian ancestry (0.5%), resulting in estimates of affected 
individuals of 1 in 42,530. Similarly, high carrier rates 
were identified in Europeans (0.4%; 1 in 52,000) and Finns 
(0.4%; 1 in 82,000), whereas risk allele prevalence was 
significantly lower in all other populations. Congenital 
generalized hypertrichosis (OMIM 135400) is a rare dis-
ease with varying presentations and comorbidities that is 
speculated to be, at least in part, caused by loss of ABCA5 
function (DeStefano et al. 2014). While global prevalence 
rates have, to our knowledge, not been reported, the dis-
ease was originally described in individuals of Mexican 
ancestry (Pavone et al. 2015), aligning with our finding 
of highest ABCA5 loss-of-function frequencies in Latino 
populations (0.7%; 1 in 20,500).

In conclusion, these data provide an overview of the 
frequency of ABC loss-of-function variants in the general 
population that can be used to estimate population-specific 
Mendelian disease risk, thus providing valuable informa-
tion for epidemiological rare disease research and clinical 
geneticists.

Fig. 4  Structural analysis of putatively deleterious genetic variants 
of ABC transporter superfamily. a Illustration of the tertiary struc-
tures of ABCA, ABCB, and ABCC transporters. As representa-
tive examples, the structures of ABCA1 (PDB identifier 5XJY), 
ABCB10 (ABCB half transporter; PDB identifier 4AYT), ABCB11 
(BSEP; ABCB full transporter), and ABCC7 (CFTR; PDB identi-
fier 5UAK) are shown. Transmembrane domains (TMDs) are shown 
in red, nucleotide-binding domains (NBDs) are depicted in blue 
and turquoise, Walker motifs are colored in salmon and the N-ter-
minal Lasso motif is depicted in yellow. b Overview of the geneti-
cally encoded structural variability stratified by ABC subfamily and 
domain. c Schematic topology models as well as 3D protein struc-
tures of MDR1 encoded by ABCB1. Different domains in the topol-
ogy models are shaded based on the identified number of deleterious 
variants per amino acid in the respective domain. MDR1 constitutes 
two pseudo-symmetrical TMDs and NBDs encoded in a single poly-
peptide, colored in orange and blue, respectively. Detailed 3D struc-
ture of key protein domains with functionally relevant variants (sticks 
in cyan or magenta) and substrates (sticks in yellow) are shown as 
insets under the topology model. In the 3D model, all putatively del-
eterious variants with MAF > 0.1% are shown as light red spheres, 
whereas the corresponding part of the secondary structure motif is 
highlighted in salmon in case of variants with MAF < 0.1%. Note 
that N21D localizes to the lasso motif for which no crystallographic 
data were available and the variant is thus not shown. ECD extracel-
lular domain, TMD transmembrane domain, NBD nucleotide-binding 
domain

◂
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Discussion

The ABC superfamily of transporters is of importance for 
drug response and toxicity, and genetic rare disease research. 
ABC transporters translocate a wide spectrum of endoge-
nous substrates and medications. Consequently, identifica-
tion of ABC transporters that interact with a drug candidate 
constitutes a critical step in drug discovery and development 
(Benadiba and Maor 2016; Yee et al. 2018). Previous clini-
cal studies implicated genetic germline polymorphisms in 
at least 12 ABC genes with risk of adverse drug reactions 
or altered chemotherapy efficacy (Tables 1, 2, 3 and Sup-
plementary Table 2). In addition, genetic variations in 21 
ABC genes are causative for Mendelian disorders. Therefore, 
understanding the genetic landscape of ABC transporters 
constitutes a potentially important area for the personaliza-
tion of oncological therapy and risk allele epidemiological 
study of relevant Mendelian diseases.

In this study, we detected a total of 62,793 exonic vari-
ants, the vast majority (98.5%) of which are rare and func-
tionally poorly understood. In addition to these single-nucle-
otide variants and indels, we identified 1003 ABC alleles in 
which at least one exon was deleted or duplicated. Notably, 
somatic ABC gene CNVs have been implicated in acquired 
drug resistance. Studies of drug-resistant cell lines derived 
from human neoplasms identified amplifications of at least 
13 ABC transporter genes, including ABCB1, ABCC1 and 
ABCC4 (Yasui et al. 2004). Conversely, deletions of the 
multi-drug resistance transporters predicted response to 

neoadjuvant therapy in breast cancer patients (Litviakov 
et al. 2016). Notably, while drug resistance is primarily char-
acterized by somatic amplification events, the majority of 
CNVs in our data set were deletions and it will be interesting 
to observe whether patients with germline deletions of phar-
macologically important drug transporters are predisposed 
to favorable therapeutic responses using drugs, which are 
substrates of the deleted transporter.

There is an increasing body of evidence describing differ-
ences in drug response, ADRs and clinical outcomes from 
chemotherapy based on genetic differences between ethnic 
groups (Phan et al. 2011). For instance, Caucasian colon 
cancer patients were at significantly higher risk to develop 
diarrhea, nausea, vomiting, and stomatitis during adjuvant 
5-fluorouracil-based chemotherapy compared to African 
Americans (McCollum et al. 2002). Moreover, the risk of 
dose-limiting ADRs due to taxanes or platinum therapy 
was significantly lower in Caucasian lung cancer patients 
compared to patients of Asian descent, whereas response 
rates consistently showed inverse correlations (Gandara et al. 
2009; Lara et al. 2009, 2010). This variability is likely to be 
at least in part caused by differences in the allelic distribu-
tion for genes involved in the disposition of the respective 
chemotherapeutics.

Mounting evidence suggests that the targeted interroga-
tion of candidate pharmacogenetic polymorphisms is not 
sufficient to accurately predict the drug response of a given 
patient (Lauschke and Ingelman-Sundberg 2016, 2018). 
Importantly, our previous data indicate that variant burden 
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rather than allele status of specific ABC variants is a predic-
tor of clinical outcomes, thus corroborating that NGS-based 
approaches can add value to personalized cancer prognostics 
(Xiao et al. 2020). One plausible interpretation of this obser-
vation is that multiple ABC variants with individually small-
effect sizes act modulate bioavailability of orally adminis-
tered substrates and/or intra-tumoral drug concentrations in 
concert, thereby impacting treatment efficacy. These findings 
have important implications for cancer pharmacogenomics 
and incentivize studies into the underlying mechanisms.

Interestingly, mapping of clinically impactful vari-
ants onto the 3D structure of MDR1 revealed a preferen-
tial localization in NBDs. Generally, the NBDs in MDR1 
are highly conserved compared to the substrate-binding 
domains, indicating that NBDs might be more sensitive to 
functional alterations, whereas impacts of variations in the 
substrate-binding domain or translocation channel seem to 
be less pronounced (Wolf et al. 2011). The two synonymous 
variants indicated here (G412G and I1145I), although not 
resulting in amino acid exchange, have been suggested to 
affect transporter function by disrupting the cotranslational 
folding process via introduction of rare codons (Kimchi-
Sarfaty et al. 2007). The triallelic variation at position A893, 
which localizes to a less conserved transmembrane helix, 
has not been reported to affect transporter function in vitro 
(Kimchi-Sarfaty et al. 2002). Thus, functional effects associ-
ated with this variant might be due to the strong linkage with 
G412G and I1145I (Fung and Gottesman 2009).

Overall, we found that the ABC transporter superfamily 
was highly population-specific and inter-ethnic variability is 
commensurate with other genetically diverse pharmacogene 
families, including CYPs (Zhou et al. 2017), SLCOs (Zhang 
and Lauschke 2019) and UGT s (Kaniwa et al. 2005). Over-
all, 74.9% of all variants that were predicted to affect the 
functionality of the respective ABC transporter were spe-
cific to a single population and the overall load of functional 
genetic variability differed considerable between the ana-
lyzed populations. Inter-ethnic variability was furthermore 
reflected in differences in population-specific prevalence of 
ABC-associated Mendelian diseases with autosomal reces-
sive inheritance. For instance, frequencies of CF are around 
1 in 2500–3500 newborns of Caucasian ancestry, whereas 
only 1 in 17,000 and 1 in 31,000 children of African and 
Asian ancestry are affected, which closely aligns with pre-
dictions based on loss-of-function carrier rates (1 in 1850 
in Europeans, 1 in 24,000 in Africans, and < 1 in 40,000 in 
East Asians). Similarly, PXE has been reported to have a 
prevalence around 1 in 50,000 Dutch individuals (Kranen-
burg et al. 2019), compared to our estimates of 1 in 52,000 
in Europeans based on ABCC6 loss-of-function allele fre-
quencies. Interestingly, ABCC6 was also the ABC gene that 
was found to harbour most CNVs, which is aligned with 
the previous studies describing genomic deletions in this 

locus in PXE patients (Costrop et al. 2010; Katona et al. 
2005). Combined, these data suggest that population-scale 
sequencing data provide an important tool to predict Men-
delian ABC disease risk. Notably, however, this approach is 
only suitable for diseases in which heterozygous loss of gene 
function is phenotypically silent, thus excluding autosomal 
dominant or X-linked modes of inheritance. Taken together, 
our analyses revealed striking ethnogeographic differences 
in ABC variability profiles that might explain at least part 
of the observed variability in chemotherapy response and 
incidence of Mendelian disorders between populations. Fur-
thermore, the population-scale genomic data set presented 
here promises to provide a powerful resource for the evalu-
ation of genetic ABC disease epidemiology.

In summary, we comprehensively profiled the genetic 
variability of the human ABC transporter superfamily and 
revealed a surprising extent of rare and population-specific 
variations. Computational evaluations of the functional 
impacts of these variants indicate that these variants con-
tribute considerably to the variability in ABC transporter 
function with potentially important consequences for chemo-
therapeutic treatment regimens. Thus, these data incentivize 
the consideration of sequencing-based genotypes for patient 
stratification, particularly in the current era of clinical trial 
globalization. Furthermore, we expect that a deeper under-
standing of the functional consequences of ABC transporter 
variability might be useful to improve public health strate-
gies and flag patients at risk of not responding appropriately 
to treatment with ABC substrates.
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