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Abstract: A systematic comparison is presented for the effects of seven different normalization
schemes in quantitative urinary metabolomics. Morning spot urine samples were analyzed with
nuclear magnetic resonance (NMR) spectroscopy from a population-based group of 994 individuals.
Forty-four metabolites were quantified and the metabolite–metabolite associations and the associa-
tions of metabolite concentrations with two representative clinical measures, body mass index and
mean arterial pressure, were analyzed. Distinct differences were observed when comparing the effects
of normalization for the intra-urine metabolite associations with those for the clinical associations.
The metabolite–metabolite associations show quite complex patterns of similarities and dissimilarities
between the different normalization methods, while the epidemiological association patterns are
consistent, leading to the same overall biological interpretations. The results indicate that, in gen-
eral, the normalization method appears to have only minor influences on standard epidemiological
regression analyses with clinical/physiological measures. Multimetabolite normalization schemes
showed consistent results with the customary creatinine reference. Nevertheless, interpretations of
intra-urine metabolite associations and nuanced understanding of the epidemiological associations
call for comparisons with different normalizations and accounting for the physiology, metabolism
and kidney function related to the normalization schemes.

Keywords: biomarkers; disease risk; epidemiology; kidney function; metabolomics; NMR;
normalization; urine

1. Introduction

Urine is a waste biofluid resulting from the continuous filtration of blood plasma by
the kidneys [1–3]. Urinary metabolites reflect a plethora of endogenous and exogenous
pathways in relation to (patho)physiology, lifestyle, gut microbiome, and short-term food
consumption [2,4–7]. Urine has some advantages in epidemiological studies, for example, it
is abundant and non-invasively obtainable with common clinical and laboratory procedures.
There is an increased interest in urinary metabolomics; quantitative metabolomics platforms
already exist both in nuclear magnetic resonance (NMR) spectroscopy [3,7,8] and in mass
spectrometry [9,10], but quantitative applications in epidemiology at appropriate scale are
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still scarce [3,8,11,12]. The most important issue, however, is that urinary metabolites may
provide metabolic information related to kidney function that cannot be obtained by other
means [7].

Urine functions as the body’s metabolic sewage, and thus its chemical properties are
not under control, e.g., in contradiction to blood plasma, which is tightly physiologically
regulated. This leads to the key problem in urinary metabolite analyses; the volume
and metabolite concentrations are hugely variable even within the same individual [3].
Therefore, a normalization process is necessary in urinary metabolomics to account for this
variation. The use of 24-h urine collections would greatly, and morning spot urine samples
partly, reduce the extent of the problem [13], but these types of urinary collections are often
not feasible.

The gold standard normalization method is the use of urinary creatinine concentra-
tions as the reference [3,8,9,14]. This relies on the facts that, at a wide range of glomerular
filtration rates (GFR), the individual plasma creatinine concentration is almost constant; cre-
atinine is freely filtered and not reabsorbed in the kidneys. GFR reflects the flow of filtered
fluid (from blood) through the kidney before water recovery. Hence GFR is not confounded
by the incidental variation in urine volume. Referencing to urinary creatinine calibrates the
metabolite concentrations to GFR, thus excluding the confounding from urinary volume
regulation [1]. Nevertheless, circulating creatinine concentrations are affected by muscle
mass and a small amount is secreted by the proximal tubule, resulting in potential case-
dependent biases [1,15]. Therefore, various other normalization approaches have been
proposed, such as the constant sum (CS) normalization [12] and the probabilistic quotient
normalization (PQN) [16]. However, as far as we are aware, no systematic comparison of
various normalization methods in quantitative urinary metabolomics is available in an
epidemiological setting. Thus, we set up this study with the key goals (1) to understand
how various normalization protocols for quantitative urinary metabolomics data compare
to the customary normalization to urinary creatinine and (2) to find a rationale for an
appropriate normalization strategy for urinary metabolite concentrations to be used in
epidemiological analyses.

2. Materials and Methods
2.1. Study Population and Ethics Approval

The Northern Finland Birth Cohort of 1966 (NFBC66) included 12058 children born
alive into the cohort, comprising 96% of all births during 1966 in the region [17]. Data
collection in 2012 included clinical examination and urine sampling at the age of 46 years
for 4549 individuals. The research protocols were approved by the Ethics Committee of the
Faculty of Medicine, University of Oulu and the Ethics Committee of Northern Ostroboth-
nia Hospital District, Finland. All clinical investigations were conducted according to the
principles expressed in the Declaration of Helsinki. Informed written consent was obtained
from all participants. More information on the cohort and the 2012 data collection can be
found at https://www.oulu.fi/nfbc/ accessed on 30 August 2021.

2.2. Urine Sample Collection and Preparation

Urine was collected after an overnight fast using standard clinical protocols. In these
morning spot urine samples the biological variability is relatively reduced because of the
similar time of accumulation and similar fasting physiological conditions in all the partici-
pants [13]. These samples thus allow a good basis to compare the various normalization
methods also to the absolute (non-normalized) urinary metabolite concentrations.

Urine samples for the NMR spectroscopy were prepared as previously described [3].
Briefly, urine samples were stored at −80 ◦C (Thermo Fisher Scientific, Vantaa, Finland) prior
to analysis. Before sample preparation, urine samples were thawed overnight in a refrigerator
(+4 ◦C). The thawed samples were gently mixed and centrifuged (3500× g, 5 min, +4 ◦C).
A liquid handler, JANUS 8-tip Automated Workstation (PerkinElmer, Turku, Finland)
was used to mix 70 µL of phosphate buffer (1.5 M potassium dihydrogen phosphate
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(Merck, Espoo, Finland), 0.2% sodium azide (Sigma-Aldrich, Espoo, Finland), 5.8 mM
3-(trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt (TSP) (Eurisotop, Saint-Aubin, France)
in deuterium oxide (Eurisotop, Saint-Aubin, France), pH 7.0) and 630 µL of urine in a
96 deep well plate. After centrifugation (3500× g, 5 min, +4 ◦C), 520 µL of each sample was
transferred to 5 mm NMR tubes.

2.3. NMR Measurements

The detailed measurement protocol has been previously published [3]. Shortly, the
urine NMR data were measured with Bruker AVANCE III HD (Bruker BioSpin GmbH,
Karlsruhe, Germany) 600 MHz spectrometer equipped with a Bruker Prodigy TCI cry-
oprobe and an automatic cooled SampleJet sample changer. Standard water suppressed
spectra (noesygppr1d) were measured using the following parameters: number of scans 16,
spectral width 21.0297 ppm, size of fid 81,920, acquisition time 3.2440 s, relaxation delay
2.5 s, and receiver gain 57. The spectra were measured at 295 K. The spectra were processed
and phase-corrected in an automated fashion. The free induction decays were zero-filled
to 128 k data points and multiplied with an exponential window function with a 0.3 Hz
line broadening.

2.4. Metabolite Quantification of the Urine NMR Spectra

The quantification of metabolites from the 1H NMR spectra rely on sophisticated
lineshape fitting analysis tools developed for high-precision quantitative NMR spec-
troscopy [18]. In the quantification process, the structures of the multiplets are given
in the form of linear equations and prior knowledge for the signal structures or shapes is
utilized, which is called constrained total-line-shape (CTLS) fitting [19]. TSP was used as an
internal concentration reference and a total of 44 metabolites were quantified as discussed
in detail previously [3].

2.5. Urinary Metabolomics and Clinical Data

The quantified 44 metabolites are the same as in our previous work [3], but here
we have clarified their metabolic classification. Metabolites mainly related to amino
acid metabolism were classified as such. Those related to glycolysis and citrate cy-
cle, as well as pentose and glucuronate interconversions, were combined under car-
bohydrate metabolism. Purine and pyrimidine metabolism were grouped under nu-
cleotide metabolism. Based on recent findings, we also incorporated 2-hydroxyisobutyrate
to histone modifications [20] indoxyl sulfate [21] to microbial metabolism and further
2-furoylglycine [22], 3-methylhistidine [23], arabinose [24], sucrose [25] and xylose [24]
were classified as dietary metabolites. This led to a new classification, with improved
chemical taxonomy and physiological characteristics of the urinary metabolites, with nine
metabolic classes: (1) amino acids, (2) related to the metabolism of amino acids, (3) carbohy-
drate metabolism, (4) nucleotide metabolism, (5) nicotinate and nicotinamide metabolism,
(6) microbial metabolism, (7) modification of histones, (8) dietary metabolites, and (9) mis-
cellaneous for those metabolites that did not clearly fall into any of the other categories.
It should be noted that these classifications are only suggestive and done mainly from
the organizational standpoint since most urinary metabolites are involved in various key
metabolic pathways.

In this study, body mass index (BMI) and mean arterial pressure (MAP = (systolic
blood pressure + 2 × diastolic blood pressure)/3) were chosen as exemplars of physiological
measures to compare the effects of different normalization methods on the associations of
the urinary metabolites in typical epidemiological regression analyses.

Quantitative metabolomics data for the 44 urinary metabolites together with the
clinical data (sex, BMI, and MAP) were available for 994 individuals.
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2.6. Overview of the Applied Normalization Methods

In the morning spot urine samples, the absolute urinary metabolite concentrations are
also relevant to analyze [13] and are systematically compared here to those of the various
normalized concentrations in the correlation and regression analyses.

We applied the following referencing methods: normalization to an internal standard
(IS), a constant sum (CS) normalization [26], the probabilistic quotient normalization
(PQN) [16], and the DESeq2 method [27]. The fundamental characteristics of these methods
are summarized below. Their biological rationales, together with their pros and cons with
respect to epidemiological studies, are outlined in Table 1.

IS-CREA, IS-GLUC, IS-UREA and IS-PSEURID: The absolute concentration of each
urinary metabolite is divided by the concentration of the internal reference metabolite. A
widespread convention is to use the creatinine concentration as the internal standard (IS-
CREA) [1]. In addition to creatinine, we also tested normalization to glucose (IS-GLUC) [7],
urea (IS-UREA) [28], and pseudouridine (IS-PSEURID) [29].

CS: The concentration of each metabolite is divided by the sum concentration of all
the quantified metabolites. Here all the 44 quantified metabolites were used.

PQN: This method starts with the assumption that biologically relevant concentration
changes influence only a limited number of metabolites, while sample dilution (water
volume) affects all metabolite concentrations [16]. First, median relative metabolite con-
centrations are calculated across all samples as the reference values. Second, the quotients
between each metabolite and the corresponding reference value are calculated for each
sample. Third, the median quotients across all metabolites are calculated for each sample.
In the last step, the median quotient is used as the scaling factor in the same manner as the
sum is used in CS.

DESeq2: The DESeq2 method is conceptually similar to PQN, but tailored for RNA-
seq analyses [27]. First, the reference concentration of each metabolite is calculated as the
geometric mean of the absolute metabolite concentrations across all samples (instead of the
median in PQN). The subsequent steps in DESeq2 are the same as in PQN.

2.7. Statistical Analyses

Spearman’s rank correlations adjusted for sex were calculated between all the quanti-
fied urinary metabolites. The results are shown in color-coded heat maps. The heat map
based on normalization to urinary creatinine was organized via two-dimensional hierar-
chical clustering. The other heat maps are presented in the same order of metabolites and
clusters for easy visual comparison. Creatinine was added to the last row of the heat maps.
The reference metabolite correlations were left blank in their corresponding heat maps. The
same rank correlation analyses without sex adjustment were repeated for absolute and all
normalized concentrations.

To manage multiple testing over the large set of metabolic measures, we first conducted
principal component analysis to determine the effective number of independent variables.
Thirty-nine principal components were enough to explain >99% of the variation in the
concentrations of the quantified 44 urinary metabolites. Therefore, we set the 5% Bonferroni-
adjusted type 1 error threshold at p < 0.05/39 = 0.0013.

The potential effects and differences due to the various normalization methods on
the epidemiological associations of the urinary metabolite concentrations were analyzed
via linear regression models. BMI and MAP were used as exemplars of clinical measures
and the models were run with and without adjusting for sex. Before regression analysis,
extreme metabolite levels were truncated to third quartile + 8 × interquartile range and
then log-transformed. Association magnitudes are reported in standard deviation (SD)
units throughout to ease the comparison across multiple measures. All statistical analyses
were performed using the R software (version 4.1.2).
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Table 1. The characteristics of employed normalization methods.

Method Abbr. Description Pros for Epidemiology Cons for Epidemiology Ref.

Absolute
concentrations ABS

Using the original quantified
concentrations of the urinary

metabolites from the 1H NMR spectra,
i.e., no normalization method applied.

Original data are preserved; the concentration
values are straightforward to interpret.
Useful if urine volume is noteworthy,

e.g., fluid balance.
Good for timed collections (e.g., 24 h urine)
where exact amount excreted per time unit

can be calculated.
Morning spot urine accurate enough to detect
large effect sizes in epidemiological studies.

Urinary volume, and thus absolute
metabolite concentrations, varies greatly

day-to-day and person-to-person. Random
spot urine samples are thus likely to be too
confounded to use without normalization.

[13]

Normalization to
an internal

metabolite standard

IS-CREA

The concentration of each metabolite is
divided by the concentration of an
internal standard. Here, creatinine,
glucose, urea, and pseudouridine

were used.

Creatinine comes from non-enzymatic
breakdown of creatine phosphate in muscles,
it is typically produced at a constant rate, and

it is stable and inert in plasma.
Creatinine is freely filtered by the kidneys and

not reabsorbed.
The most applied reference, allows

straightforward comparisons between studies
and meta-analyses.

The stable excretion of creatinine may not
hold in the presence of external stimuli or

pathophysiological conditions.
Renal filtration and excretion of creatinine

depend on circulating creatinine
concentrations that are depended on

muscle mass—thus, the urinary creatinine
concentrations can be biased, e.g., for
elderly and between men and women.

A small amount of creatinine is secreted by
the proximal tubule, resulting in a
potentially study-dependent bias.

[1,15,30–32]

IS-GLUC

Glucose is freely filtered by the kidneys and
mostly reabsorbed. The mechanisms of

glucose reabsoption are well-understood.
Under normoglycemia, the plasma glucose
level can be considered stable, and there is
always a detectable amount of glucose in

normal urine.

At high plasma glucose concentrations
(>10 mmol/L), the tubular reabsorption

saturates, triggering a pronounced part of
filtered glucose to be excreted into

the urine.
Also, in normoglycemia the urinary

glucose is dependent on the circulating
glucose, which is widely variable at the

population level and also affected by the
fasting/non-fasting status.

Urinary glucose concentration is
dependent on the glomerular filtration
rate; this can cause bias in cohorts with

large variation in kidney function.

[7]
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Table 1. Cont.

Method Abbr. Description Pros for Epidemiology Cons for Epidemiology Ref.

Normalization to
an internal

metabolite standard

IS-UREA

The concentration of each metabolite is
divided by the concentration of an
internal standard. Here, creatinine,
glucose, urea, and pseudouridine

were used.

Serum urea is applied as a marker of renal
function for routine clinical analysis.

Urea is freely filtered by the kidneys and
about 50% of it is reabsorbed.

Plasma urea concentrations vary widely
depending on protein intake, changes in

tissue catabolism, and in various
pathological conditions.

Urea is a waste product, and its excretion
is under partial hormonal regulation

resulting in variably large amounts to be
excreted into the urine.

[1,28]

IS-PSEURID

Pseudouridine is a low-molecular-mass,
water-soluble compound with no significant

protein binding in serum.
Pseudouridine is freely filtered by the kidneys

and not reabsorbed. It is not reutilized or
metabolized in the body. Pseudouridine

concentrations reflect the whole-body
turnover of RNA and its excretion appears

constant. Pseudouridine concentrations
appear independent of muscle mass.

Pseudouridine concentrations appear
related to kidney function with potential

associated bias.
It is the most common RNA modification

with links to and potential variation in
multiple metabolic diseases.

[29,33,34]

Constant sum CS
The concentration of each metabolite is

divided by the total sum of all
metabolite concentrations.

A generic algorithm that can be applied to any
metabolomics platform without

requirements for a specific set of metabolites.
Water dilution ideally affects all metabolites

equally, thus a linear sum over all metabolites
should capture volume factor accurately

despite (random) variation in any
specific metabolite.

Abundance of urinary metabolites
resembles the Pareto distribution; a few
abundant molecules (e.g., urea) typically

dominate the concentration sum. The
distribution of a metabolite is usually

fat-tailed, thus extreme values may reduce
normalization accuracy. Both issues mean
that the benefit of averaging across many

metabolites may be lost in real data.

[26,35]
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Table 1. Cont.

Method Abbr. Description Pros for Epidemiology Cons for Epidemiology Ref.

Probabilistic
quotient

normalization
PQN

A robust version of the CS principle
that addresses the Pareto issue of CS

(by standardized abundances) and the
outlier issue (by the median estimator).

A generic algorithm that can be applied to any
metabolomics platform.

While water dilution ideally affects all
metabolites equally, it is plausible that only a
small subset will be affected by the biological

phenomenon under study. The median
estimator is not much affected by a few

biologically-driven or random metabolites,
thus PQN can capture the volume factor

accurately in most situations.

All normalized concentrations are
interdependent (i.e., if some metabolites

go up, then others must go down to
maintain balance). This means that

undesired correlated
variation/confounding across many
metabolites may cause normalization

artefacts. Since abundances are
standardized, including low-abundance
metabolites near the detection limit may

amplify the impact of measurement noise.

[16,26]

A method for
differential gene

expression analysis
based on the

negative binomial
distribution

DESeq2

The DESeq2 is a variant of PQN
developed for RNA-seq data. Uses

geometric mean instead of the median
to standardize abundances.

Same benefits as PQN. Geometric mean is
better suited for concentrations with limited

numerical precision.
Same downsides as in PQN. [27]
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3. Results

A key objective for this work was to understand the effects of various normalization
approaches on quantitative urinary metabolomics data. We applied six different normaliza-
tion methods in comparison to the absolute metabolite concentrations and the customary
normalization of the absolute concentrations via urinary creatinine concentration. We
investigated and compared the effects of all these approaches in epidemiological analyses.
The underlying characteristics of these employed normalization approaches are summa-
rized in Table 1. Figures 1–4 illustrate the metabolite–metabolite associations in all these
normalization scenarios. Figures 5 and 6 depict how these different normalization scenarios
affect the results of epidemiological regression analyses between two types of different
physiological measures, namely BMI and MAP, and the urinary metabolites. While these
extensive analyses show close similarities between some normalization methods, there are
also substantial differences. The results are described in a fair amount of detail below for
the urinary metabolite–metabolite associations and the related metabolic cluster analysis
(3.1.) and for the epidemiological regression modeling (3.2.). These are then followed by
discussion on how these intricate findings should be taken into consideration in the future
applications of quantitative urinary metabolomics in epidemiology.

3.1. Intra-Urinary Metabolite Associations and Metabolic Cluster Analysis

Figure 1 shows the urinary metabolite–metabolite associations normalized via IS-
CREA (top-right), the most common choice to normalize urinary metabolite concentrations,
and without any normalization, i.e., using directly the quantified absolute metabolite
concentrations (down-left). We applied two-dimensional hierarchical clustering on the
associations based on IS-CREA to get a clearer overall view on the metabolite associations.
This clustering, i.e., the order of metabolites, was then used in all the visualizations for the
other normalization methods to facilitate straightforward visual comparisons.

The general association characteristics are summarised via eight metabolic clusters
depicted and numbered on the left in Figure 1. The most pronounced Cluster 6 re-
flects strong associations between all the quantified amino acids, 3-hydroxyisobutyrate,
3-hydroxyisovalerate, and lactate with abundant positive links to Clusters 1–5 and some
sparse negative ones to Clusters 7 and 8. The second biggest Cluster 1 connects together mul-
tiple diet-related metabolites (arabinose, xylose, sucrose, and 2-furoylglycine), carbohydrate
metabolism (cis-aconitate and glucuronate), microbial metabolism (4-hydroxyphenylacetate
and 4-hydroxyhippurate), trans-aconitate and Sumiki’s acid with positive links to all other
clusters but Cluster 8 with which it has abundant negative associations. Microbial metabo-
lites 3-hydroxyhippurate and 3-(3-hydroxyphenyl)-3-hydroxypropanoate (HPHPA) form
Cluster 7 together with hippurate and trigonelline. Cluster 2 combines carbohydrate
metabolism (glucose and citrate) and microbial metabolism (acetate and formate). Cluster
4 combines creatine and urea which are related to amino acids metabolism. Cluster 8 in-
volves 2-PY and N1-methylnicotinamide (nicotinate and nicotinamide metabolism), uracil
and hypoxanthine (nucleotide metabolism), and 3-methylhistidine (a diet-related metabolite).
The other Clusters 3 and 5 are small and consist of quite heterogeneous mixture of metabolites,
though all the metabolites in Cluster 5 can be identified as microbial metabolites.

The broad comparison of all the eight different metabolite association heat maps in
Figures 1–4 reveals both marked similarities and dissimilarities. The heat maps based on
IS-CREA (Figure 1 top-right) and IS-PSEURID (Figure 3 down-left) normalization have a
globally similar association structure (please note to mirror through the diagonal when
comparing). The same holds for the absolute concentrations (Figure 1 down-left) and IS-
UREA (Figure 2 top-right) as well as for the normalizations via PQN and DESeq2 (Figure 4
down-left and top-right, respectively). IS-GLUC (Figure 2 down-left) and the constant
sum normalization (Figure 3 top-right) do not very well match with any other overall
association pattern.
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Figure 1. The urinary metabolite–metabolite associations as indicated by Spearman’s rank correla-
tions adjusted for sex. The down-left triangle shows results for the absolute urinary metabolite con-
centrations (i.e., no normalization applied) and the top-right triangle for the creatinine normaliza-
tion (IS-CREA). Two-dimensional hierarchical clustering was applied to organize the IS-CREA heat 
map to make detailed comparisons of the metabolite–metabolite associations feasible between the 
different normalization schemes. All heat maps are presented in the same order of metabolites with 
creatinine added to the last row. The reference metabolite correlations are left blank in their corre-
sponding heat maps. As a by-product of the hierarchical clustering, eight urinary metabolite clusters 
were identified as numbered on the left and detailed in the Results section. Abbreviations: TMAO, 
trimethylamine N-oxide; HPHPA, 3-(3-hydroxyphenyl)-3-hydroxypropanoate; 2-PY, N1-Methyl-2-
pyridone-5-carboxamide. 

Figure 1. The urinary metabolite–metabolite associations as indicated by Spearman’s rank corre-
lations adjusted for sex. The down-left triangle shows results for the absolute urinary metabolite
concentrations (i.e., no normalization applied) and the top-right triangle for the creatinine normal-
ization (IS-CREA). Two-dimensional hierarchical clustering was applied to organize the IS-CREA
heat map to make detailed comparisons of the metabolite–metabolite associations feasible between
the different normalization schemes. All heat maps are presented in the same order of metabolites
with creatinine added to the last row. The reference metabolite correlations are left blank in their
corresponding heat maps. As a by-product of the hierarchical clustering, eight urinary metabolite
clusters were identified as numbered on the left and detailed in the Results section. Abbrevia-
tions: TMAO, trimethylamine N-oxide; HPHPA, 3-(3-hydroxyphenyl)-3-hydroxypropanoate; 2-PY,
N1-Methyl-2-pyridone-5-carboxamide.
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Figure 2. The urinary metabolite–metabolite associations as indicated by Spearman’s rank correla-
tions adjusted for sex. The down-left triangle shows results for the glucose normalization (IS-GLUC) 
and the top-right triangle for the urea normalization (IS-UREA). The order of metabolites (with cre-
atinine added to the last row) is the same as in Figure 1 and based on the two-dimensional hierar-
chical clustering of the IS-CREA heat map. The reference metabolite correlations are left blank in 
their corresponding heat maps. Abbreviations: TMAO, trimethylamine N-oxide; HPHPA, 3-(3-hy-
droxyphenyl)-3-hydroxypropanoate; 2-PY, N1-Methyl-2-pyridone-5-carboxamide. 

Figure 2. The urinary metabolite–metabolite associations as indicated by Spearman’s rank correla-
tions adjusted for sex. The down-left triangle shows results for the glucose normalization (IS-GLUC)
and the top-right triangle for the urea normalization (IS-UREA). The order of metabolites (with
creatinine added to the last row) is the same as in Figure 1 and based on the two-dimensional
hierarchical clustering of the IS-CREA heat map. The reference metabolite correlations are left
blank in their corresponding heat maps. Abbreviations: TMAO, trimethylamine N-oxide; HPHPA,
3-(3-hydroxyphenyl)-3-hydroxypropanoate; 2-PY, N1-Methyl-2-pyridone-5-carboxamide.
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Figure 3. The urinary metabolite–metabolite associations as indicated by Spearman’s rank correla-
tions adjusted for sex. The down-left triangle shows results for the pseudouridine normalization (IS-
PSEURID) and the top-right triangle for the constant sum normalization (CS). The order of metab-
olites (with creatinine added to the last row) is the same as in Figure 1 and based on the two-dimen-
sional hierarchical clustering of the IS-CREA heat map. The reference metabolite correlations are 
left blank in their corresponding heat maps. Abbreviations: TMAO, trimethylamine N-oxide; 
HPHPA, 3-(3-hydroxyphenyl)-3-hydroxypropanoate; 2-PY, N1-Methyl-2-pyridone-5-carboxamide. 

Figure 3. The urinary metabolite–metabolite associations as indicated by Spearman’s rank correla-
tions adjusted for sex. The down-left triangle shows results for the pseudouridine normalization
(IS-PSEURID) and the top-right triangle for the constant sum normalization (CS). The order of
metabolites (with creatinine added to the last row) is the same as in Figure 1 and based on the two-
dimensional hierarchical clustering of the IS-CREA heat map. The reference metabolite correlations
are left blank in their corresponding heat maps. Abbreviations: TMAO, trimethylamine N-oxide;
HPHPA, 3-(3-hydroxyphenyl)-3-hydroxypropanoate; 2-PY, N1-Methyl-2-pyridone-5-carboxamide.
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tions adjusted for sex. The down-left triangle shows results for the probabilistic quotient normali-
zation (PQN) and the top-right triangle for the DESeq2 normalization. The order of metabolites 
(with creatinine added to the last row) is the same as in Figure 1 and based on the two-dimensional 
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For the absolute concentrations and for the normalizations via IS-UREA, IS-GLUC,
IS-PSEURID, and the constant sum, the associations within the metabolite clusters are
mostly strongly positive, i.e., similar to those of IS-CREA normalization used to form
the clusters. The overall association patterns for PQN and DESeq2 normalizations are
somewhat weaker than for the other normalization methods with respect to many of the
metabolite associations within the clusters. The constant sum normalization matches quite
closely to PQN and DESeq2 with respect to the overall associations for Clusters 7 and 8,
but in contrast, the associations between Cluster 6 and Clusters 1–4 are overall positive.
The positive associations between Clusters 1 and 2 as well as 1 and 3 for the constant
sum normalization are also contrasting to those for the PQN and DESeq2 normalizations.
Regarding these association patterns, the constant sum normalization resembles rather
closely that of IS-CREA. The other associations in the PQN and DESeq2 normalized data
do not display much resemblance to those of the other normalization methods.



Biomolecules 2022, 12, 903 15 of 20

Figures 1–4 also depict the associations of creatinine with the other urinary metabo-
lites for all the normalization methods (except IS-CREA). They are very similar for the
PQN and DESeq2 normalized data, with more negative than positive associations, and
vary somewhat between the other normalization methods for which almost all creatinine
associations are positive.

Corresponding heat maps for Figures 1–4, but without adjusting for sex, are shown
in Supplementary Figures S1–S4. The overall correlation patterns for the absolute urinary
metabolite concentration data as well as for all the various normalization approaches are
closely similar to those in the sex adjusted analyses.

3.2. Epidemiological Exemplars: BMI and MAP

Based on the multiple testing corrected p-value threshold of 0.0013, there were 32 and
18 robust associations for sex-adjusted BMI (Figure 5) and MAP (Figure 6) with the urinary
metabolites, respectively. The associations with all the quantified urinary metabolites
(n = 44) are shown for BMI in Supplementary Figure S5 (not adjusted for sex) and Sup-
plementary Figure S6 (adjusted for sex) and for MAP in Supplementary Figure S7 (not
adjusted for sex) and Supplementary Figure S8 (adjusted for sex). Urinary metabolite
concentrations via all the above-mentioned seven normalization methods as well their
absolute concentrations were exploited in the linear regression analyses.

Overall, the associations between the urinary metabolites and BMI are stronger than
those between MAP. Regarding both outcomes, robust associations with amino acid and
carbohydrate pathways as well as with microbial metabolites are commonplace. While
some urinary metabolites—as citrate in the case of BMI and glycine, histidine, tyrosine,
lactate, citrate, 4-hydroxyhippurate, and creatinine for MAP—appear more related to sex
than others, i.e., the sex adjustment markedly affects the strength of the association, the
overall association pattern with respect to all the normalization methods is coherent for all
metabolites and both outcomes with or without adjusting for sex.

A prominent feature in Figures 5 and 6 (as well as in the related Supplementary Figures S5–S8)
is that, in general, for these epidemiological associations, all the normalized data and often
also the absolute urinary metabolite concentrations give coherent results. However, a more
meticulous view suggests that the results for the concentrations normalized via IS-GLUC
are rather often trending slightly away from those with the other methods. This can be seen,
for example, for various amino acid related metabolites and 2-hydroxyisobutyrate for both
BMI and MAP. Apart from these deviations for IS-GLUC, and maybe some incidental ones
for IS-PSEURID, IS-UREA, and the constant sum normalization methods, the results from
these epidemiological regression analyses are strikingly consistent. Particularly, the results
for PQN and DESeq2 are almost identical and usually very similar to those for IS-CREA
and the constant sum normalization. The similarity of the epidemiological associations
with BMI for the urinary metabolite concentrations via IS-CREA and PQN normalization is
illustrated in Supplementary Figure S9.

The overall correspondence of the individual metabolite concentrations, not neces-
sarily in an absolute manner but via correlation, is the fundament for the epidemiological
correspondence of the normalization methods. Thus, we also calculated mean R2-values
for the correlations between all the 44 individual metabolite concentrations between all
the different normalization methods. These 28 different comparisons are given in the
Supplement in Table S1 to provide quantitative support for the above interpretations on
the epidemiological association patterns.

4. Discussion

We present here the first comprehensive and systematic comparison of the effects of
various normalization methods in quantitative urinary metabolomics in an epidemiological
setting. In a selection of 994 participants from a population-based epidemiological cohort
(NFBC66), we quantified 44 metabolites from the NMR spectra of their morning spot urine
samples. We analysed the urinary metabolite–metabolite associations as well as the associa-
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tions of urinary metabolite concentrations with two physiological measures, BMI and MAP,
in seven different normalization schemes. We studied four internal metabolite concentra-
tion standards; the most applied normalization to urinary creatinine was accompanied
with referencing to urinary glucose, urea, and pseudouridine. In addition, a constant sum
normalization, in which a sum of all quantified metabolite concentrations is used as the
reference, was tested together with two of its more sophisticated versions, the PQN and the
DESeq2. As morning spot urine was studied, we also included a full comparison to the
original absolute concentrations of the urinary metabolites in the samples. The biological
rationale for each of these normalization options, together with their pros and cons with
respect to epidemiological studies, are outlined in Table 1. We would like to emphasize
that this work, and the entire development of the urine NMR metabolomics platform, is
focusing on large-scale epidemiology and genetics, aiming for an experimental protocol
that is high-throughput and cost-effective for tens of thousands of samples in multiple
laboratories and in line with epidemiological and clinical sample collection routines [3].
Thus, by definition, some normalization methods, e.g., urine osmolality or dry mass, are
not feasible in this case [36,37].

We applied two-dimensional hierarchical clustering to organize the color-coded cor-
relation heat map of urinary metabolite–metabolite concentrations normalized to urinary
creatinine (Figure 1). This was done to make detailed comparisons of the metabolite–
metabolite associations feasible between the different normalization schemes. We identified
eight urinary metabolite clusters and their interrelationships. Though these clusters (and
the new improved primary classification of the urinary metabolites presented in the Meth-
ods section) have not been directly identified before, we have discussed the intra-fluid
metabolic associations in urine already previously [3] and will not focus anymore on this
issue here (more than done in the Results section). Along the same lines, many of the
detected urinary metabolite associations with blood pressure and particularly with BMI
are rather well-known [3–5] and are not the focus here but for how they are affected by the
different normalization methods.

A rather striking difference is seen when comparing the effects of normalization for
the intra-urine metabolite associations (Figures 1–4) with those for the epidemiological
associations via the regression models (Figures 5 and 6). While the metabolite–metabolite
associations show quite complex patterns of similarities and dissimilarities for the different
normalization methods (as detailed in the Results section), the epidemiological association
patterns for both BMI and MAP with all the metabolites are consistent. There are marked
differences in both in the direction and strength of the associations between the normalized
urinary metabolite concentrations. However, almost all the epidemiological associations,
with respect to all the normalization methods, would have the same overall biological
interpretation, i.e., the same direction of association though there are some variations in
the strength of the associations. Only very few point estimates are contradicting regarding
the direction of the associations between the urinary metabolite concentrations and the
clinical measures.

As detailed in Table 1, both urinary glucose [7] and urea [1,28] have physiology-
related limitations for being optimal individual metabolite references. Comparison of
the metabolite–metabolite associations for these normalizations (Figure 2) to those with
original absolute metabolite concentrations (Figure 1) indicates close similarity and mainly
positive associations between the metabolites. This suggests that IS-GLUC and IS-UREA
normalized metabolite concentrations still contain a rather large component related to the
overall volume and dilution of the urine samples.

While urinary creatinine [1,15,30–32] and pseudouridine [29,33,34] have quite a differ-
ent biological background and limitations as a reference molecule (Table 1), their metabolite–
metabolite correlation heat maps are almost identical (Figure 1 top-right and Figure 3
down-left, respectively). IS-PSEURID might thus be a good normalization scheme to use to
check consistency of the IS-CREA results under different biological assumptions.
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Multimetabolite normalization schemes have previously been developed according to
the viewpoint that summing over multiple metabolites should balance the variation in the
individual metabolites and increase the robustness of the correction for the variable dilu-
tion in the urine samples [26,35]. The three such schemes applied here—the constant sum
normalization, the PQN, and the DESeq2—produced a complicated pattern of similarities
and dissimilarities for the metabolite–metabolite associations but were very coherent in the
epidemiological regression analyses for both clinical measures. Their point estimates were
often very close to those of the IS-CREA normalized metabolite concentrations. The corol-
lary for epidemiological studies would be, specifically when many individual quantitative
metabolites are available, to use these multimetabolite normalization schemes to check
consistency of the IS-CREA results and to assess if they could strengthen some associations
due to potentially better accounting for the biologically relevant concentration changes of
the urinary metabolites (Table 1).

Urine is arguably the main biological material that is collected to study kidney diseases,
and these diseases typically alter the secretion and excretion of creatinine, thus undermining
the viability of the IS-CREA method. On the other hand, the quantile-based DESeq2 method
has become de facto choice for RNA profiling, where internal standards like creatinine are
unavailable. For this reason, we recommend including, and maybe relying more on, the
PQN method in situations where it is plausible that the creatinine measurement itself is
inaccurate or compromised by pathophysiological factors.

We would like to emphasize that this is a cross-sectional epidemiological data set with
a limited number of people. However, for the purpose of the study, as demonstrated by
the robustness of the multiple testing-corrected results for all the analyses performed, the
data are ample. As always in epidemiological studies, potential cohort-related biases for
the results cannot be dissected and care must be taken in extrapolating the results. Most of
the urinary metabolite associations with the clinical measures replicated previous findings
in other cohorts and data sets. It is thus likely that the key findings regarding the effects of
the various normalization schemes would be generally valid. Alongside independent data
coming available, replication of the findings would of course be preferable. In addition, it
would be good to keep in mind that the participants studied in this work were a selection of
a birth cohort study at an average age of 46 years. They thus represent an apparently rather
healthy group of individuals with only rather minor changes in kidney and other organ
and metabolic functions. Thus, these results should not be extrapolated to individuals or
patients with marked organ or metabolic dysfunction.

5. Conclusions

The results of this comprehensive and systematic comparison of the effects of seven
different normalization schemes (together with the absolute non-normalized metabolite
concentrations) in quantitative urinary metabolomics can be encapsulated by saying that
the effects and differences of data normalization are pronounced for the urinary metabolite–
metabolite associations but markedly consistent for epidemiological regression analyses
with clinical measures. Thus, particularly for epidemiological studies on the role of urinary
metabolites, the custom of using urinary creatinine as the concentration reference appears
sensible. Normalization to urinary pseudouridine might be useful to check consistency of
the creatinine-referenced results under different biological assumptions. If many individual
quantitative metabolites are available, multimetabolite normalization schemes might also
be worth applying to check consistency of the creatinine-referenced results and, in addition,
to assess if they could strengthen some associations due to potentially better accounting for
the biologically relevant concentration changes of the urinary metabolites. Comparison
of different normalization schemes while also taking physiology, metabolism, and kidney
function into consideration would likely be beneficial for detailed interpretations of intra-
urine metabolite associations and when aiming for nuanced elucidation of the urinary
metabolite associations in epidemiological studies.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biom12070903/s1, Table S1: The mean R2-values for the correlations between all the 44 individ-
ual urinary metabolite concentrations between all the different normalization methods. Figure S1:
The urinary metabolite–metabolite associations as indicated by Spearman’s rank correlations without
adjustments for the absolute urinary metabolite concentrations and the IS-CREA normalization.
Figure S2: The urinary metabolite–metabolite associations as indicated by Spearman’s rank correla-
tions without adjustments for the IS-GLUC and the IS-UREA normalizations. Figure S3: The urinary
metabolite–metabolite associations as indicated by Spearman’s rank correlations without adjustments
for the IS-PSEURID and the CS normalizations. Figure S4: The urinary metabolite–metabolite as-
sociations as indicated by Spearman’s rank correlations without adjustments for the PQN and the
DESeq2 normalizations. Figure S5: The associations of the urinary metabolite concentrations with
BMI (without adjustment) for the various normalization schemes. Figure S6: The associations of the
urinary metabolite concentrations with BMI (adjusted for sex) for the various normalization schemes.
Figure S7: The associations of the urinary metabolite concentrations with MAP (without adjustment)
for the various normalization schemes. Figure S8: The associations of the urinary metabolite concen-
trations with MAP (adjusted for sex) for the various normalization schemes. Figure S9: Comparison
of the epidemiological associations of the urinary metabolite concentrations via IS-CREA and PQN
normalization with BMI.
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