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Abstract: A numerical study is presented for the thermo-free convection inside a cavity with vertical
corrugated walls consisting of a solid part of fixed thickness, a part of porous media filled with a
nanofluid, and a third part filled with a nanofluid. Alumina nanoparticle water-based nanofluid is
used as a working fluid. The cavity’s wavy vertical surfaces are subjected to various temperature
values, hot to the left and cold to the right. In order to generate a free-convective flow, the horizontal
walls are kept adiabatic. For the porous medium, the Local Thermal Non-Equilibrium (LTNE) model
is used. The method of solving the problem’s governing equations is the Galerkin weighted residual
finite elements method. The results report the impact of the active parameters on the thermo-free
convective flow and heat transfer features. The obtained results show that the high Darcy number
and the porous media’s low modified thermal conductivity ratio have important roles for the local
thermal non-equilibrium effects. The heat transfer rates through the nanofluid and solid phases are
found to be better for high values of the undulation amplitude, the Darcy number, and the volume
fraction of the nanofluid, while a limit in the increase of heat transfer rate through the solid phase
with the modified thermal ratio is found, particularly for high values of porosity. Furthermore, as the
porosity rises, the nanofluid and solid phases’ heat transfer rates decline for low Darcy numbers and
increase for high Darcy numbers.

Keywords: natural convection; nanofluid-porous cavity; wavy solid wall; darcy-forchheimer model;
local thermal non-equilibrium (LTNE)

1. Introduction

Natural convection in a composite cavity, where part of it is porous and the other is fluid
(natural convection in many layers of superimposed porous fluids), represents one of the
most important topics that has received wide attention from researchers due to its multiple
applications in engineering, such as insulation systems for fibrous and granular, packed
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bed solar energy storage, water conservers, and reactors cooling after the accident, and in
geophysics, such as thermal circulation in lakes and contaminant transport in groundwater.
Several researchers have dealt with this topic, as it was started by the study of Beavers
and Joseph [1], where they presented the boundary conditions between the homogeneous
fluid and the porous media in the simple situation. Convective heat transfer in porous
beds saturated with a fluid was investigated for various thicknesses and permeabilities of
bed [2]. Natural convection heat transfer in an enclosure, which is divided into two regions,
one filled with a porous medium and the other with a fluid, was analyzed by Tong and
Subramanian [3], for the aim of developing the characteristics of heat transfer for enclosures
containing different quantities of porous material. Both studies of Poulikakos et al. [4] and
Poulikakos [5] relied on measuring the flow of fluid floating on a porous bed heated from
below at Rayleigh numbers above a critical value. The authors in Beckermann et al. [6]
presented a two-dimensional study on natural convection, a rectangular fluid enclosure
partially filled with different layers of porous material, vertical or horizontal. Numerical
investigations were conducted for various enclosure aspect ratios, Rayleigh and Darcy
numbers, and ratios and thicknesses of thermal conductivity of the porous region [7].
The authors in Hirata et al. [8] discussed the thermosolutal natural convection onset in
horizontal superimposed fluid-porous layers. A numerical and analytical investigation was
done for combined thermal and moisture conventions in an enclosure filled with a partially
porous medium to enhance the moisture transport in the thermal energy storage unit [9].
The authors in Mikhailenko et al. [10] discussed the mechanism to address the effects of
a uniform rotation and a porous layer in a local heat source electronic cabinet, where it
studied the impacts of the Rayleigh, Taylor, and Darcy numbers and the porous layer
thickness on hydro-thermodynamics. The authors in Saleh et al. [11] investigated the
unstable convective flow in a vertical porous layer inside an enclosure due to a flexible fin.

To enhance the fluids’ thermal properties, researchers and engineers have used new
kinds of particles with a nanometer size, which are named nanoparticles, in traditional
fluids, which generated the term “nanofluid”. The applications of the heat transfer of
nanofluids have been widely used for, e.g., cooling electronics, heating exchangers, car
radiators, and machining [12]. The authors in Alsabery et al. [13] provided an expla-
nation for the influence of the Darcy number, Rayleigh number, nanoparticle volume
fraction, and power-law index on streamlines, isotherms, and the total heat transfer and
on the thermal conductivity of the nanofluid and the porous medium. The numerical
analysis of Al-Zamily [14] was implemented to investigate the fluid flow, entropy genera-
tion, and heat transfer inside an enclosure with an internal heat generation. The authors in
Armaghani et al. [15] presented numerically the natural convection and generation of ther-
modynamic irreversibility in a cavity containing a partial porous layer filled with a Cu-water
nanofluid. The authors in Miroshnichenko et al. [16] utilized a numerical simulation of porous
layers’ effect on natural convection in an open cavity with a vertical hot wall and filled with
a nanofluid.

Four main classifications in the modelling of transportation methods for porous
materials include the Local Thermal Non-Equilibrium (LTNE), thermal dispersion, constant
porosity, and variant porosity. LTNE assumptions can be used in modelling the heat
exchange of convection in porous materials due to the different thermal conductivities
in the fluid and porous material [12]. By applying an exact Chebyshev spectral element
method, the natural convection in a porous cavity was improved using an LTNE model [17].
By considering LTNE effects, the authors in Ghalambaz et al. [18] addressed the natural
convection in a cavity filled with a porous medium with the consideration of the thickness
of the solid walls of the cavity. Taking into account the local thermal non-equilibrium
model, natural convective circulation in a rotating porous cavity was investigated with a
variable volumetric heat generation by [19].
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The authors in Sivasankaran et al. [20] analyzed the convective heat and fluid flow of
a nanofluid in an inclined cavity saturated with a heat-generating porous medium based
on the LTNE model. The authors in Tahmasebi et al. [21] investigated the heat transfer of
the natural convection in an enclosure filled with a nanofluid in three different layers of the
fluid, the porous medium, and the solid, where the local thermal non-equilibrium model
was used to model the porous layer. The studies of [22–24] investigated the natural con-
vection of different nanofluids in each article within a porous cavity depending on a Local
Thermal Non-Equilibrium Model (LTNEM). Natural, forced, and Marangoni convective
flows in an open cavity partially saturated with a porous medium under the impacts of an
inclined magnetic field were studied, where the LTNEM was used to represent the thermal
field in the porous layer [25].

The study of natural convection in a wavy porous cavity is an interesting topic due
to its wide range of usage in engineering, e.g., for the management of nuclear waste,
the cooling of transpiration, building thermal insulators, geothermal power plants, and
grain storage, and in geophysics, e.g., for modelling pollutant spreading (radionuclides),
the movement of water in geothermal reservoirs, and petroleum reservoirs’ enhanced
recovery [26]. Free convection in a cubical porous enclosure has been controlled by the
wavy shape of the bottom wall and by inserting a conductive square cylinder inside
the considered cavity [27]. The natural convection heat transfer inside a square wavy-
walled enclosure filled with nanofluid and containing a hot inner corrugated cylinder was
simulated by [28]. The enclosure was divided into two layers, one filled with Ag nanofluid
and the other with porous media. The authors in Kadhim et al. [29] presented a parametric
numerical analysis of the free convection in a porous enclosure with wavy walls filled
by a hybrid nanofluid, at several inclination angles. The authors in Alsabery et al. [30]
simulated the free convection heat transfer inside a porous cavity filled with water-based
nanofluid with the consideration of the LTNE model. They assumed that there was an
inner solid cylinder centered in the enclosure and that the bottom wall of the cavity was
heated and wavy.

As acknowledged in an earlier literature survey, and to the best of the authors’ knowl-
edge, and based on the need to consider the LTNE condition, there is no study dealing with
the natural convection flow within nanofluid-superposed wavy porous layers with the
local thermal non-equilibrium model. Therefore, this work proposes an understanding of
the amplitude’s impacts and the local thermal non-equilibrium of a nanofluid-superposed
wavy porous layers via the fluid flow and heat transfer features.

2. Mathematical Formulation

The two-dimensional natural convection state within the wavy-walled cavity with
length L is explained in Figure 1. The analysed composite cavity is divided into three layers
(portions). The first layer (left wavy portion) is solid as brickwork (kw = 0.76 tW/m.◦C),
the second layer (middle portion) is loaded with a porous medium that is saturated with
nanofluid, and the third layer (right wavy portion) is filled with a nanofluid. The wavy
(vertical left) solid surface has a fixed hot temperature of Th, while the vertical right wavy
surface is fixed with a cold temperature of Tc. On the other hand, the horizontal top and
bottom surfaces are preserved as adiabatic. The edges of the domain (except for the inter-
face surface between the porous-nanofluid layer) are supposed to remain impermeable.
The mixed liquid inside the composite cavity performs as a water-based nanofluid holding
Al2O3 nanoparticles. The Forchheimer-Brinkman-extended Darcy approach and the Boussi-
nesq approximation remain appropriate. In contrast, the nanofluid phase’s convection and
the solid matrix are not in a local thermodynamic equilibrium condition. The set of porous
media applied in the following output is glass balls (km = 1.05 W/m.◦C). Considering the
earlier specified hypotheses, the continuity, momentum, and energy equations concerning
the Newtonian fluid, laminar, and steady-state flow are formulated as follows:
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For the nanofluid layer,
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The energy equation of the wavy left solid surface is

∂2Tw

∂x2 +
∂2Tw

∂y2 = 0. (10)

The subscripts n f , m, s, and w correspond to the nanofluid layer, porous layer (nanofluid
phase), porous layer (solid phase), and solid wavy surface, respectively. x and y are the fluid
velocity elements, |u| =

√
u2 + v2 denotes the Darcy velocity, g displays the acceleration

due to gravity, ε signifies the porosity of the medium, and K is the permeability of the
porous medium which is determined as

K =
ε3d2

m
150(1− ε)2 . (11)

Here, dm represents the average particle size of the porous bed.
The thermophysical characteristics regarding the adopted nanofluid for the 33 nm

particle-size are given by [31]:
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(ρCp)n f = (1− φ)(ρCp) f + φ(ρCp)p, (12)

ρn f = (1− φ)ρ f + φρp, (13)

(ρβ)n f = (1− φ)(ρβ) f + φ(ρβ)p, (14)
µn f

µ f
=

1

1− 34.87
(

dp
d f

)−0.3
φ1.03

, (15)

kn f

k f
= 1 + 4.4Re0.4

B Pr0.66

(
T

Tf r

)10(
kp

k f

)0.03

φ0.66. (16)

where ReB is defined as

ReB =
ρ f uBdp

µ f
, uB =

2kbT
πµ f d2

p
. (17)

The molecular diameter of water (d f ) is given as [31]

d f = 0.1

[
6M

N∗πρ f

] 1
3

. (18)

Now, we present the employed non-dimensional variables:

(X, Y) =
(x, y)

L
, Un f ,m =
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α f
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vn f ,mL

α f
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,

θm =
Tm − Tc
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, P =

pL2

ρ f α2
f
, ke f f = εkn f + (1− ε)km, CF =

1.75√
150

. (19)

The set scheme leads to the following dimensionless governing equations:
In the nanofluid layer,
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In the porous layer,
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In the wavy solid wall,
∂2θw

∂X2 +
∂2θw

∂Y2 = 0. (29)

The dimensionless boundary conditions of Equations (20)–(28) are

On the left solid hot wavy surface,

U = V = 0, θw = 1, A(1− cos(2NπY)), 0 ≤ Y ≤ 1, (30)

On the bottom adiabatic horizontal surface,

U = V = 0,
∂θ(n f ,m,s,w)

∂Y
= 0, 0 ≤ X ≤ 1, Y = 0, (31)

On the right cold wavy surface,

U = V = 0, θn f = 0, 1− A(1− cos(2NπY)), 0 ≤ Y ≤ 1, (32)

On the top adiabatic horizontal surface,

U = V = 0,
∂θ(n f ,m,s,w)

∂Y
= 0, 0 ≤ X ≤ 1, Y = 1, (33)

The dimensionless boundary forms toward the interface between the nanofluid and
the porous layers will be obtained from (1) the continuity of tangential and normal ve-
locities, (2) shear and normal stresses, and (3) the temperature and the heat flux crossing
the central interface and allowing an identical dynamic viscosity (µn f = µm) into both
layers. Therefore, the interface dimensionless boundary conditions can be addressed as
the following:

θn f |Y=D+ = θm|Y=D− , (34)

∂θn f
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ke f f

kn f

∂θm

∂Y

∣∣∣∣
Y=D−

, (35)

Un f |Y=D+ = Um|Y=D− , (36)

Vn f |Y=D+ = Vm|Y=D− , (37)
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Here, D denotes the nanofluid layer’s thickness, and the subscripts + and − indi-
cate that the corresponding measures are estimated while addressing the interface of the

nanofluid and the porous layers, respectively. Ra =
gβ f (Th−Tc)L3

ν f α f
and Pr =

ν f
α f

signify the
Rayleigh number and the Prandtl number related to the used base liquid.

The local Nusselt numbers (Nun f and Nus) at the wavy vertical (left) surface for the
nanofluid and the solid phases, respectively, are written as follows:

Nun f =
ke f f

k f

(
∂θn f

∂n

)
n
, (38)

Nus =
ks

k f

(
∂θs

∂n

)
n
. (39)

Here, n denotes the entire length of the curved heat source.
Lastly, the average Nusselt numbers at the wavy vertical surface within the nanofluid

and solid phases are addressed by the following:

Nun f =
∫ n

0
Nun f dn, (40)

Nus =
∫ n

0
Nus dn. (41)

T

L

Water

Tc
L

g

Interface

Porous Layer

Nanofluid Layer

Al O2 3

Solid Wall

Figure 1. Schematic representation concerning the convection flow in the wavy-walled composite.
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3. Numerical Method and Validation

The governing dimensionless equations Equations (20)–(28) ruled with the boundary
conditions Equations (30)–(37) are solved by the Galerkin weighted residual finite element
technique. The computational region is discretised into small triangular portions as shown
in Figure 2.

These small triangular Lagrange components with various forms are applied to each
flow variable within the computational region. Residuals for each conservation equation is
accomplished through substituting the approximations within the governing equations.
The Newton-Raphson iteration algorithm is adopted for clarifying the nonlinear expres-
sions into the momentum equations. The convergence from the current numerical solution
is considered, while the corresponding error of each of the variables satisfies the following
convergence criteria: ∣∣∣∣Γi+1 − Γi

Γi+1

∣∣∣∣ ≤ 10−6.

Figure 2. Framework configuration of the FEM for the grid dimension of 5464 components.

To assure the confidence of the existing numerical solution at the grid size of the
numerical region, we have adopted various grid dimensions for calculating the minimum
strength of the flow circulation (Ψmin), the average Nusselt number of the nanofluid phase
(Nun f ), and the average Nusselt number of the solid phase (Nus) for the case of Ra = 106,
Da = 10−3, φ = 0.02, N = 3, γ = 10, H = 10, ε = 0.5, and A = 0.1. The outcomes are
displayed in Table 1, which designates insignificant variations for the G6 grids and higher.
Hence, concerning all calculations into this numerical work, the G6 uniform grid is applied.

Table 1. Grid testing for Ψmin, Nun f , and Nus at different grid sizes for Ra = 106, Da = 10−3,
φ = 0.02, N = 3, γ = 10, H = 10, ε = 0.5, and A = 0.1.

Grid Size Number of Elements Ψmin Nun f Nus

G1 3187 −11.812 6.4267 4.677
G2 3686 −11.691 6.4309 4.6961
G3 4096 −11.676 6.4453 4.7096
G4 4576 −11.603 6.4607 4.7197
G5 5464 −11.591 6.4633 4.7257
G6 10,180 −11.528 6.4654 4.7431
G7 21,830 −11.503 6.4655 4.7434
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Concerning the validation for the current numerical data, the outcomes are examined
with earlier published experimental results reported by Beckermann et al. [6] for natural
convection within a square cavity including fluid and porous layers, as performed in
Figure 3. Besides that, a comparison is obtained for the resulting patterns and the one
implemented by Khanafer et al. [32] for the case of natural convection heat transfer in a
wavy non-Darcian porous cavity, as displayed in Figure 4. According to the above-achieved
comparisons, the numerical outcomes of the existing numerical code are significant to a
great degree of reliability.

Figure 3. (a) Streamlines of Beckermann et al. [6] (left) and the present study (right); (b) isotherms

for Ra = 3.70× 106, Da = 1.370× 10−5, ε = 0.9, D = 0.5 N = 0, ke f f
k f

= 1.362, and Pr = 6.44.
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|Ψmin | =8.49
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Figure 4. (a) Streamlines of (left) Khanafer et al. [32] and (right) the present study; (b) isotherms
of (left) Khanafer et al. [32] and (right) the present study for Ra = 105, Da = 10−2, ε = 0.9, N = 3,
D = 0, and Pr = 1.

4. Results and Discussion

The outcomes described by streamlines, isotherms, and isentropic distributions are
addressed within this section. We have modified the following four parameters: the Darcy
number (10−6 ≤ Da ≤ 10−2), the nanoparticle volume fraction (0 ≤ φ ≤ 0.04), the modified
conductivity ratio (0.1 ≤ γ ≤ 1000), the amplitude (0 ≤ A ≤ 0.2), and the porosity of the
medium (0.2 ≤ ε ≤ 0.8). The values of the Rayleigh number, the number of undulations, the
coefficient of inter-phase heat transfer, the thickness of the wavy solid wall, and the Prandtl
number are fixed at Ra = 106, N = 3, H = 10, W = 0.2, and Pr = 4.623, respectively.
Table 2 displays the thermos-physical properties of the base fluid (water) and the solid
Al2O3 phases at T = 310 K.
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Figure 5 displays from left to right, respectively, streamlines, isotherms of the nanofluid
phase, and isotherms of the solid phase for various Darcy numbers (Da) when φ = 0.02,
γ = 10, A = 0.1, and ε = 0.5. For a low Darcy number, the isotherms are virtually vertical
in the porous layer and correspond to the solid phase isotherms, indicating that the heat
transfer occurs essentially by the conduction mode because the porous medium becomes
less permeable. The porous matrix causes the flow to cease in the porous layer; as a result,
the flow is closed or entirely limited to the nanofluid layer and is not able to permeate
into the porous medium. The heat transfer in the nanofluid layer is mainly convective,
as is shown from the isotherms and the streamlines. When the Darcy number increases,
the porous layer provides less resistance to the nanofluid flow, the natural convection
increases, and the mechanism of heat transfer shifts from the conduction mechanism at a
small Darcy number into the convection mechanism at a high Darcy number in the porous
layer as well as in the entire enclosure. A high thermal boundary layer is present at the
porous-layer/conducting solid-wall interface. Moreover, by comparing the isothermal
lines in the solid part and the nanofluid phase in the porous layer, it is clear that, when
the heat transport mode is mainly governed by conduction at low Darcy number values,
the Local Thermal-Equilibrium (LTE) state is feasible because the isotherms are conformal
(identical and similar). Meanwhile, the effect of the Local Thermal Non-Equilibrium (LTNE)
is important at high Darcy numbers since there is a marked difference in the temperature
distribution between the solid phase and the nanofluid phase in the porous layer.

To frame the effect of the porous medium permeability, we present in Figure 6 the
numerical results given by the profiles of the local velocity with the vertical line at X = 0.5
(a), the local Nusselt number of the nanofluid phase (b), and the local Nusselt number of the
solid phase (c) for different Da for the case of φ = 0.02, γ = 10, A = 0.1, and ε = 0.5. The
velocity profiles indicate the rotational aspect of the nanofluid in the cavity. The nanofluids’
circulation rate increases with increasing values of the Darcy number. It is also evident
from this figure that the local Nusselt numbers, for both the nanofluid phase and the solid
phase, form peaks, and each peak corresponds to a convex boundary of the undulating hot
wall. In comparison, the values of the Nusselt number improve by incrementing the Darcy
number, and this improvement is more progressive for medium Darcy number levels. It
is also worth noting that the heat transfer rate on the lower portion of the wavy wall is
bigger than on the top. This is because these regions represent the contact areas for the cold
nanofluid returning from the opposite cold wall, so a high temperature difference exists
there, which causes a high heat transfer rate.

Table 2. Thermo-physical characteristics concerning pure liquid (water) and Al2O3 nanoparticles at
T = 310 K [33].

Physical Properties Fluid Phase (Water) Al2O3

Cp (J/kgK) 4178 765
ρ (kg/m3) 993 3970
k (Wm−1K−1) 0.628 40
β× 105 (1/K) 36.2 0.85
µ× 106 (kg/ms) 695 –
dp (nm) 0.385 33



Nanomaterials 2021, 11, 1277 12 of 23

Figure 5. Streamlines (left), isotherms of the nanofluid phase (middle), and isotherms of the solid
phase (right) with various Darcy numbers (Da); φ = 0.02, γ = 10, A = 0.1, and ε = 0.5.
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Figure 6. Local velocity (a), the local Nusselt number of the nanofluid phase (b), and the local Nusselt
number of the solid phase (c) with the vertical line (Y) for X = 0.5 for different Da values; φ = 0.02,
γ = 10, A = 0.1, and ε = 0.5.

The differences in the streamlines patterns and isotherms of the nanofluid and solid
phases in the different regions with respect to the thermal conductivity ratio in the porous
layer (γ) when Da = 10−3, φ = 0.02, A = 0.1, and ε = 0.5 are depicted in Figure 7. For
low values of γ, the core of the flow vortex is found in the nanofluid layer, indicating the
nanofluid circulation strength in this region and its weakness in the porous layer region.
This is because most of the heat is transmitted through the solid matrix instead of the
nanofluid in the porous layer due to the high value of the solid thermal conductivity. The
nanofluid-phase and solid-phase isothermal lines are not similar, indicating the existence
of the local thermal non-equilibrium case. When raising the value of γ from 0.1 to 1000,
the flow vortex expands to cover the porous layer region, and the speed of the circulation
strength increases in the porous layer and decreases in the nanofluid layer. It also seems
that, as γ increases, the system tends to realize the local thermal equilibrium situation
in the porous layer, which is observed by the identicalness between the nanofluid-phase
isotherms and those of the solid phase.
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Figure 7. Streamlines (left), the isotherms of the nanofluid phase (middle), and the isotherms of the
solid phase (right) with various modified conductivity ratios (γ); Da = 10−3, φ = 0.02, A = 0.1, and
ε = 0.5.

The local velocity profiles in Figure 8a show that, for low values of γ, the velocity
profiles are in conformity because the effect of the solid part is dominant compared to the
pore space, which obstructs the buoyancy effects and the flow vortex remains at the center
of the cavity. The disparity in the profiles at high γ can be explained by the fact that the flow
vortex rises up, which results in a low nanofluid velocity at the lower part of the cavity, near
the bottom wall. Figure 8b,c illustrates the impact of the modified thermal conductivity
ratio, γ, on both the nanofluid-phase and solid-phase local heat transfer rates. Boosting γ
results in an improvement in the Nusselt numbers. For a weak γ, the distribution of Nus
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and Nun f differs, which means that the non-thermal equilibrium effects are significant. In
addition, it is to note that the impacts of γ on the Nusselt numbers are more important for
the solid phase than for the nanofluid phase. In fact, the attainment of thermal equilibrium
between the nanofluid and the solid matrix leads to a greater heat transfer through the
entire porous layer.
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Figure 8. Local velocity (a), the local Nusselt number of the nanofluid phase (b), and the local Nusselt
number of the solid phase (c) with the vertical line (Y) for X = 0.5 for Y = 0.5 for different γ values;
Da = 10−3, φ = 0.02, A = 0.1, and ε = 0.5.

Figure 9 analyzes the effect of the magnitude of the undulations of the solid corrugated
wall (A) on the system’s thermal and dynamic features. Obviously, the larger magnitude
undulations, the more conductive the heat transfer tends to be, since the undulations act
to impede the nanofluid circulation inside the cavity. The flow configuration switches
from one central flow vortex to a multi-core vortex by raising A, which influences the
distribution of the velocity within the cavity (Figure 10a). Considering the great difference
in size and form of the heat exchange surface, the amplitude of the undulations significantly
impacts the distribution of the local heat transfer over the hot surface, as seen in the profiles
of the Nusselt numbers in Figure 10c,d.
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Figure 9. Streamlines (left), the isotherms of the nanofluid phase (middle), and the isotherms of the
solid phase (right) with various amplitudes (A); Da = 10−3, φ = 0.02, γ = 10, and ε = 0.5.
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Figure 10. Local velocity (a), the local Nusselt number of the nanofluid phase (b), and the local
Nusselt number of the solid phase (c) with the vertical line (Y) for X = 0.5 for different N values;
Da = 10−3, φ = 0.02, γ = 10, and ε = 0.5.

The varying porosity effects of the porous layer (ε) on the nanofluid and solid phase
isotherms and flow patterns in the different regions inside the cavity are demonstrated
in Figure 11. As can be seen, an increase in the porosity of the porous layer leads to
an increase in the nanofluid circulation within the entire cavity. Indeed, as the porosity
increases, the nanofluid movement becomes freer in the cavity, which contributes to a
greater heat transfer to the nanofluid layer through the porous layer.
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Figure 11. Streamlines (left), the isotherms of the nanofluid phase (middle), and the isotherms of
the solid phase (right) with various porosities of the medium (ε); Da = 10−3, φ = 0.02, γ = 10, and
A = 0.1.

Figure 12a indicates that an improvement in the ε parameter improves the velocity of
circulation as well. Figure 12b,c shows that the maximum and minimum of the local heat
transfer rates of the nanofluid phase are more extreme with a rise of ε, whereas the rates
of the solid-phase heat transfer are not greatly changed by the variations in the porosity
magnitude, as the porous media with a large porosity offers more empty spaces to be
occupied with the flowing nanofluid.
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Figure 12. Local velocity (a), the local Nusselt number of the nanofluid phase (b), and the local
Nusselt number of the solid phase (c) with the vertical line (Y) for X = 0.5 for different ε values;
Da = 10−3, φ = 0.02, γ = 10, and A = 0.1.

The objective of Figures 13 and 14 is to show the role of the Darcy number (Da) and
the modified thermal conductivity ratio (γ) at various nanoparticle concentrations (φ) in
the average heat transport. It is clear that Da and γ augment the mean Nusselt number of
both the nanofluid and the solid phases. The converging values of Nun f and Nus at lower
Da values and higher γ values indicate the local thermal equilibrium situation, as stated
earlier. In addition, it is shown that the increasing effect of Da and γ on the mean Nusselt
numbers reduces when the Da and γ are higher. Moreover, beyond the value of γ = 100,
the heat transfer rate decreases with γ because the heat transfer through the solid matrix
(Nus) is severely limited due to its low thermal conductivity, unlike Nun f , which continues
to increase with γ due to the improved nanofluid thermal conductivity. It is also evident
from the two figures that increasing the nanoparticles’ concentration produces increases in
both Nusselt numbers for all considered values of Da and γ.
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Figure 13. Variations of (a) the average Nusselt number of the nanofluid phase and (b) the average
Nusselt number of the solid phase with Da values for different φ values at γ = 10, A = 0.1, and
ε = 0.5.
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Figure 14. Variations of (a) the average Nusselt number of the nanofluid phase and (b) the average
Nusselt number of the solid phase γ for different φ values at Da = 10−3, N = 3, and ε = 0.5.

Figures 15 and 16 show that the largest global heat transfer for both the solid and
nanofluid phases is found for the highest undulation amplitude (A = 0.2) for all tested
values of Da and φ. This can be attributed to the large heat exchange surface of the wavy
wall for high values of A. In addition, at a given A, the values of the Nun f and Nus are
found to increase with increasing values of Da and φ.
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Figure 15. Variations of (a) the average Nusselt number of the nanofluid phase and (b) the average
Nusselt number of the solid phase with Da for different A values at φ = 0.02, γ = 10, and ε = 0.5.
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Figure 16. Variations of (a) the average Nusselt number of the nanofluid phase and (b) the average
Nusselt number of the solid phase with φ for different A values at Da = 10−3, γ = 10, and ε = 0.5.

Figure 17 aims to examine the role of the porosity (ε) of the porous layer as a function
of the Darcy number (Da) in the total heat transfer rates of the nanofluid and solid phases
for the case of ε at φ = 0.02, γ = 10, and A = 0.1. At lower Darcy numbers (Da ≤ 10−5),
an increase in the porosity of the porous layer weakens the total heat transfer rates (Nun f

and Nus) owing to the fact that high porosity at low permeability contributes to more heat
resistance within the porous medium. The opposite is true for high Darcy numbers.
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Figure 17. Variations of (a) the average Nusselt number of the nanofluid phase and (b) the average
Nusselt number of the solid phase with Da for different ε values at φ = 0.02, γ = 10, and A = 0.1.

Figure 18 characterizes the variation of Nun f and Nus with the modified thermal
conductivity (γ) for various values of ε. Nun f increases with the increment of γ for all
values of ε. Meanwhile, there is a limit in the increase of Nus with γ after a certain value
of ε. This explains that the role of the nanofluid in transferring heat through the porous
medium becomes greater than for the solid matrix due to its high thermal conductivity.
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Figure 18. Variations of (a) the average Nusselt number of the nanofluid phase and (b) the average
Nusselt number of the solid phase with γ for different ε values at Da = 10−3, φ = 0.02, and A = 0.1.
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5. Conclusions

The problem of steady thermal-natural convection in a two-dimensional cavity of cor-
rugated vertical walls consisting of three layers–a conducting solid layer of fixed thickness,
a porous medium layer filled with a nanofluid, and a third layer filled with a nanofluid–was
numerically studied by employing the finite element method. An alumina nanoparticle-
water-based nanofluid was used as a working fluid. The LTNE model was considered for
the porous medium. The key conclusions of this analysis are listed below:

1. The local thermal non-equilibrium effects are significant for low values of γ and high
values of Da.

2. For low values of Da, the flow is almost entirely confined in the nanofluid layer, and
the heat transfer is mainly convective in the nanofluid layer and mainly conductive
in the other layers.

3. An increase in Da and ε contributes to an increase in the nanofluid circulation rate in
the entire cavity, while an increase in γ causes an increase in the flow circulation in
the porous region.

4. An increase in A contributes to a decrease in the nanofluid circulation rate in the
entire cavity.

5. The best rates of the convective heat transfer through the nanofluid and solid phases
are found at high values of A, Da, and φ for all other constant parameters.

6. The results show an increase in Nun f with increasing values of γ, while there is a
limit in the increase of Nus with γ, especially for high values of ε.

7. Nun f and Nus decline as ε boosts for low values of Da and enhance for high values
of Da.
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