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High-grade neuroendocrine carcinoma of gynecologic origin (NEC-GYN)

is a highly aggressive cancer that often affects young women. The clinical

management of NEC-GYN is typically extrapolated from its counterpart,

small cell carcinoma of the lung (SCLC), but, unfortunately, available

therapies have limited benefit. In our NEC-GYN cohort, median progression-

free survival (PFS) and overall survival (OS) were 1 and 12 months, respec-

tively, indicating the highly lethal nature of this cancer. Our comprehensive

genomic analyses unveiled that NEC-GYN harbors a higher mutational

burden with distinct mutational landscapes from SCLC. We identified 14

cancer driver genes, including the most frequently altered KMT2C (100%),

KNL1 (100%), NCOR2 (100%), and CCDC6 (93%) genes. Transcriptomic

analysis identified several novel gene fusions; astonishingly, the MALAT1

lincRNA gene was found in ~ 20% of all fusion events in NEC-GYN. Fur-

thermore, NEC-GYN exhibited a highly immunosuppressive state, intact

RB1 expression, and was uniquely enriched with the YAP1high molecular

subtype. Our study identifies several potential therapeutic targets and sug-

gests an urgent need to re-evaluate the treatment options for NEC-GYN.
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1. Introduction

High-grade NECs of the cervix are rare, aggressive

cancers accounting for about 1–1.5% of all cervical

cancer [1,2]. Unlike the common type, squamous cell

carcinoma, patients with cervical NEC are more likely

to present with advanced or metastatic disease, result-

ing in poor prognosis. The 5-year survival is up to

36% for early-stage disease, but advanced-stage dis-

ease has < 10% survival, with relapse rates exceeding

90% [1–4]. These cancers are likely to have a vascular

invasion and nodal or visceral metastasis. Unfortu-

nately, NEC of the cervix affects young women with a

median age of 37 [1–4]. High-grade NECs of other

gynecologic origins are even rarer and share similar

aggressive behavior and poor outcomes [3]. Further-

more, no prospective data are available to guide ther-

apy in NEC-GYN. Therefore, an urgency exists in

understanding the underlying pathobiology of NEC-

GYN with hopes of developing better therapeutic

options.

Current treatment considerations and guidelines for

NEC-GYN are mostly extrapolated from studies con-

ducted in small cell lung cancer (SCLC). In patients

with advanced-stage metastatic disease, standard ther-

apy includes chemotherapy with platinum and etopo-

side [3–5]. In patients with recurrent disease, data to

guide treatment decisions are entirely absent but again

inferred from SCLC, using agents such as topotecan

and paclitaxel. However, these regimens are both toxic

and have limited activity. Most recently, our group

and others have described subgroups of SCLC that

may have different pathobiology and potentially dis-

tinct therapeutic vulnerabilities [6,7]. Therefore, we

sought to comprehensively investigate NEC-GYN

genomics to understand their oncologic drivers and

determine their similarities and differences with SCLC

to improve their clinical management.

2. Materials and methods

2.1. Tumor samples, next-generation

sequencing, and public database

The study was approved by the institutional review

board committee. The methods in this retrospective

study were conformed to the standards set by the Dec-

laration of Helsinki. Inclusion in this study required a

pathologic diagnosis at the time of surgery as small cell

or large cell neuroendocrine carcinoma or a diagnosis

of combined neuroendocrine carcinoma (having both

small cell and large cell histologies) or neuroendocrine

features in conjunction with another more common his-

tology. Additionally, slides and blocks with sufficient

tissue for sequencing were required. Response Evalua-

tion Criteria in Solid Tumors (RECIST) 1.1 criteria

were used to assess response to treatment and disease

progression. PFS and OS were calculated with KM

curves. All the samples were re-evaluated by an expert

pathologist who marked the regions to dissect tissues

for nucleic acid isolation. We successfully sequenced 15

samples from 12 patients, including three samples at

two different time points. Whole-exome sequencing

(WES) of 14 samples and stranded paired-end RNA-

seq of 13 samples, including 12 samples with matched

WES, were performed at Novogene Corporation Inc.

(Sacramento, CA) using 150-bp paired-end format on a

NovaSeq 6000 (Illumina, San Diego, CA, USA) sequen-

cer.

Data for frequently altered genes in SCLC were

obtained from cBioPortal (https://www.cbioportal.org/

and https://www.cbioportal.org/sclc). Cervical and

Ovarian cancer TCGA transcriptomic data were down-

loaded from the LinkedOmics portal (http://www.

linkedomics.org/). Transcriptomic data from healthy

human tissues were downloaded from GTEx (https://

www.gtexportal.org/).

2.2. Whole-exome sequencing (WES)

DNA was isolated from FFPE slides (area was marked

by a pathologist) using an established FFPE DNA iso-

lation pipeline at Novogene, Inc., and DNA QC was

checked before starting the library preparation. One

lg genomic DNA was used for the WES library prepa-

ration. Sequencing libraries were generated using Agi-

lent SureSelect Human All Exon kit (Agilent

Technologies, Santa Clara, CA, USA) following the

manufacturer’s recommendations, and index codes

were added to each sample. Briefly, fragmentation was

carried out by the hydrodynamic shearing system

(Covaris, Woburn, MA, USA) to generate 180–280 bp

fragments. Remaining overhangs were converted into

blunt ends via exonuclease/polymerase activities, and

enzymes were removed. After adenylation of 3’ ends of

DNA fragments, adapter oligonucleotides were ligated.

DNA fragments with ligated adapter molecules on

both ends were selectively enriched in a PCR. After

PCR, the library was hybridized with the liquid phase

with a biotin-labeled probe, after which streptomycin-

coated magnetic beads are used to capture the exons

of genes. Captured libraries were enriched in a PCR to

add index tags to prepare for hybridization. Products

were purified using the AMPure XP system (Beckman

Coulter, Beverly, MA, USA) and quantified using the
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Agilent high sensitivity DNA assay on the Agilent Bio-

analyzer 2100 system. Sequencing was performed using

150-bp paired-end format on a NovaSeq 6000 (Illu-

mina) sequencer.

2.3. WES analyses, variant calling, and CNV

analysis

Sequencing quality was checked using FASTQC (https://

www.bioinformatics.babraham.ac.uk/projects/fastqc/),

and Trim Galore (http://www.bioinformatics.babraha

m.ac.uk/projects/trim_galore/) was used for adapter

trimming. We first generated the reference genome

(hs38DH.fa) using GRCh38+ALT+decoy+HLA and

then created the BWA index for mapping. Sequence

reads were mapped with GRCh38 using BWA-MEM

with default parameters to generate unsorted align-

ments (BAM) with ALT contigs aware mapping qual-

ity [8]. Following GATK best practice [9,10], PCR

duplicates were removed from sorted BAM files, and

RG IDs were added using Picard tools (GitHub

Repository http://broadinstitute.github.io/picard/).

Subsequent realignment and base recalibration were

performed using GATK4 (v 4.1.4.1). Databases of

known polymorphic sites (dbsnp_146.hg38.vcf,

Mills_and_1000G_gold_standard.indels.hg38.vcf, and

Homo_sapiens_assembly38.known_indels.vcf) were

used to exclude regions around known polymorphisms.

Variants were then called using GATK4 Haplo-

typeCaller with default parameters.

Variant call format files were converted to MAF by

mapping each variant to only one of all possible gene

isoforms using the vcf2maf package (v 1.6.17) (https://

github.com/ckandoth/vcf2maf). Ensembl Variant

Effect Predictor (VEP) was used to determine the

effect of variants (SNPs, insertions, deletions, CNVs,

or structural variants) on genes, transcripts, and pro-

tein sequence, as well as regulatory regions [11]. VEP

is CLIA-compliant and uses HGVS variant format

and Sequence Ontology nomenclature for variant

effects. We used ExAC_nonTCGA.r0.3.1.sites.vep.vcf

(germline variants called across thousands of normal

samples excluding TCGA) for VEP (v 99.0) to filter

variants. MAF files were further curated for missense

mutations using SIFT [12] and PolyPhen-2 [13], and

only deleterious missense mutations were kept.

Copy number variations were identified using XHMM

(eXome hidden Markov model, v 1.0) [14]. First, the

depth of coverage was calculated using GATK (v 3.8)

with default parameters. The mean coverage for each

exon interval for each sample was extracted and

merged into a single sample-by-target matrix. GC con-

tent of each coding exons was calculated using GATK

to exclude all exons with more than 90% or < 10%

GC content in the human reference sequence. Using

Plink/Seq, a list of targets with low complexity was

created based on the repeat-masked sequence fraction.

Using XHMM ’matrix’ command, the read-depth

matrix was processed, and extreme GC content and

low complexity lists were filtered out. PCA was ran to

determine the strongest independent ways (principal

components) in which the data vary to normalize

mean-centered data using this information. Next, we

calculated the z-score of the per-sample read depth by

centering relative to all target depths in that sample to

remove any targets left with very high variance. Then,

we used prenormalized read depths to remove the

same targets and samples that were removed during

the normalization process. This matrix was used for

annotation purposes in the subsequent CNV discovery

and genotyping steps. CNVs were called using the hid-

den Markov model (HMM) Viterbi algorithm, and

each called CNV was quantitatively genotyped using

HMM forward–backward algorithm. XHMM output

file (.xcnv) only contains chromosomal coordinates for

deletion (DEL) and duplication (DUP). To get genes

that fall under the DEL and DUP regions, we first

prepared a bed file from.xcnv file using BIOMART [15]

(R package, v 2.44.1). Next, we used GENOMICRANGES

[16] (R package, v 1.40.0) and Homo.sapiens (R pack-

age, v 1.3.1, https://doi.org/10.18129/B9.bioc.Homo.sa

piens) to get genes that fall under CNVs after convert-

ing hg38 coordinates to hg19 using the UCSC LIFTOVER

tool.

2.4. Mutational signatures, driver gene

identification, and TMB comparison

To manage MAF files and visualize WES data, MAF-

TOOLS [17] (R package, v 2.2.10) was used in the R

environment. A copy number table of DEL and DUP

was generated from CNV data obtained from XHMM

analysis and used along with the clinical annotation

data table for generating various figures in maftools.

MAF summary, transition and transversion mutations,

somatic interactions, Oncoplots, and lollipop plots for

amino acid changes were plotted using maftools.

Oncoplots function was used to plot SNV and CNV

alterations together as ’multihit’, if they happened to

hit a given gene (a complete list of CNV data is

included in Table S2).

Cancer driver genes were detected based on the posi-

tional clustering method using the ’oncodrive’ function

of maftools. The oncodrive function is based on Onco-

driveCLUST algorithm [18] that measures genes’ bias

toward large mutation clustering. It uses a background
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model composed of coding-silent mutations that are

not under selective pressure and, therefore, provide the

baseline clustering of somatic mutations. In principle,

most of the variants in cancer-causing genes are

enriched at a few specific hotspots; on the basis of

these positions, OncodriveCLUST can identify cancer

genes. A minimum of 5 mutations per gene cutoff was

used, and the P-value was calculated by z-score. Onco-

genic signaling pathways were detected using the

’OncogenicPathways’ function of maftools.

Tumor mutational burden (TMB) was calculated and

compared against TCGA cohorts using the ’tcgaCom-

pare’ function of maftools. Mutation loads from 33

TCGA cohorts were used and compared with NEC-

GYN TMB [19]. To plot mutational signature of DNA

damage response (DDR) genes, we used a comprehen-

sive DNA damage repair gene list maintained by Wood

Laboratory at MD Anderson (https://www.mdande

rson.org/documents/Labs/Wood-Laboratory/human-dna-

repair-genes.html, last curated on June 10th, 2020),

and the MAF file was subset for the DDR genes to

use for Oncoplots. Potentially druggable gene cate-

gories and drug–gene interactions were detected using

drugInteractions function of maftools. The drugInterac-

tions uses drug–gene interactions and gene druggability

information compiled from Drug Gene Interaction

database [20] (http://www.dgidb.org).

2.5. RNA-sequencing and analyses

RNA was extracted from FFPE sections using the

miRNeasy FFPE kit (Qiagen, Germantown, MD,

USA) according to the manufacturer’s protocol.

RNA quality was assessed via the Agilent 2100 Bio-

analyzer (Agilent Technologies). Strand-specific

RNA-seq library was prepared using NEBNext Ultra

II Directional RNA Library Prep Kit (NEB, Ipswich,

MA, USA) according to the manufacturer’s proto-

cols. Briefly, the RNA is fragmented randomly by

adding a fragmentation buffer; then, the first-strand

cDNA is synthesized by using random hexamer pri-

mer, after which a custom second-strand synthesis

buffer (Illumina), dNTPs, RNase H, and DNA poly-

merase I are added to initiate the second-strand syn-

thesis. Terminal repair and sequencing adapter

ligation were performed, followed by size selection

and PCR enrichment. Double-stranded cDNA

libraries were purified using AMPure XP beads

(Beckman Coulter) and quantified using the Agilent

high sensitivity DNA assay on the Agilent Bioana-

lyzer 2100. Sequencing was performed using 150-bp

paired-end format on a NovaSeq 6000 (Illumina)

sequencer.

RNA-sequencing quality was checked by running

FASTQC, and TRIMGALORE was used for adapter and

quality trimming. RNA-seq reads were mapped against

hg38 using STAR [21] (v 2.7.0e) aligner with default

parameters. DESEQ2 [22] analysis with an adjusted

P-value < 0.001 was used to get a list of differentially

expressed genes (DEGs). Top 5000 significant DEGs

(sorted by P-adj values) were used for unsupervised

hierarchical clustering (NEC-GYN vs SCLC). Pathway

analysis (GO biological process) was performed on EN-

RICHR (https://amp.pharm.mssm.edu/Enrichr) database

[23]. RSEM [24] (v 1.3.2) analyses were performed to

calculate FPKM and TPM values with default param-

eters.

2.6. Gene fusion and immune cell gene

signature analyses

Novel and known somatic fusion genes were detected

using FUSIONCATCHER [25] (v 1.20) using default param-

eters. FUSIONCATCHER is a powerful tool for finding

somatic fusion genes in paired-end RNA-sequencing

data. The fusion junctions were validated by using

four different methods employing Bowtie, BLAT,

STAR, and Bowtie2 aligners, and sequence analysis

for ORFs (open reading frames) was also performed.

Possible false positive and readthrough fusions were

excluded.

The ’IMSIG’ (R package, v 1.0.0) was used for

immune cell gene signatures for profiling tumor

microenvironment [26]. ImSig uses a set of immune

gene signatures generated by a network-based decon-

volution approach for seven immune cell types. Using

ImSig algorithm with default parameter (correlation

threshold, r = 0.7, over 75% genes’ overlap was

observed), a table of the relative abundance of immune

cells across samples was generated. This table was used

to plot the relative abundance of various immune cells.

2.7. Human papillomavirus (HPV) detection

Human papillomavirus was detected by utilizing

HPVDETECTOR [27] tool using default parameters. HPVDE-

TECTOR is a robust and precise tool for detecting HPV

in tumor samples using WES and RNA-seq platforms.

HPVDETECTOR utilized a custom-made reference genome

that contains human chromosomes and annotated gen-

ome of 143 pseudochromosomes of various HPV

types. First, paired-end WES FASTQ files were used

to identify the presence of HPV types. Next, RNA-seq

FASTQ files were used to confirm the HPV gene

expression in RNA-seq data using default parameters

of HPVDETECTOR tool.
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2.8. Immunohistochemistry (IHC)

Immunohistochemistry was performed as described

previously [6]. RB1 (Cell Signaling, Danvers, MA,

USA, cat # 9309), YAP1 (Cell Signaling, cat # 14074),

and H3M4me1 (Abcam, Cambridge, MA, USA, cat #

ab8895) antibodies were used. Staining was graded on

a scale from 0 to 3 (no, weak, moderate, and strong).

The final IHC score was calculated as the (staining

intensity) x (percentage IHC positive tumor cells),

yielding a final scoring range of 0–300. Scoring was

performed by a gynecologic pathologist who was

blinded to the outcome data.

2.9. Statistics

Two-tailed Mann–Whitney U-tests were used to calcu-

late P values. For box plots, box and whisker graphs

were plotted using either the Tukey method or mini-

mum to maximum values. The middle line in the box

indicates the median, whiskers indicate the highest and

lowest values within 1.5 9 IQR (interquartile distance

between the 25th and 75th percentiles) up and down

from the box, and dots plot values > 1.5 9 IQR up

and down from the box. In other plots, either whiskers

were plotted down to the minimum and up to the

maximum value and individual value as a point super-

imposed on the graph or mean with SD was plotted.

3. Results

3.1. Patient characteristics, treatments, and

sequencing

Twenty-seven patients were diagnosed with high-

grade NEC-GYN at Cleveland Clinic between 1998

and 2018. Of them, we were able to retrieve sufficient

samples in 16 specimens that represented 13 patients,

including three samples at two different time points.

Sequencing on one patient was unsuccessful. Thus,

fifteen FFPE tissue samples from 12 patients includ-

ing three samples at two different time points were

included (see Table 1 for demographic and clinico-

pathologic annotations and Table S1 for individual

patients’ characteristics). Clinical diagnoses were

made at the time of surgery based on histomorphol-

ogy and expression of at least one immunohistochem-

ical marker of neuroendocrine differentiation. All

patient’s tumors, at least at a one-time point, were

reported to express synaptophysin. Nine patients also

at least focally expressed chromogranin. The majority

of patients presented with advanced-stage disease,

FIGO stage IIIC-IV (75%). Sites of origin included

the cervix (58%), ovary (25%), and endometrium

(17%). 58% of the patients received cisplatin/etopo-

side at the time of diagnosis, and second-line treat-

ments at recurrence/progression were topotecan

(23%), liposomal doxorubicin +/� bevacizumab

(23%), immunotherapy (nivolumab +/� ipilimumab)

(15.4%), and others (Table 1, Table S1). The median

number of prior lines of therapy was 1. Median PFS

and OS were 1 and 12 months, respectively (Table 1).

Whole-exome sequencing (WES) of 14 samples and

Table 1. Patients’ clinical and pathologic characteristics and

treatment.

Age, years (range) Median 59 (35–73)

Race W 10 (83%)

AA 0

Unknown 2 (17%)

Stage at diagnosis, n (%) I 2 (17%)

III 3 (25%)

IVB 6 (50%)

Recurrent 1 (8%)

Histology, n (%) Small cell 5 (42%)

Large cell 5 (42%)

High grade 1 (8%)

Combined/mixed 1 (8%)

Site of origin, n (%) Cervix 7 (58%)

Ovary 3 (25%)

Endometrial 2 (17%)

Location of tissue, n (%) Primary site 8 (57%)

Metastatic/recurrent site 6 (43%)

Treatment regimen at

diagnosis, n (%)

Cisplatin/etoposide 7 (58%)

Carboplatin/paclitaxel 1 (8%)

Carboplatin/paclitaxel/

bevacizumab

1 (8%)

Chemoradiation 1 (8%)

No treatment 2 (17%)

Treatment at

recurrence/progression

(second line),

n (%)

Topotecan 3 (23%)

Immunotherapy

(nivolumab +/�
ipilimumab)

2 (15.4%)

Liposomal doxorubicin

+/� bevacizumab

3 (23%)

Carboplatin/gemcitabine 1 (7.6%)

Etoposide 1 (7.6%)

Weekly paclitaxel 1 (7.6%)

Sunitinib 1 (7.6%)

Carboplatin/paclitaxel 1(7.6%)

Progression-free survival

(months)

1 (0–16)

Overall survival

(months)

12 (6–101)

Site of recurrence/

metastasis, n (%)

Peritoneal 7 (41.2%)

Brain 3 (17.6%)

Lung 4 (23.5%)

Supraclavicular nodes 2 (11.8%)

Spinal/bone 1 (5.9%)
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stranded paired-end RNA-sequencing of 13 samples,

including 12 samples with matched WES, were per-

formed. The mean coverage for WES was 280.79

(range, 240.8–3309), and the average number of

stranded paired-end reads for RNA-seq was 35.7 mil-

lion (range, 23.1–46.3 million).

3.2. Mutational profile and tumor mutation

burden in NEC-GYN

We discovered a unique mutational landscape in our

NEC-GYN cohort (Fig. 1, Figs S1–S3, Table S2). The

WES analyses detected mutations in KMT2C, KNL1,

and NCOR2 genes in all the tumor samples (100%)

(Fig. 1A, Figs S4–S6). Cervical NEC samples had a

significantly higher number of mutations within indi-

vidual genes compared with other NEC-GYN tumors

(Fig. S7). The altered genes that were common

between tumors from three gynecologic sites, surpris-

ingly, enriched in the Hippo signaling pathway

(Fig. S8). Using the oncodriveCLUST algorithm, we

identified 14 cancer driver genes at a false discovery

rate (FDR) of 0.01 (Fig. 1B, Table S3). The onco-

driveCLUST algorithm measures genes’ bias toward

large mutation clustering and identifies specific hot-

spots where most of the variants in cancer-causing

genes are enriched. The frequent driver genes were

CCDC6 (13 mutations in one cluster, 93% mutation

frequency), LATS2 (15 mutations in 2 clusters, 86%),

and CLTCL1 and RNF43 (18 and 17 mutations,

respectively, in 3 clusters, 86%) (Table S3). Oncogenic

pathway analysis revealed that the highest proportion

of mutated genes were found in the cell cycle (73.3%),

TGF-b (71.4%), RTK-RAS (44.7%), MYC (38.5), and

PI3K (37.9%) pathways (Fig. 1C, Figs S9 and S10).

Next, we compared the tumor mutation burden

(TMB) of our cohort with 33 TCGA cohorts of vari-

ous tumors. Surprisingly, NEC-GYN demonstrated

the highest TMB compared to all TCGA cohorts

examined (Fig. 1D). Furthermore, we observed

Fig. 1. Unique mutational landscape in NEC-GYN. (A) Frequently altered genes in NEC of gynecologic origins detected by GATK

HaplotypeCaller and XHMM. Cohort’s clinical features are given on the top, and color codes representing various SNVs, Indel, and CNVs are

given at the bottom. A ‘Combined’ histology represents the presence of both small cell and large cell NEC in a tumor. (B) A scatter plot

showing cancer driver genes (FDR < 0.01) detected by OncodriveCLUST algorithm using positional clustering method. (C) Oncogenic

signaling pathways associated with mutated genes in NEC-GYN are illustrated in a scatter plot. Percentage of genes altered in various

oncogenic pathways is given. (D) Comparison of TMB in NEC-GYN with TCGA representing 33 tumors’ cohorts. The cohorts’ size is given

on the top. (E) Mutation profile of DNA damage repair genes in NEC-GYN cohort detected by GATK HaplotypeCaller and XHMM. Please

refer to Fig. 1A for color codes representing mutation types.
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frequent mutations in various DNA damage response

(DDR) pathway genes including MSH3 (79%),

FANCD2 (71%), BRCA2 (64%), and BLM (50%)

(Fig. 1E), corroborating high TMB in NEC-GYN.

Moreover, drug–gene interaction analysis using GDIdb

identified clinically actionable (KMT2C, MAP3K1)

and other potentially druggable targets (Fig. S11).

Since our cohort includes specimens from three

patients at two different time points (all metastatic, see

Table S1), we compared these tumors individually. We

found that an ovarian small cell NEC exhibited muta-

tions in additional genes and multiple hits in previ-

ously mutated genes at recurrence (Fig. S12). As

KMT2C was the top mutated gene in our cohort and

responsible for maintaining the H3K4me1 mark at

enhancer regions, we performed IHC for H3K4me1

but did not observe any subtle change (Fig. S13). The

available literature, indicating KMT2C loss modulates

H3K4me1 levels at enhancer regions in a context-

dependent manner [8–10], suggests that future mecha-

nistic studies are needed to investigate its impact on

genome-wide transcription.

3.3. Recurrent gene fusions, unique

transcriptomic signatures, and

immunosuppressive tumor microenvironment in

NEC-GYN

Using transcriptomic data, we discovered several

recurrent gene fusions, including MALAT1-SMG

(53.8%), EEF1A1-MALAT1 (30.8%), and ASH1L-

YY1AP1 (30.8%) (Fig. 2A, Table S4). Remarkably,

the MALAT1 gene partnered in > 20% of all the

fusion events (Fig. 2A) and demonstrated extremely

high expression in NEC-GYN compared to healthy

cervix and ovary (Fig. 2B, Fig. S14). Comparing

Fig. 2. Transcriptional signature and tumor immune microenvironment in NEC-GYN. (A) Recurrent gene fusions detected by using

FusionCatcher in NEC-GYN. A total of 4405 fusion events were observed across NEC-GYN cohort that resulted in 4281 unique fusion

products (see Table S4 for full list). Genes partnering in total fusion events (%) are given. (B) Expression profile of MALAT1 gene in NEC-

GYN (n = 13), normal cervix (n = 18), and normal ovary (n = 171) tissues (mean with SD, ****P ≤ 0.0001 by two-tailed Mann–Whitney U-

test). (C) Comparison of relative abundance of immune cells in NEC-GYN (n = 13), Cervix-TCGA (n = 304), and Ovary-TCGA (n = 303) based

on network-based deconvolution (ImSig) analysis (mean with SD, ****P ≤ 0.0001 by two-tailed Mann–Whitney U-test). (D) Relative

expression levels of various immune checkpoint genes in NEC-GYN (n = 13, box plot by Tukey method).
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transcriptomic profiles of NEC-GYN with TCGA cer-

vical squamous cell and epithelial ovarian cancer, the

non-neuroendocrine counterparts of the NEC-GYN,

chromatin assembly and nucleosome organization were

the top GO functions for significantly overexpressed

genes in NEC-GYN (Figs S15 and S16). Remarkably,

underexpressed genes in NEC-GYN were enriched for

protein modification and catabolic processes and

neutrophil-mediated immunity (Figs S15 and S16).

The tumor immune microenvironment is crucial in

determining immunotherapy outcomes. Using tran-

scriptomic data, we analyzed immune cell gene signa-

tures for profiling tumor microenvironment. Our data

revealed significantly lower immune cell infiltrations in

NEC-GYN compared to the ovarian or cervical

nonendocrine cohorts, except plasma cells (Fig. 2C).

Remarkably, expression of HLA-A, HLA-B, and

HLA-C was significantly lower in NEC-GYN com-

pared to ovarian and cervical cancer (P-

value < 0.0001), further corroborating immunosup-

pressive nature of NEC-GYN (Fig. S17). We then

looked at the expression of various immune check-

point genes and observed a high expression of

HMGB1, followed by CD47 and LGALS9, and low

expression of CD274 (PD-L1) and CD273 (PD-L2)

(Fig. 2D).

3.4. NEC-GYN exhibits a distinct mutational and

transcriptomic profile from SCLC

Since NEC-GYN tumors are traditionally considered

similar to SCLC and all treatment recommendations

are extrapolated from SCLC, the prototypical high-

grade neuroendocrine cancer, we compared our results

with SCLC genomic mutation data obtained from

cBioPortal, including data from a cohort of 90 SCLC

patients from our laboratory. Astonishingly, the NEC-

GYN mutation profile did not match SCLC as the

most frequently mutated genes in NEC-GYN were

among the least mutated in SCLC (Fig. 3A). In SCLC,

TP53 and RB1 genes are frequently mutated (88.9%

and 75.7% respectively); however, TP53 and RB1

mutations in our NEC-GYN cohort were significantly

lower (29%) (Fig. 3A). We also looked at only small

cell NEC of GYN (n = 5) and found that only one

patient (with two specimens at different time points)

had mutations in TP53 and RB1 genes. Compared to

SCLC, NEC-GYN showed highly distinct transcrip-

tomic patterns, as represented by the top 5000 DEGs

(P-adj > 0.01) (Fig. 3B, Figs S18 and S19). Compared

to the immune microenvironment of SCLC, only neu-

trophil infiltration was significantly higher in NEC-

GYN (P ≤ 0.0001) (Fig. 3C, Fig. S20); however,

Fig. 3. Comprehensive genomic and transcriptomic analyses between NEC-GYN and SCLC. (A) Comparison of frequently mutated genes

(top 10 genes from both NEC-GYN and SCLC) between NEC-GYN and SCLC cohorts. (B) A heatmap representing distinct transcriptional

signatures between NEC-GYN and SCLC cohorts. DEGs were sorted by P-adj values, and top 5000 genes were used for unsupervised

hierarchical clustering. (C) Comparison of relative abundance of neutrophils (ImSig analysis) between NYC-GYN (n = 13) and SCLC (n = 29)

cohorts (Tukey, ****P ≤ 0.0001 by two-tailed Mann–Whitney U-test). (D) Expression patterns of HLA class-I genes in NEC-GYN (n = 13) and

SCLC (n = 29) cohorts (Tukey, *P = 0.0262, **P = 0.0028 by two-tailed Mann–Whitney U-test).
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HLA-A and HLA-B expression were significantly lower

in our cohort (Fig. 3D) demonstrating lower antigen

presentation capacity.

3.5. NEC-GYN is enriched with YAP1 molecular

subtype and expresses intact RB1 protein

Since SCLC is typically classified into four molecular

subtypes, including ASCL1 (the largest group), NEU-

ROD1, POU2F3, and a small group represented by

YAP1 [7], we used similar approach to investigate the

molecular subtypes in our cohort. Surprisingly, most

of the NEC-GYN tumors, while still clustering into

four groups, represented the YAP1 high, a chemoresis-

tant molecular subtype (Fig. 4A). This finding led us

to evaluate the YAP1 protein expression in NEC-

GYN tumors using immunohistochemistry (IHC).

Since RB1 gene mutation frequency was lower in

NEC-GYN compared to SCLC, we also performed

RB1 IHC and compared them with YAP1 expression

level (Fig. 4B,C, Fig. S21A). Remarkably, high expres-

sion of YAP1 correlated with high RB1 level; however,

tumors with a moderate RB1 expression exhibited very

weak or no YAP1 protein expression (Fig. 4B).

Next, we investigated the HPV status in the NEC-

GYN cohort using WES data and reconfirmed them

using RNA-seq data. We found that four out of seven

patients have positive HPV expression (57%) in NEC

of cervical origin, including three patients were positive

for HPV18 and one was positive for HPV16. Surpris-

ingly, all the three HPV18 positive tumors exhibited

no YAP1 protein expression (Fig. S21B). We also

compared the HPV status of NEC-Cervix with RB1

protein expression level. All the HPV-positive tumors

were expressing lower RB1 protein compared to HPV-

negative NEC-Cervix (Fig. S21C).

4. Discussion

Comprehensive genomic studies are limited in NEC-

GYN. A pilot study with WES data of 5 neuroen-

docrine cervix cases reported recurrent mutation in

ATRX, EBRR4, and AKT/mTOR signaling pathway

genes [28]. Another study of NEC of the cervix

reported mutation in PIK3CA (18%), KRAS (14%),

and TP53 (11%) genes using a limited gene-targeted

panel [29]. A study of 10 cervical NEC cases found

frequent mutations in TP53 (40%) and PIK3CA

(30%) genes, again using a targeted gene panel [30].

More recently, Hillman et al. [31] reported recurrent

mutations in PIK3CA (26.7%) and KMT2C (20%)

genes along with deletion in regions containing the

PTEN gene (33%). Remarkably, no transcriptomic

data are available for NEC-GYN. Our study is the

first comprehensive study with matched genomic and

transcriptomic data to the best of our knowledge.

Fig. 4. NEC-GYN molecular subtypes and

expression of YAP1 and RB1 proteins. (A)

Molecular subtypes of NEC-GYN defined by

the expression of four key transcriptional

regulators, ASCL1, NEUROD1, FOU2F3,

and YAP1. (B) A graph correlating YAP1 and

RB1 proteins expression by IHC in NEC-

GYN (n = 14), and (C) the representative

IHC images showing YAP1 and RB1 in a

neuroendocrine large cell carcinoma of

cervix (scale bars in 209 and 409 images

represent 200 and 100 lm, respectively).

(D) A cartoon depicting origin of NEC-GYN,

unique characteristics, and therapeutic

opportunities.
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Given the rarity of this highly malignant tumor, our

cohort with even a small sample size provides a novel

opportunity to understand the pathobiology of NEC-

GYN. However, collaborative efforts are needed to

perform multicenter comprehensive genomic and clini-

cal studies to manage this deadly cancer effectively.

Our data demonstrated a unique mutational land-

scape in NEC-GYN with frequent mutations in COM-

PASS family members (KMT2C, 100%; and KMT2D,

64%) involved in epigenetic regulation of enhancers

and their loss promotes tumorigenesis [32]. Surpris-

ingly, we observed frequent mutations in various DDR

genes (Fig. 1E) that possibly explain the incidence of

very high TMB in our cohort compared to 33 TCGA

cohorts. Providentially, DDR gene mutations confer

therapeutic vulnerabilities in cancers [33–35]. A case

report demonstrated promising results using PARP

inhibitor in a small cell carcinoma of the cervix patient

with somatic BRCA2 gene mutation [36]. PARP inhi-

bitor, rucaparib, treatment that resulted in 15-month

PFS and symptomatic improvement was noteworthy

for such a disease with very high mortality. A recent

study evaluating PARP1 expression using IHC in

pathological specimens of high-grade NEC of cervix

reported PARP1 positivity for 91% of samples [37]. In

our NEC-GYN cohort, the mutation rate in BRCA2

(64%) and other genes involved in the DDR pathway

was remarkably high (Fig. 1E). Our data strongly sug-

gest using PARP and other inhibitors targeting the

DDR pathway in NEC-GYN. Furthermore, mutations

in the cancer driver gene, CCDC6 (93%), suggest

potential benefit from PARP inhibitor treatment [38].

Transcriptional dysregulation is a hallmark of cancer,

and oncogenic gene fusions are observed across several

cancer types [39]. NEC-GYN transcriptomic signatures

revealed modulation in chromatin assembly and nucleo-

some organization (Figs S15 and S16). These transcrip-

tomic data are consistent with the NEC-GYN

mutational profile as KMT2C, KMT2D, and other epi-

genetic genes were frequently mutated. Surprisingly,

gene fusions in NEC-GYN were mostly partnered with

the MALAT1 gene (Fig. 2A). MALAT1 is one of the

best-characterized lincRNA and a potentially viable

druggable target [40]. Transcriptomic-based tumor

immune microenvironment analysis allows us to under-

stand the abundance of the immune cells in tumor

tissues. The presence of significantly lower immune

cell infiltrations in our cohort than their non-

neuroendocrine counterparts (Fig. 2C) explains its

immunosuppressive nature and perhaps the minimal

effect of anti-PD1/PD-L1 immunotherapies in NEC-

GYN [41]. It is important to note that high TMB is

often associated with the inflamed phenotype (high

immune cell infiltration) and increased neoantigen pre-

sentation. In contrast, NEC-GYN exhibits low immune

cell infiltration partially due to significantly reduced

expression of HLA class-I genes (Fig. S17) that may

have compromised neoantigen presentation. Remark-

ably, other novel immunotherapeutic targets such as

HMGB1 and CD47 expression are far greater compared

to the CD274 gene (codes for PD-L1) (Fig. 2D).

HMGB1, Gal-9, CEACAM1, and PS are the four well-

known ligands for TIM-3, a negative regulator of Type

1 immunity expressed on various immune cells. CD47 is

a ligand for SIRPa receptor present on macrophages

and involved in ‘don’t eat me’ signaling. Future clinical

studies are needed to evaluate HMGB1/TIM-3 and

CD47/SIRPa axes for potential immunotherapy targets,

alone or in combination with chemotherapy, in NEC-

GYN.

Treatment options for NEC-GYN are mostly

inferred from studies conducted in SCLC. Astound-

ingly, the mutational landscape and transcriptional sig-

natures are quite different in NEC-GYN compared to

SCLC (Fig. 3). SCLC is characterized by a very high

TP53 and RB1 mutation rate that is believed to be

responsible for the small cell phenotype. Conversely,

TP53 and RB1 mutations in NEC-GYN were signifi-

cantly lower (29%) then SCLC and did not distinctly

correlate with their histology (Figs 3A and 1A). Unex-

pectedly, NEC-GYN showed a high expression of

YAP1, which represents a small molecular subtype in

SCLC. YAP1 is a component of the Hippo pathway

responsible for multidrug resistance [42]. This unique

YAP1 high molecular subtype possibly maintains

NYC-GYN’s chemorefractory nature that further

facilitates immunosuppressive tumor microenviron-

ment [43]. Lower antigen presentation capacity

(Fig. 3D) also aids in immunosuppressive tumor

microenvironment in NEC-GYN, and higher infiltra-

tion of neutrophils (Fig. 3C) can be associated with

poor clinical outcome [44].

A meta-analysis by Castel et al. and earlier reports

have suggested the association of neuroendocrine car-

cinoma of cervix with HPV [45–47]. In our cohort,

only 57% of NEC of cervix patients were HPV-

positive. A recent study showed that hyperactivation

of YAP1 without HPV infection can cause cervical

carcinogenesis [48]. Our data showing a negative corre-

lation of HPV positivity and YAP1 protein expression

suggest that HPV can be dispensable for NEC of cer-

vix. In consistence with the published literature, HPV

does lower the RB1 protein expression in NEC of cer-

vix. However, the overall high expression of RB1 pro-

tein with limited genomic mutation in this gene can be

exploited for clinical intervention.
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5. Conclusion

Our data demonstrate a unique mutational landscape

in NEC-GYN with a remarkably high TMB and sug-

gest novel multimodality therapeutic measures to

address this highly fatal cancer (Fig. 4D). Frequent

mutations of DDR genes encourage trials of PARP

and ATR inhibitor-based therapies and further war-

rant investigation of potential germline mutations as

young women are mostly affected by this malignancy.

Our finding of frequent RB1 wild-type status correlat-

ing high RB1 protein expression suggests a potential

therapeutic vulnerability to CDK 4/6 inhibitors [6].

Overall, our data provide a framework for future stud-

ies of NEC-GYN in prospective clinical settings to

improve outcomes via the use of targeted therapies.
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Fig. S1. Mutational profile of neuroendocrine carci-

noma of gynecologic origin (NEC-GYN) was detected

by GATK Haplotype Caller.

Fig. S2. A) Percentages of various CNV classes in

NEC-GYN (left) and transition & transversion

mutations (right); and B) percentages of various CNV

classes in various tumor sample in our cohort.

Fig. S3. Mutually exclusive or co-occurring set of

genes.

Fig. S4. Lollipop plot showing the mutations (amino

acid changes) in A) KMT2C; and B) KNL1 gene in

NEC-GYN.

Fig. S5. Lollipop plot showing the mutations (amino

acid changes) in A) NCOR2; B) BRCA1; and C)

BRCA2 gene in NEC-GYN.

Fig. S6. Lollipop plot showing the mutations (amino

acid changes) in A) TP53; and B) RB1 gene. TP53

and RB1 genes are highly mutated in SCLC but mod-

erately mutated in our NEC-GYN cohort. Lollipop

plot showing the mutations (amino acid changes) in C)

CDH11; and D) KMT2D gene.

Fig. S7. Cervical NEC samples showing higher number

of mutations within individual genes compared to

Ovary and Endometrial NEC.

Fig. S8. Venn diagram representing common mutated

genes between Cervical, Ovarian, and Endometrial

NEC (top 20 frequently mutated genes from each of

three groups were used).

Fig. S9. Oncogenic pathways affected in NEC-GYN.

A) RTK-RAS pathway; and B) Cell-Cycle pathway.

Fig. S10. Oncogenic pathways affected in NEC-GYN.

Fig. S11. Various potentially druggable targets were

identified by drug–gene interactions analysis using

GDIdb.

Fig. S12. Mutational landscapes of the specimen

obtained from the same patients.

Fig. S13. A) Representative H3K4me1 IHC images

(20x and 40x) of an ovarian high-grade NEC. Twelve

out of fourteen specimen exhibit strong staining. B)

Representative H3K4me1 IHC images (20x and 40x)

of an endometrial high-grade NEC. Tow out of four-

teen specimens show strong staining in 70-80% tumor

cells and week to moderate staining in 20-30% cells.

Fig. S14. A) MALAT1 expression levels across various

normal human tissues from GETx. TPM value of

MALAT1 in NEC-GYN (shown in the box) is much

higher than all of the GETx normal tissues. B)

MALAT1 expression level in NEC-GYN (n=13) com-

pared to SCLC (n=29) and TCGA cohorts of cervical

(n=304) and ovarian (n=303) cancers (Tukey, **P =
0.0012, ****P > 0.0001 by two-tailed Mann–Whitney

U-test).

Fig. S15. GO analysis of differentially expressed genes

in neuroendocrine carcinoma of cervix (n=8) from

NEC-GYN cohort compared to cervical cancer from

TCGA (n=304).
Fig. S16. GO analysis of differentially expressed genes

in neuroendocrine carcinoma of ovary (n=4) from
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NEC-GYN cohort compared to ovarian cancer from

TCGA (n=303).
Fig. S17. Comparison of HLA class-I (HLA-A, HLA-

B, and HLA-C) genes expression in NEC-GYN

(n=13), cervical (TCGA, n=304), and ovarian (TCGA,

n=303) cancers (Tukey, ****P > 0.0001 by two-tailed

Mann–Whitney U-test).

Fig. S18. Comparison of NEC-GYN (n=13) with

SCLC (n=29).
Fig. S19. GO analysis of differentially expressed genes

in NEC-GYN (n=13) compared to SCLC (n=29, p-adj
<0.001, fold change >2).
Fig. S20. Comparison of relative abundance of

immune cells in NEC-GYN (n=13) and SCLC (n=29)
tumors based on network-based deconvolution (ImSig)

analysis (mean with SD, ****P ≤ 0.0001 by two-tailed

Mann–Whitney U-test).

Fig. S21. A) Representative YAP1 and RB1 IHC

images (20x and 40x) of a cervix small cell neuroen-

docrine carcinoma. B) Correlation of YAP1 RNA level

(TPM, transcript per million) with protein expression

(IHC) and HPV status. C) Correlation of RB1 expres-

sion (IHC) with HPV.

Table S1. Demographic and clinicopathologic charac-

teristics of the patients.

Table S2. Copy number variations (CNV) detected by

XHMM.

Table S3. List of cancer driver genes detected based on

positional clustering.

Table S4. List of fusion genes.
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