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Abstract

Angelman syndrome (AS), a genetic disorder occurring in approximately one in every 15,000 births, is characterized by
severe mental retardation, seizures, difficulty speaking and ataxia. The gene responsible for AS was discovered to be UBE3A
and encodes for E6-AP, an ubiquitin ligase. A unique feature of this gene is that it undergoes maternal imprinting in a
neuron-specific manner. In the majority of AS cases, there is a mutation or deletion in the maternally inherited UBE3A gene,
although other cases are the result of uniparental disomy or mismethylation of the maternal gene. While most human
disorders characterized by severe mental retardation involve abnormalities in brain structure, no gross anatomical changes
are associated with AS. However, we have determined that abnormal calcium/calmodulin-dependent protein kinase II
(CaMKII) regulation is seen in the maternal UBE3A deletion AS mouse model and is responsible for the major phenotypes.
Specifically, there is an increased aCaMKII phosphorylation at the autophosphorylation sites Thr286 and Thr305/306, resulting
in an overall decrease in CaMKII activity. CaMKII is not produced until after birth, indicating that the deficits associated with
AS are not the result of developmental abnormalities. The present studies are focused on exploring the potential to rescue
the learning and memory deficits in the adult AS mouse model through the use of an adeno-associated virus (AAV) vector to
increase neuronal UBE3A expression. These studies show that increasing the levels of E6-AP in the brain using an exogenous
vector can improve the cognitive deficits associated with AS. Specifically, the associative learning deficit was ameliorated in
the treated AS mice compared to the control AS mice, indicating that therapeutic intervention may be possible in older AS
patients.
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Introduction

Angelman syndrome is a genetic disorder resulting in severe

mental retardation, ataxic gait, lack of speech, seizures that may be

difficult to control, and frequent laughter [1]. The gene

responsible for AS is UBE3A and it is unique in that it is one of

a small family of human imprinted genes. UBE3A undergoes

maternal imprinting in the brain; thus, the paternal copy is

silenced and the only active copy inherited is maternal. AS can

occur from a variety of genetic abnormalities of the 15q11–q13

chromosome, each of which render the UBE3A gene silenced. The

majority of AS cases (70%) occur through a de novo deletion

(,4 Mb) of 15q11–q13 of the maternal chromosome which

incorporates the UBE3A gene [2], but it can also occur as a result

of abnormal methylation of the maternal copy, preventing its

expression [3,4] or uniparental disomy in which two copies of the

paternal gene are inherited [5,6]. The remaining AS cases arise

through various UBE3A mutations of the maternal chromosome or

they are diagnosed without a genetic cause (12–15%). Current

estimates indicate that AS is present in about one in every 15,000

births [7], though the actual number of diagnosed AS cases is

lower likely due to misdiagnosis. UBE3A codes for the E6-

associated protein (E6-AP) ubiquitin ligase. E6-AP is an E3

ubiquitin ligase, therefore it exhibits specificity for its protein

targets, which include the tumor suppressor molecule p53 [8], a

human homologue to the yeast DNA repair protein Rad23 [9],

E6-AP itself, and Arc, the most recently identified target [10,11].

The anatomy of the mouse and human AS brain shows no major

alterations compared to the normal brain, indicating the cognitive

deficits may be biochemical in nature as opposed to developmental

[12,13].

The AS mouse model used in this study, which contains a

disruption of the maternal UBE3A gene through a null mutation of

exon 2, was developed by Jiang et al. (1998). This model has been
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incredibly beneficial to the field of AS research due to its ability in

recapitulating the major phenotypes characteristic of AS patients.

For example, the AS mouse has inducible seizures, poor motor

coordination, hippocampal-dependent learning deficits, and

defects in hippocampal LTP. We previously found that the

cognitive deficits in the AS mouse model are associated with

abnormalities in the phosphorylation state of calcium/calmodulin-

dependent protein kinase II (CaMKII) [14]. There was a

significant increase in phosphorylation at both the activating

Thr286 site as well as the inhibitory Thr305 site of aCaMKII

without any changes in total enzyme level, resulting in an overall

decrease in its activity. There was also a reduction in the total

amount of CaMKII at the postsynaptic density, indicating a

reduction in the amount of active CaMKII. With this identifica-

tion, a mutant mouse model was developed with a point mutation

at the Thr305 site preventing phosphorylation. When this mutant

CaMKII mouse model was crossed with the AS mouse, the

phenotype of the AS mouse was rescued. Seizure activity, motor

coordination, hippocampal-dependent learning, and LTP were

restored similar to wildtype levels. These studies were the first to

identify a particular defect in AS associated with the resulting AS

phenotype. The preponderance of aCaMKII is expressed

postnatally in the mammalian brain suggesting that the major

phenotypes of the AS mouse model are due to postnatal

biochemical alterations as opposed to a global developmental

defect [15]. However, because this study utilized a mutation in

CaMKII, the possibility that improvements were due to

developmental rescue could not be formally excluded.

In this study, we sought to determine if the major hippocampal-

dependent cognitive defects could be rescued in the adult mouse

through a UBE3A gene replacement strategy in the hippocampus

using recombinant adeno-associated virus (rAAV) serotype 9,

which has been shown to have one of the highest transgene

expressions in the brain compared to other serotypes. The vector

used in this study is a type 2 terminal repeat (TR2)-flanked UBE3A

gene, and the control vector is a TR2-flanked green fluorescent

protein (GFP). We found that by using an exogenous UBE3A gene

administered directly into the hippocampus, there was a significant

improvement in associative learning. This is the first study

demonstrating cognitive rescue in adult AS mice and indicates

that therapeutic intervention in AS patients may be efficacious

even into adulthood.

Results

As previously mentioned, one of the targets of E6-AP is itself.

This is hypothesized to be a mechanism to regulate levels of

maternally expressed protein; however, we were concerned that

transfected neurons would express significantly more E6-AP

protein than normally observed from WT maternal gene

expression. Quantitative assessment of neuronal E6-AP was

determined by immunohistochemistry 8 weeks following trans-

duction (Fig. 1A). Quantified immunoreactivity of E6-AP

determined for the entire hippocampal formation revealed equal

amounts of E6-AP expression in AS TR2-UBE3A mice compared

to wild type (WT) age matched controls and barely detectable in

AS TR2-GFP mice (Fig. 1B ANOVA Tukey [F(2,154) = 9.422,

P,0.0001]). These results show that AS TR2-UBE3A mice do not

overexpress E6-AP protein and have levels comparable to wild

type mice.

A severe deficit in LTP induction is well established in the AS

mouse model [12]. We measured LTP in area CA1 from

hippocampal slices of AS TR2-UBE3A and AS TR2-GFP mice

and compared this to WT responses. LTP was induced using a

theta-burst stimulation (TBS) protocol as this high frequency

stimulation (hfs) protocol reveals the greatest difference in LTP

induction between AS and WT mice [14]. Consistent with

previous reports, AS TR2-GFP mice showed a severe LTP deficit

compared with WT mice (Fig. 2A); however, the post-tetanic

potentiation (PTP) and early phase of LTP in AS TR2-UBE3A

mice was equivalent to WT (Fig. 2B ANOVA Tukey

[F(2,44) = 6.017, P,0.05]). There was no significant difference

seen between any of the groups during late phase LTP, which

compared the last 5 minutes of fEPSPs slopes (Fig. 2B ANOVA

Tukey [F(2,43) = 2.865, P.0.05]). There was a slow decline in

potentiation ,30 minutes post-stimulation. This level was main-

tained throughout the experiment to 60 minutes, suggesting that

UBE3A expression can partially rescue the LTP defect in the AS

mouse model using a non-saturating hfs. There was no change in

presynaptic function determined by pre-pulse facilitation (PPF)

(Fig. 2C) and the rescue in early phase LTP induction was not the

result of enhanced PTP (Fig. 2D).

The AS mouse model exhibits significant defects in motor

coordination [12,16,17]. A single injection of rAAV in the

hippocampus did not significantly increase UBE3A expression in

the cerebellum (data not shown), and we found that rotorod

Figure 1. E6-AP protein levels were restored to wildtype levels in the TR2-UBE3A treated AS mice. (A) Representative coronal slices
through the hippocampus from each group stained for E6-AP. (B) Quantitative analysis of the IHC revealed a significant increase in E6-AP expression
in the WT and AS-TR2-UBE3A mice compared to the AS TR2-GFP group, while there was no significant change between the WT and AS TR2-UBE3A
mice. Results shown represent the mean with standard error.
doi:10.1371/journal.pone.0027221.g001

Viral-Mediated Cognitive Rescue in AS Mouse Model
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performance in AS TR2-UBE3A mice is not changed compared

to AS TR2-GFP controls (Fig. 3A). To ensure that the motor

coordination defect in the AS TR2-UBE3A mice was not the

result of altered activity or anxiety, an open field (Fig. 3B ANOVA

Tukey [F(2,27) = 0.07563, P.0.05)]) and elevated plus maze test

(Fig. 3C ANOVA Tukey [F(2,27) = 0.5290, P.0.05] and Fig. 3D

ANOVA Tukey [F(2,27) = 2.472, P.0.05]) were performed and

showed no changes in AS TR2-UBE3A versus AS TR2-GFP

mice.

Associative fear conditioned learning is disrupted in the AS

mouse model [12,16]. Contextual fear conditioned learning was

assessed through freezing behavior to the context 24 hours after

training. Although there was no change between any of the groups

during the training phase of fear conditioning (Fig. 4A), our AS

TR2-UBE3A mice show associative learning comparable to that of

WT mice (Fig. 4B ANOVA Tukey [F(2,55) = 71.65, P,0.0001])

when placed back in the same context 24 hours after training.

There were no significant differences seen in the cued test between

any of the groups 24 hours after training (data not shown).

Another form of learning shown to be disrupted in the AS

mouse model is spatial learning evaluated using the Morris water

maze task. All groups were trained for 5 days to find the hidden

platform and recorded latencies find that AS TR2-UBE3A have

significantly lower latency compared to AS TR2-GFP mice on

training days 3 and 4 (Fig. 5B). A probe trial given 24 hours after 5

days of training showed a significant difference in the number of

target platform crossings compared to opposite platform crossings

in all three groups (Fig. 5B). There was also no significant

difference in the time spent in the target quadrant between groups

(Fig. 5D) suggesting equivalent normal spatial memory formation

for all groups. However, when tested 72 hours after the last day of

training (day 5), the WT and AS TR2-UBE3A mice had

significantly more target platform crossings compared to opposite

platform crossings (Fig. 5C). Despite the increase in platform

crossings seen with the TR2-UBE3A mice, this is not associated

with a spatial bias to the target quadrant (Figure 5D,E). Neither

the TR2-UBE3A nor AS TR2-GFP showed a significant increase

for the target quadrant above chance (25%) or compared to WT

mice. Thus, AS TR2-UBE3A mice retained a search strategy for

the target platform without a significant spatial bias to the target

quadrant. The difference observed between AS TR2-GFP and AS

TR2-UBE3A mice is not a result of increased activity, greater

swim speed or decreased anxiety.

Discussion

Recent clinical trials for disorders categorized as developmental,

such as Fragile X mental retardation and Rett syndrome, are

showing promising results for cognitive disruption and associated

behavioral symptoms [18,19,20,21,22]. Angelman syndrome has

Figure 2. Increasing E6-AP in the AS mouse results in improvements in early phase LTP. (A) AS TR2-GFP mice have significant deficits in
hippocampal synaptic plasticity. LTP was induced following 20 min of baseline recordings. (B) Immediately following TBS, acute hippocampal slices
taken from AS TR2-GFP mice had significant deficits in the average PTP (average of first 5 min recordings of fEPSPs slopes). To compare late phase
LTP, the last 5 min recordings of fEPSPs slopes were averaged, and there was no significant difference between any of the groups. (C) There were no
significant differences between any of the groups in either PPF or (D) PTP, indicating that short term synaptic plasticity mechanisms are unaffected.
Results shown represent the mean with standard error.
doi:10.1371/journal.pone.0027221.g002

Viral-Mediated Cognitive Rescue in AS Mouse Model
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Figure 3. There were no changes in motor coordination, activity levels, or anxiety. (A) There was no change in latency to fall of the rotorod
in either AS group. (B) Total distance travelled during the open field test revealed no significant difference between any of the treatment groups. (C)
Time spent in the open arms of the elevated plus maze was used to determine general anxiety. (D) Time spent immobile in the elevated plus maze
was not significantly different in any of the groups. Results shown represent the mean with standard error.
doi:10.1371/journal.pone.0027221.g003

Figure 4. AS mice receiving TR2-UBE3A had significant improvements in associative learning. (A) There were no differences during the
training phase of fear conditioning, indicating that all groups of mice were capable of freezing to the same extent. (B) AS TR2-GFP mice show
significant deficits in contextual fear conditioning when assessed 24 h after training. AS TR2-UBE3A mice, however, froze at the same rate as the
wildtype mice. Results shown represent the mean with standard error.
doi:10.1371/journal.pone.0027221.g004

Viral-Mediated Cognitive Rescue in AS Mouse Model

PLoS ONE | www.plosone.org 4 December 2011 | Volume 6 | Issue 12 | e27221



biochemical and genetic associations with both of these disorders

[23,24,25]. We previously showed a genetic rescue of the major

phenotypes in the AS mouse model using a specific mutation to

alpha CaMKII [16]. Temporal regulation of alpha CaMKII

expression results in little expression prior to post natal day 5

followed by increased expression to maximal levels by post natal

day 21 [26]. The lack of appreciable CaMKII expression during

development of the central nervous system suggested that

CaMKII’s effect was altering synaptic function resulting in the

phenotype rescue. The present study sought to determine if

replacement of E6-AP protein in the hippocampal formation was

sufficient to recover the memory and synaptic plasticity defects

associated with hippocampus dysfunction in the adult AS mouse

model.

The use of the AAV-9 serotype particle allowed for a

preponderance of neurons within the hippocampus and entorhinal

cortex to show E6-AP protein accumulation. While the LTP defect

was not completely recovered, we were able to show a recovery of

the associative learning and memory defect when compared to

controls. Memory was also affected in the AS TR2-UBE3A mice

seen as an increase in non-spatial biased platform crossing

72 hours following training. These results suggest that the increase

in hippocampal LTP is associated with the amelioration of defects

in the Morris water maze and associative learning and memory.

Figure 5. AS TR2-UBE3A mice had significant improvements in the Morris water maze. (A) Escape latency to reach the platform during 5
days of training in Morris water maze. The only significant differences seen were an increase in latency for the AS TR2-GFP mice on day 3 and a
decrease in latency for wildtype mice on day 4 compared to the other two groups (2-way ANOVA Bonferroni: Interaction [F(8,100) = 1.01, P.0.05];
Treatment [F(2,100) = 5.30, P,0.05]; Time [F(4,100) = 53.49, P,0.0001]; Matching [F(25,100) = 5.37, P,0.0001]). The target platform is indicated by the
black circles. (B) Quantification of the number of platform crossings in the target (T), opposite (O), right (R), and left (L) quadrants during the probe
trial of the Morris water maze 24 hours after training indicate no significant differences among any of the groups in comparing target platform
crossings to opposite platform crossings (ANOVA Tukey WT: [F(3,35) = 9.546, P,0.0005]; AS TR2-GFP: [F(3,35) = 3.186, P,0.01]; AS TR2-UBE3A:
[F(3,39) = 2.814, P,0.05]). All three groups learned the platform location based on a spatial bias as indicated by the time spent in the target quadrants
(Fig. 5D 24 h ANOVA Tukey [F(2,26) = 1.027, P.0.05]) (C) A probe test 72 hours after training indicate that the WT and AS TR2-UBE3A groups had
significantly more target platform crossings compared to the number of opposite platform crossings (ANOVA Tukey WT: [F(3,35) = 6.086, P,0.005]; AS
TR2-GFP: [F(3,35) = 0.5650, P.0.05]; AS TR2-UBE3A: [F(3,39) = 2.679, P,0.05]), but this improvement was not spatially biased as seen by the time spent
in the target quadrant (Fig. 5D 72 h ANOVA Tukey [F(2,25) = 5.067, P,0.02]). Results shown represent the mean with standard error.
doi:10.1371/journal.pone.0027221.g005

Viral-Mediated Cognitive Rescue in AS Mouse Model
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Not surprising was the remaining defect in motor coordination.

This defect has been considered to reside in the cerebellum, where

we found no detectable E6-AP production. However, these results

provide the first evidence that the cognitive disruption associated

with Angelman syndrome is not a developmental defect and can

be reversed in the adult AS mouse model. Moreover, these data

support the possibility of developing a beneficial therapeutic to

treat the cognitive and motor defects seen in adult human

Angelman syndrome.

Materials and Methods

Ethics Statement
All animal testing procedures were approved by the Institutional

Animal Care and Use Committee of the University of South

Florida and followed the NIH guidelines for the care and use of

laboratory animals (Approval ID number A4100-01).

Vector Construction
The UBE3A plasmid M43 clone (NCBI database U82122) was a

gift from Yong-Hui Jiang. UBE3A was sub-cloned into the

pTR12.1-MCS vector (which contains the short hybrid CMV

chicken beta-actin promoter as described in Mah et al. [27] at the

Spe I and Cla I cloning sites and sequenced. Virus was generated by

cotransfection of the UBE3A plasmid with the helper plasmids

pXX6 and pAAV9 in HEK293 cells (ATCC, Manassas, VA). The

resulting recombinant virus was purified using an iodixanol gradient

as previously described [28]. A dot-blot assay was used to determine

the viral titer and is expressed as vector genomes (vg)/ml.

Breeding of animals
Mice with the UBE3A null mutation (AS) were described

previously [12]. All experiments were performed on mice that

have been backcrossed to the 129/SvEv line (Jackson Labs, Bar

Harbor, ME) at least 5 generations. Female mice containing the

null mutation were bred with 129/SvEv (WT) males to produce

maternally-deficient AS offspring and WT littermate controls.

Animals were kept on a 12 hour light/dark cycle and food and

water provided ad libitum. All animal testing procedures were

approved by the Institutional Animal Care and Use Committee of

the University of South Florida and followed the NIH guidelines

for the care and use of laboratory animals.

Intrahippocampal AAV Injections in AS Mice
Mice are anesthetized with isoflurane and placed in the

stereotaxic apparatus (51725D Digital Just for Mice Stereotaxic

Instrument, Stoelting, Wood Dale, IL). An incision is made

sagitally over the middle of the cranium and the surrounding skin

is pushed back to enlarge the opening. The following coordinates

are used to locate the left and right hippocampus: AP 22.7 mm,

L62.7 mm, and V 23.0 mm. Mice received bilateral intrahippo-

campal injections of either TR2-UBE3A particles at a concentra-

tion of 1.561012 genomes/mL (N = 10) or TR2-GFP particles at a

concentration of 1.461012 genomes/mL (N = 9) using a 10 mL

Hamilton syringe. Recombinant viral vectors in 1 mL volume were

co-administered with 1 mL of 20% mannitol in each hemisphere.

The wound is cleaned with saline and then closed using Vetbond

(NC9286393 Fisher Scientific, Pittsburgh, PA). Mice recovered in

a clean, empty cage on a warm heating pad and were then singly

housed until sacrificed.

General Activity and Anxiety
For all subsequent behavior testing, the following number of

animals were used for each group: 9 WT, 9 AS TR2-GFP, 10 AS

TR2-UBE3A. Activity was measured by the open field test. Mice

were placed in a 40640 cm acrylic chamber under normal

lighting conditions and allowed to explore for 15 min. Video

tracking software monitored movement, immobility, and distance

traveled (ANY-Maze, Stoelting, Wood Dale, IL). Anxiety was

measured by the elevated plus maze (EPM). The EPM consisted of

two well-lit open arms (35 cm) and two enclosed arms (35 cm)

facing each other. Each arm was attached to a common center

platform (4.5 cm) and the entire device was elevated 40 cm off the

ground. Each mouse was placed in the center platform and

allowed to explore for 5 min. Immobility was measured after the

mouse remained motionless for a minimum of 2 consecutive sec.

Motor coordination
The accelerating rotorod was used to assess motor coordination

and motor learning (Ugo Basile, Italy). Mice were placed on a

3 cm diameter rod with an initial rotation of 4 rpm and

accelerated to 40 rpm over a maximum of 5 min. Mice were

tested for latency to fall off the rod for 4 trials over 2 consecutive

days.

Associative fear conditioning
Fear conditioning was used to assess hippocampus function and

memory formation. Mice were placed in a 25625 cm sound-

attenuation chamber with a wire grid floor. Mice were allowed to

explore the context for 2 min before they received the conditioned

stimulus (CS, 90 db tone) for 30 sec. At the end of the 30 sec, mice

received a mild foot shock (0.5 mA: unconditioned stimulus (US)).

After 1.5 min, the mice received a second CS/US pairing and

monitoring continued for 2.5 min. Freezing was assessed by the

use of a weight transducer system (Panlab, Spain). Mice were

considered freezing if movement ceased for at least 2 consecutive

sec. 24 hrs following CS/US presentation, mice were placed back

into the chamber and allowed to explore for 3 min.

Spatial memory
The Morris Water maze test was used to determine spatial

memory formation. A 1.2 m diameter pool was filled with white

opaque water. A 10 cm diameter white platform was submerged

just below the water surface and large extra-maze cues positioned

around the room. Mice were placed in the pool and allowed to

swim to the escape platform for a maximum of 60 sec. Mice were

given 4 trials per day for 5 days. Latency to escape and swim speed

was measured by video tracking software (ANY-Maze, Stoelting,

Illinois). 24 and 72 hours following the 5th day of training, the

platform was removed and swim patterns were monitored for

60 sec.

Hippocampal slice preparation and extracellular
recording

One hemisphere of each brain was used for electrophysiology

and the remaining hemisphere was preserved for histology. Slice

preparations and the theta-burst stimulation LTP protocol used

were previously described by Weeber et al. [29]. Briefly, the theta

burst stimulation consists of five trains of four pulses at 100 Hz

with an interburst interval (IBI) of 20 seconds.

Histology
Each hemisphere that was not used for electrophysiology was

immersion fixed in 4% PFA. Prior to sectioning with the cryostat,

tissue was transferred to 30% sucrose overnight. Endogenous

peroxidases were quenched with 0.3% hydrogen peroxide for

30 min before the blocking solution (2% BSA, 5% goat serum,

Viral-Mediated Cognitive Rescue in AS Mouse Model
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0.25% Triton-X) was applied for one hour. Tissue sections were

then incubated overnight with antibody solution (2% BSA, 0.25%

Triton-X) with E6AP (A300-352A Bethyl Laboratories, Inc.) at

1:300. After washing with PBS, secondary antibody (Goat Anti-

Rabbit IgG(H+L) SouthernBiotech) was applied for one hour at

room temperature. Immunoreactivity was detected using a metal-

enhanced DAB substrate kit (Pierce). A Mirax Micro digital slide

scanner (Carl Zeiss USA) was used to photograph IHC sections

and MIRAX SCAN software was used to quantify E6-AP

expression in the hippocampus. Expression levels were normalized

to the wildtype.
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