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Abstract

Zika virus (ZIKV) is a kind of flavivirus emerged in French Polynesia and Brazil, and has led

to a worldwide public health concern since 2016. ZIKV infection causes various neurological

conditions, which are associated with fetus brain development or peripheral and central ner-

vous systems (PNS/CNS) functional problems. To date, no vaccine or any specific antiviral

therapy against ZIKV infection are available. It urgently needs efforts to explore the underly-

ing molecular mechanisms of ZIKV-induced neural pathogenesis. ZIKV favorably infects

neural and glial cells specifically astrocytes, consequently dysregulating gene expression

and pathways with impairment of process neural cells. In this study, we applied a model for

ZIKV replication in mouse primary astrocytes (MPAs) and profiled temporal alterations in

the host transcriptomes upon ZIKV infection. Among the RNA-sequencing data of 27,812

genes, we examined 710 genes were significantly differentially expressed by ZIKV, which

lead to dysregulation of numerous functions including neurons development and migration,

glial cells differentiation, myelinations, astrocytes projection, neurogenesis, and brain devel-

opment, along with multiple pathways including Hippo signaling pathway, tight junction,

PI3K-Akt signaling pathway, and focal adhesion. Furthermore, we confirmed the dysregula-

tion of the selected genes in MPAs and human astroglioma U251 cells. We found that

PTBP1, LIF, GHR, and PTBP3 were upregulated while EDNRB and MBP were downregu-

lated upon ZIKV infection. The current study highlights the ZIKV-mediated potential genes

associated with neurodevelopment or related diseases.

Author summary

Zika virus (ZIKV) infection causes serious neurological disorders of central and periph-

eral nervous system, and fetal brain development disorders including microcephaly.

There are still uncovered explorations for the underlying molecular mechanism of ZIKV-

infected pathogenesis. This study reveals a series of dysregulation of neuropathic genes

mRNA and protein expression in mouse and human astrocytes upon ZIKV infection. As

an ideal ZIKV infection model in mouse primary astrocytes (MPAs), RNA-seq was per-

formed to profile transcriptome alteration by ZIKV infection. Bioinformatics analysis
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demonstrated the significant alterations of the 710 genes that were linked to glial cell dif-

ferentiation and projection, neurogenesis and migration of neurons, myelination, as well

as synaptic control. Among the top selected differentially expressed genes, such as PTBP1,

LIF, GHR, PTBP3, EDNRB, and MBP, the mRNA and protein expressions were con-

firmed to identify the dysregulation of the transcriptome in MPAs upon ZIKV infection.

Furthermore, ZIKV infection altered the mRNA and protein expression of these astrocytic

genes involved in neurodevelopment in U251 cells following the analysis of the transcrip-

tome. In conclusion, the alteration of astrocytic gene functions or associated-pathways

suggest a novel clue of a mechanism involved in the ZIKV-induced neurodevelopment

disorders.

Introduction

Zika virus (ZIKV) belongs to the Flaviviridae family, Flavivirus genus, and is transmitted to

humans through Aedes mosquitoes bite and sexual intercourse [1–3]. ZIKV infection causes

Zika fever that results in serious health issues for being potentially associated with fetus neuro-

development disorders such as microcephaly and other central and peripheral nervous systems

(CNS/PNS) neurological conditions including myelitis, encephalitis, polyneuritis, and demye-

linating polyneuropathy [4–6]. ZIKV was isolated in the Zika forest of Uganda in 1947 from a

monkey and the anti-ZIKV neutralizing antibodies in human serum were first reported in

1952 [7]. The first link between neurological diseases and ZIKV infection was described in the

French Polynesia during the ZIKV outbreak in 2013–2014 [8,9]. In the near past between 2015

and 2016, an increase in the microcephaly prevalence reported in some areas of Brazil con-

firmed ZIKV transmission [10]. However, different approaches have been made to reveal the

underlying links of microcephaly and ZIKV infection during pregnancy [11,12]. Additionally,

ZIKV infection is also responsible for other neurological and brain abnormalities [10,11,13–

15].

Differentiation failure or loss of the neuronal progenitor cell growth impairs neural devel-

opment to causes microcephaly [16]. An increase in the fetal malformation cases upon ZIKV

infection (congenital ZIKV syndrome), such as microcephaly and hydrocephaly, placental

insufficiency in utero, stillbirth, and spontaneous abortion, indicating the capacity of ZIKV to

readily infect the developing human brain, were reported as ZIKV infection deleterious conse-

quences [17]. Most of these diseases are linked to the problems that occur during fetus brain

development or CNS/PNS function [6]. To date, no antiviral therapy or vaccines are available

for zika virus infection [18]. As a result, the relationship between neural disorders and ZIKV

infection is of high concern.

Besides neural cells, glial cells such as microglia and astrocytes are the significant target cells

for ZIKV infection in brain [19–22]. Glial cells are rich in astrocytes and found in the capil-

lary’s vicinity as an important component of the blood-brain barrier (BBB). Thus, ZIKV could

target astrocytes instantly after invading the CNS. Upregulation of pro-inflammatory mole-

cules production upon Toll-like receptor (TLR) pathway activation in glial cells is a vital factor

for neuro-inflammation which is associated with many other neurological disorders [23]. As

such, ZIKV infection in glial cells may cause BBB leakage by producing pro-inflammatory

molecules which leads to neuro-inflammation [24]. In addition, as astrocytes are exceedingly

involved in synaptic and axonal guidance, other microglia’s coordination in postnatal synapto-

genesis and neurons survival to death with genetic and functional alterations may result in var-

ious neurological disorders [25,26]. Astrocytes from different brain regions convert or help in-
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migration of new neuron through the rostral migratory stream organization during early

developmental stages [25,27,28]. Based on this, the ZIKV infection in astrocytes is considered

to be an important site in pathological neural disorders and brain abnormalities.

Emerging studies have been reported on virus-induced variations in the transcriptomic

profiles of virus-treated cell lines and organisms [29,30]. Phenotypically, transcriptome profil-

ing of ZIKV infection in mouse cortical tissues, human brain organoids, and neural progeni-

tors have disclosed the dysregulation of many genes and pathways that are linked with cell

death, DNA repair or replication, cell cycle, viral response, metabolism, and transcription [31–

33]. The dysregulation of transcriptomes by ZIKV varies from Dengue virus (DENV) infection

induced dysregulation [34]. ZIKV infection in embryonic mouse cortex and human neural

progenitors dysregulate a number of known microcephaly-associated genes such as MCPH1

(Microcephalin), CENPF (Centromere Protein F), TBR2 (T-box brain protein 2), RBBP8 (RB

binding protein 8), AXL (AXL receptor tyrosine kinase), and ASPM (Assembly factor for spin-

dle microtubules) [31,35]. However, it remains unclear how such dysregulation may contrib-

ute to ZIKV-related pathophysiology in astrocytes.

This study evaluated the alteration of neuropathic genes mRNA and protein expression in

mouse primary astrocytes (MPAs) and human astroglioma U251 cells upon ZIKV infection.

We conducted an ideal ZIKV infection model in MPAs isolated from neonatal mice, followed

by RNA-seq performance to profile ZIKV-induced transcriptome alterations. Briefly, we iden-

tified 710 significantly dysregulated genes from the RNA-seq of total of 27,812 genes upon

ZIKV infection in MPAs, which were associated with astrocytic cell synaptic control, migra-

tion, cell growth and other brain development conditions under bioinformatic functional anal-

yses. Subsequently, the most differentially dysregulated genes associated with neural function

in MPAs were selected in ZIKV-infected MPAs. In detail, we selected top genes from the dys-

regulated pool and identified that LIF (Leukemia inhibitory factor), PTBP3 (Polypyrimidine

tract binding protein 1), and GHR (Growth hormone receptor) were upregulated while

EDNRB (Endothelin receptor type B) and MBP (Myelin basic protein) were downregulated

upon ZIKV infection in both MPAs and U251 astrocytes. Another member from PTB family

called PTBP1 plays a critical role in astrocyte-neuron conversion during neurodevelopment

[27], was also detected along with PTBP3. Our findings systematically revealed dysregulation

in a cluster of neural genes by ZIKV infection in astrocytes, which provides novel clues for the

mechanism involved in ZIKV-associated neurodevelopment disorders. Datasets presented in

this study could be a critical source to understand the molecular pathogenesis of ZIKV-

induced abnormalities in fetal brain, and to develop an effective therapeutic approach against

ZIKV infection and its consequences.

Materials and methods

Animal study

Wild type (WT) C57BL/6J mice were purchased from the Hubei Provincial Center for Disease

Control and Prevention (Wuhan, Hubei, China). The mice were housed under specific patho-

gen-free (SPF) conditions in individually ventilated cages.

Ethics statement

The animal study was approved by the Institutional Review Board of the College of Life Sci-

ences, Wuhan University and was conducted in accordance with the guidelines for the protec-

tion of animal subjects (permit number: WDSKY0201901).
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Isolation of MPAs

Postnatal day 3 (P3) mice were sacrificed by decapitation for isolation of cortical astrocytes or

also called MPAs. Cerebral cortices were carefully isolated and after processing to dissociate to

a single cell suspension, and seeded in T75 tissue culture flask prior coated with Poly-D-lysine

at a dose of 50 μg/ml, as previously reported [36]. After 7 to 8 days of incubation, confluent

astrocytes monolayers were shaken on an orbital shaker for 40 minutes at 180 rpm to remove

microglia cells, and then replaced culture medium following a second time shaking at 240 rpm

for 6 hours to remove oligodendrocytes precursor cells (OPCs). Astrocyte monolayers were

washed with phosphate buffer saline (PBS) and transferred into a new T75 cultural flask, and

incubated for 12 to 14 days replacing fresh medium for every 2 to 3 days until usage [36]. The

isolation of pure astrocytes and removal of other cells like microglia and OPCs was confirmed

by a morphological overview of mix cortical cells at different time points after isolation and

immunofluorescence microscopy against the astrocyte-specific marker GFAP [36].

Cell lines and culture

Mouse primary astrocytes (MPAs) were isolated from WT C57BL/6J mice brain cortices as

described above [36]. Human astroglioma (U251), African green monkey kidney epithelial

cells (Vero) (#CCL-81), Human lung cancer cell line (A549), and Aedes albopictus mosquito

cell line (C6/36) (#CRL-1660) were purchased from ATCC (Manassas, VA, USA). All these

cells were cultured in DMEM (Gibco; Grand Island, NY, USA) supplemented with 10% FBS

(Gibco) with100 U/ml Penicillin/Streptomycin (Gibco) at 37˚C and 5% CO2, except that C6/

36 cells were maintained in RPMI1640 (Gibco) at 30˚C and 5% CO2 [37].

Reagents

Rabbit anti- EDNRB (A2980), MBP (A11162), LIF (A1288), GHR (A14735) and β-actin anti-

bodies were purchased from ABclonal Technology (Wuhan, China). Rabbit anti-PTBP1

(12582-1-AP) antibody was purchased from Proteintech Group (Rosemont, IL, USA). Rabbit

anti-dsRNA [J2] (Ab01299) was purchased from Absolute Antibody (Wilton, UK). Rabbit

anti-ZIKV-protein (GTX133312) was purchased from GeneTex (Irvine, CA, USA). Mouse

anti-GFAP (E4L7M) was purchased from Cell Signaling Technology (Beverly, MA, USA).

Zika virus propagation and isolation

ZIKV Asian strain isolate z16006 (GenBank accession number, KU955589.1) obtained from

Institute of Pathogenic Microbiology, Center for Disease Control and Prevention of Guang-

dong (Guangzhou, China) as previously reported [37]. ZIKV was propagated in C6/36 cell

line. Briefly, C6/36 cells were cultured in RPMI1640 containing 10% FBS and 1% Penicillin/

Streptomycin solution. Cells were infected with ZIKV at an MOI (Multiplicity of Infection) of

0.1 (diluted in 1 ml RPMI1640). After incubation for 2 h at 32˚C, 5% CO2, 4 ml fresh medium

was added to the culture and continued the incubation for additional 4 days. Cell supernatants

were harvested, centrifuged and filtrated using a 0.45 μm filter. The stock was aliquoted in 1.5

ml Eppendorf tubes for single time thawing [37]. The determination of virus titer was per-

formed by serial dilutions for the infectivity in Vero and A549 cells detected by standard pla-

que assay and further amplified by TCID50 (50% Tissue Culture Infective Dose) [38–40].

RNA-seq and bioinformatics analysis

MPAs were infected with ZIKV at MOI = 2 and harvested at 24 h p.i. The detailed methodol-

ogy of the transcriptomic study is present in S1 Text. Briefly, the total RNA samples were
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extracted in TRIzol reagent and cDNAs were prepared. The library preparations (S1 Table)

were sequenced on an Illumina Hiseq 2500 PE150 platform (Illumina; San Diego, CA, USA) in

Novogene Bioinformatics Institute (Beijing, China). The raw reads of RNA-seq sequences are

treated by the fastp (https://github.com/OpenGene/fastp). Clean reads are aligned to the hg38

genome with HISAT2 [41], duplicates are removed using Samtools [42]. Genes identified as

rRNAs, and pseudogenes are removed. Transcript assembly is determined using StringTie and

Ballgown is used to identify differentially expressed isoforms gene [43]. Then, the differential

expression analysis is performed using DESeq2 (https://bioconductor.org/packages/release/

bioc/html/DESeq2.html), using a fold change (FC) cutoff of 1.5 and padj-value cutoff of 0.05.

Gene set enrichment analysis was done using QuSAGE [44]. The gene symbols were converted

to ensemble IDs using BioDBnet (https://biodbnet-abcc.ncifcrf.gov/db/dbOrthoRes.php). For

expression-based analysis the data were subjected to an online ImageGP tool for converting

numerical data into heatmaps (http://www.ehbio.com/ImageGP/index.php/Home/Index/

PHeatmap.html), and volcano plot (http://www.ehbio.com/ImageGP/index.php/Home/

Index/Volcanoplot.html). The significantly differentially expressed genes selected were sub-

jected to functional annotation analysis (gene ontology) using online ToppGene Suit (https://

toppgene.cchmc.org/enrichment.jsp) and DAVID Bioinformatics Resources 6.8 (https://

david.ncifcrf.gov/summary.jsp) to find the most related KEGG pathways. The scripts (tran-

scriptomic data) are available online in the NCBI Sequence Read Archive (SRA) database with

the SRA (BioProject) accession number: PRJNA692303.

RNA quality and quantity, relative quantitative real-time PCR

Total cellular RNA was extracted from mock and ZIKV-infected MPAs and U251 cells using

TRIzol reagent (Invitrogen; Carlsbad, CA, USA), following the manufacturer’s instructions. A

detailed explanation of methodology is provided in S2 Text. Briefly, the quality of extracted

RNA was assessed by spectrophotometry (NanoDrop; Thermo Scientific) (A260/A280) [45,46]

and cDNAs were prepared using HiScript II Q Select RT SuperMix, according to the manufac-

turer’s instructions. (http://www.vazymebiotech.com/products_detail/productId=80.html).

Relative quantitative Real-time polymerase chain reaction (RT-qPCR) analysis was performed

on Light Cycler 480 (Roche, Basel, Switzerland) using SYBR Green Real-time PCR master mix

(Bio-Rad; Hercules, CA, USA) as previously described [45,47]. Briefly, in a reaction mixture of

10 μl SYBR, 1 μl cDNA diluted template, 1 μl specific gene primers (0.5 μl forward and reverse

primer, 10 μM each), and RNase-free water to complete 20 μl as a final volume. The amplifica-

tion protocol used as follows: denaturation at 95˚C for 30 s, 40 cycles of 95˚C for 5 s, 55˚C for

30 s, and 72˚C for 30 s), and a final extension step. The melting curve was obtained by heating

the amplicon from 65˚C to 95˚C at 0.5˚C s−1. The relative expression level was based on 3 bio-

logical replicates mean at each time point using the 2−ΔΔCT approach [48]. GAPDH was used as

an internal reference control in this study. Real-time PCR primers were designed by Primer

Premier 5.0 (Premier Biosoft; Palo Alto, California, USA), and the sequences are provided in

Table 1.

Western blot

Cell lysates were extracted in cell lysis buffer as previously described [49] (https://www.

novusbio.com/support/support-by-application/western-blot/protocol.html). The protein con-

centrations were determined by Bradford assay (Bio-Rad, Hercules, CA, USA), subjected to

12% SDS-PAGE gel and transferred onto a nitrocellulose (NC) membrane. The membrane

was blocked with 5% nonfat dried skim milk and incubated with specific antibodies. Protein

bands were detected by using enhanced chemiluminescence Luminescent Image Analyzer
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(Fujifilm LAS-4000, Fujifilm, Tokyo, Japan). β-actin was used as an internal control refers to

the target genes [37] (http://docs.abcam.com/pdf/protocols/general-western-blot-protocol.

pdf).

Bright-field microscopy

Morphological representation of U251 cells treated with ZIKV and Mock were observed for

cytopathic effect (CPE) at 12, 24, 48, and 60 h p.i. using bright field Nikon TE-2000 inverted

microscope (Tokyo, Japan). All images’ brightness and contrast were adjusted in PowerPoint

2016 [6].

Cell viability

Cell viability was determined using the Cell Counting Kit 8 (CCK8) according to the manufac-

turer’s instructions (Dojindo, Japan). ZIKV-treated cells for indicated times were provided

with 500 μl of CCK8 solution in each well in 12-well plate and incubated for 30 minutes at

37˚C. Cell injury absorbance was measured at 450 nm [6,47].

Confocal microscopy

The confocal microscopy was performed according to the method previously reported [6].

Briefly, MPAs and U251 cells were seeded on 20-mm, and mock-infected or with ZIKV-

infected for different time intervals. The cells were washed with PBS, fixed with 4% formalde-

hyde for 15 min and then permeabilized with 0.2% Triton X-100 for 5 min at room tempera-

ture (RT). After three times wash with PBS, the cells were blocked with 5% bovine serum

albumin (BSA) for 1 h, subsequently incubated with specific primary antibodies overnight at

4˚C. The cells were washed and incubated with FITC-conjugated or Cy3-conjugated goat anti-

rabbit IgG, FITC-conjugated goat anti-mouse IgG (Proteintech Group) secondary antibodies

for 1 h at RT. Finally, the cells were washed and mounted for Immunofluorescence (IF) assay

Table 1. Information of primers sequences for qPCR assay in this study.

Primer name Sequences (5’ to 3’)

Human Mouse

qRT GAPDH F ACCCAGAAGACTGTGGATGG GGGATGATGGAGGACGTGAT

qRT GAPDH R TCAGCTCAGGGATGACCTTG CCAATACGGCCAAATCCGTT

qRT ZIKV NS5 F GGTCAGCGTCCTCTCTAATAAACG GGTCAGCGTCCTCTCTAATAAACG

qRT ZIKV NS5 R GCACCCTAGTGTCCACTTTTTCC GCACCCTAGTGTCCACTTTTTCC

qRT LIF F ATCTGTCCATCCCAACAGCA TGGAGCTGTATCGGATGGTC

qRT LIF R ATCCTGGACAAGGGTGAGTG GCATTGAGCTTGACCTGGAG

qRT EDNRB F AGATGTGTAAGCTGGTGCCT TTAGCCCTGTGTTCGTCACT

qRT EDNRB R AACCACAGAGACCACCCAAA GTTAAAGCTCTCGGGCTTGG

qRT GHR F ACTCAGCAGCCCAGTGTTAT AGCGAAGTCCTCCGTGTAAT

qRT GHR R ATATGGGCAGCTTGGTGAGT GGATCCTCTGAAGCTGGTGA

qRT MBP F GAAGGCCAGAGACCAGGATT ACTTGCCATCCATCCTGTGA

qRT MBP R TGAATCCCTTGTGAGCCGAT CCGGATCCCTGAGTTCTCTC

qRT PTBP1 F AGGTCACCAACCTCCTGATG TCTAAGTTTGGCACCGTCCT

qRT PTBP1 R GGGTCACCGAGGTGTAGTAG TGAGACTGGTGAGCTTGGAG

qRT PTBP3 F CAGATGGCGGATGCAAATCA CCATCGCATTTCCTCAAGCA

qRT PTBP3 R TGGTCTTCTTGTCCCTCTCG AATGGCCATCCTTCCACTGA

qRT: quantitative Real-time PCR; F: forward; R: reverse.

https://doi.org/10.1371/journal.pntd.0009362.t001
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by confocal laser scanning microscopy (Fluoview FV1000; Olympus, Tokyo, Japan) after

nuclei staining with 4,6-diamidino-2-phenylindole solution (DAPI) [6,37].

Statistical analysis

All experiments were repeated at least three times. The results are presented as means ± SD

unless stated otherwise. Statistical significance was determined by paired Student’s t-test using

the Prism 8 software (GraphPad Software Inc., San Diego, CA, USA). A P� 0.05 was consid-

ered statistically significant.

Results

The replication of ZIKV in MPAs

Considering astrocytes as one of the most significant target cells for ZIKV infection in the

brain, we assessed the infection and replication of ZIKV in MPAs. Initially, we isolated and

cultured MPAs from mouse brain cortex by standard protocol (Fig 1A). To confirm the puri-

fied isolation of MPAs, the cells were stained with astrocyte marker GFAP (glial fibrillary

acidic protein). Immunofluorescence (IF) staining results revealed that nearly all isolated cells

were GFAP positive (Fig 1B). We further evaluated ZIKV infection and replication in MPAs.

The increasing cytopathic effect (CPE) was measured by cell viability assays (Fig 1C), ZIKV

replication was determined by an obvious increase of viral NS5 RNA level detected by qPCR

(Fig 1D), while expression of viral NS5 protein detected by Western blot (Fig 1E), suggesting a

robust viral replication in MPAs upon ZIKV infection. Furthermore, IF analysis showed the

ZIKV replication by the continuous increase of viral dsRNA in MPAs at 24 and 48 h p.i. (Fig

1F). Overall, these results illustrated that MPAs are susceptible to ZIKV infection and elicited

well-observed replication, which allows MPAs as a kind of considerable model for ZIKV

infection.

Profile of mRNA expression in ZIKV-infected MPAs

To explore the transcriptional differences by ZIKV infection in MPAs, RNA-Seq was per-

formed and the transcriptional profile for altered genes was designed (Fig 2A). Briefly, we cul-

tured MPAs isolated from the mouse brain cortices and then infected them with ZIKV,

following cell harvest and RNA-Seq (Fig 2B). The transcriptome analysis was proceeded

according to laboratory analysis, bioinformatic analysis, and biological interpretation (Fig 2C).

In total 27,812 genes represented by a heatmap (Fig 2D), we identified 710 significantly dysre-

gulated genes upon ZIKV infection in MPAs based on fold change with cut off value of 1.5 (S2

Table). Among these 710 genes, 355 genes were significantly up-regulated and 355 genes were

down-regulated upon ZIKV infection in MPAs (Fig 2E). Thus, the data demonstrated that

ZIKV infection altered transcriptome in MPAs.

Functional categorization of the differentially expressed genes by ZIKV in

MPAs

Transcriptome analyses provide a better understanding of how the genome is transformed

into functional proteins. ZIKV-treated human brain organoids, neural progenitors, and

mouse cortical tissues including primary astrocytes exposed numerous altered gene ontologies

or functions and pathways associated with cell death, metabolism, transcription, DNA replica-

tion and repair, cell cycle, and viral responses [50]. Since the transcriptome alteration was a

conspicuous molecular phenotype of ZIKV infection in MPAs, we further showed the top 30

dysregulated basic functions of the related genes, and assigned the altered genes ontologies to
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Fig 1. The isolation, culture, and identification of ZIKV infection in mouse primary astrocytes (MPAs). (A) Postnatal (P3)

mouse dissection for cortical astrocytes isolation. (i) Whole brain; (ii) Brain after cerebellum and olfactory bulbs removal; (iii)

Cortices isolation by peeling off the meninges, a plate-like structure on the brain cortex, scale bar 5 = mm. Culture of mouse

primary astrocytes from mouse brain cortex. (a) The yellow arrows indicate single cell astrocytes attached to the bottom of the

culture flask and floating are the dead neurons in supernatant. (b) Astrocytes layer is forming and confluent after vigorous

shaking to remove OPCs and Microglia cells. (c) Primary astrocytes layer shows a high density of the cells after 2 weeks of the

first split, scale bar = 50 μm. (B) Identification of mouse primary astrocytes with rabbit anti-GFAP (green) marker and DAPI

(blue) for nuclei by confocal microscopy, scale bar = 20 μm. (C-F) MPAs were mock-treated or infected with ZIKV (MOI = 2)

for indicated times. Cell viability was measured by CCK8 assay (C), ZIKV viral NS5 mRNA (D) and NS5 protein expression (E)

were determined by qPCR with GAPDH as an internal control and Western blot with β-actin as internal control, respectively,

and viral dsRNA (a replication intermediate) was immunoprobed with dsRNA-antibody (red), along with GFAP (green) for

astrocytes and DAPI (blue) for nuclei by Immunofluorescent (IF), scale bar = 20 μm (F). The underlying numerical data for

“Fig 1C and 1D” is provided in the supporting file “S1 Data”.

https://doi.org/10.1371/journal.pntd.0009362.g001
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Fig 2. Expression profile for altered mRNAs upon ZIKV infection in MPAs. (A) A basic workflow diagram for the

differential gene expression profile starting from experimental design to using bioinformatic tools. (B) Sketch diagram of main

experiments from isolation of MPAs to RNA-Seq. (C) Flow sheath of transcriptome analysis of MPAs upon ZIKV infection.

(D) Hierarchical clustering Heatmap of a distinguishable mRNA expression profiling in mouse primary astrocyte cells of

ZIKV-infected group relative to Mock group (each group, n = 2). (E) Volcano analysis for a profile of mRNAs expressions of

ZIKV-infected relative to Mock group. Red dots illustrate up-regulated genes, green dots represent down-regulated genes,

while blue dots show insignificant genes. The underlying numerical data for “Fig 2D and 2E” is provided in the supporting file

“S1 Data”.

https://doi.org/10.1371/journal.pntd.0009362.g002
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three classes: biological process (BP, red color), cellular component (CC, dark gray color),

and molecular function (MF, blue color) as reported previously [51], with 30 functional

terms and genes in the annotation (Fig 3A). The dot plot also showed the enrichment score

values of the top 30 most significant enrichment terms (Fig 3B), suggesting that ZIKV

induces a change in the expression of genes associated with neurogenesis, neuron differentia-

tion, development, migration, and maturation, astrocytes projection, and brain development

in infected cells.

Furthermore, we showed the pathway enrichment results (top 20) involved in significant

genes between mock and ZIKV-infected MPAs from RNA-seq analysis. KEGG was used as the

pathway database and enrichment scores was depicted (Fig 3C). The comparisons of top 20

enriched KEGG pathways among the annotated differentially expressed genes in 2 groups

were shown (Fig 3D), which reveals that ZIKV infection was related to multiple pathways

including Hippo signaling pathway, focal adhesion, PI3K-Akt signaling pathway, and tight

junction. Thus, the functional categorization is associated with brain development, and neuro-

genesis from differentially expressed genes by ZIKV in MPAs.

ZIKV infection dysregulate neural genes expression in MPAs

Bioinformatic analysis of RNA-seq data illustrated that ZIKV can potentially dysregulate the

astrocyte genes. We summarized the top 10 genes that were significantly differentially

expressed (up- and down- regulated) among the 710 genes, which were significantly dysregu-

lated in ZIKV-infected MPAs at 24 h p.i. compared to mock-treated cells. The comparisons of

gene expression between two groups are presented by fold change (Table 2). It is known that

these selected genes were directly or indirectly involved in neurological conditions or brain

development [52,53], which is consistent with the fact that ZIKV infection dysregulates a num-

ber of known genes in the embryonic mouse cortex and human neural progenitors that are

associated with neurodevelopment or neural disorders [31].

Since ZIKV infection is responsible for causing differential gene expression in MPAs, we

further selected six cellular genes that were significantly dysregulated by ZIKV infection to

validate the RNA-seq results. ZIKV RNA (Fig 4A) and protein (Fig 4C) expression levels for

NS5 were detected to confirm the significant infectivity and replication at 24 and 48 h p.i.

We determined the differential gene expression in MPAs by qPCR. Our results showed that

mRNA levels of PTBP1, LIF, PTBP3, and GHR were significantly upregulated, while EDNRB
and MBP were downregulated upon ZIKV infection at indicated time (Fig 4B). The similar

results were also observed for the protein expression of PTBP1, LIF, GHR, EDNRB, and MBP
genes (Fig 4C). Furthermore, IF assay (Fig 4D) along with the intensity of illustrated gene

expression (Fig 4E) confirmed the upregulation and downregulation of indicated gene

expression in ZIKV-infected MPAs, respectively. These results suggested that ZIKV infection

potentially dysregulated neural genes in MPAs, which may lead to neurodevelopmental

disorders.

Validation of DEGs in ZIKV-infected MPAs

To access the validation of DEGs in ZIKV-infected MPAs, the comparison of the top 6 selected

differentially expressed genes between qRT-PCR and RNA-Seq was performed. In the ZIKV-

infected MPAs for 24 h, qRT-PCR analysis displayed the up-regulation of PTBP1 (Fig 5A),

GHR (Fig 5B), LIF (Fig 5C), and PTBP3 (Fig 5D), while the down-regulation of EDNRB (Fig

5E) and MBP (Fig 5F), revealing that the selected genes expression profiles were accordant

with obtained results from RNA-Seq (Fig 5A–5F). Therefore, the data illustrated that the meth-

odology in the study concluded the accuracy and reproducibility.
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Fig 3. Functional categorization of the differentially expressed genes (DEGs) in ZIKV-infected MPAs. (A) The DEGs were assigned to three gene ontology classes:

biological process (BP, red color), cellular component (CC, dark grey color), and molecular function (MF, blue color), with top 30 functional terms. (B) The dot plot

displays the enrichment score values of the top 30 most significant enrichment terms. (C) Pathway enrichment (top 20) involved in significant genes reported in ZIKV-

infected relative to Mock mouse primary astrocyte cells from RNA-seq analysis. KEGG was used as the pathway database. Enrichment scores are based on (A). (D) Top

20 enriched KEGG pathways among the annotated DEGs in 2 groups comparisons. The Y-axis represents KEGG pathways. Low padj values are shown in red, and high

padj values are depicted in blue. Pathways with padj values less than 0.05 are significantly enriched. The size of the spot reflects the number of DEGs, and the color of the

spot corresponds to different padj-value ranges. The underlying numerical data for “Fig 3A, 3B, 3C, and 3D” is provided in the supporting file “S1 Data”.

https://doi.org/10.1371/journal.pntd.0009362.g003
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ZIKV infection dysregulate neural genes expression in human astroglioma

U251 cells

Given the fact that MPAs were susceptible to ZIKV infection and ZIKV dysregulated several criti-

cal neural genes expression, such alterations by ZIKV infection were also evaluated in human

U251 cells. As compared to mock-treated U251 cells, ZIKV-infected U251 cells displayed a visible

cytopathic effect (CPE) in a time-dependent fashion (S1 Fig), and the increasing CPE was mea-

sured by cell viability assays (Fig 6A). The qPCR results revealed that ZIKV RNA level continu-

ously increased from 0 to 36 h p.i., whereas slightly declined between 36 and 48 h p.i. (Fig 6B),

suggesting U251 cells were susceptible to ZIKV infection. In parallel, we also observed a robust

expression of viral dsRNA upon ZIKV infection in U251 at 12 and 24 h p.i. (Fig 6C). Further-

more, we evaluated the differential gene expression of indicated genes in ZIKV-infected U251

cells. Our results illustrated that PTBP1, LIF, PTBP3, and GHR mRNA levels were upregulated

while EDNRB and MBP mRNA levels were downregulated in ZIKV-infected U251 cells at 12 and

24 h p.i. (Fig 6D). Similarly, we also observed the dysregulated protein expression of the indicated

genes by Western blot assay (Fig 6E) and IF assay (Fig 6F), along with the intensity of illustrated

genes expression (Fig 6G). Notably, ZIKV infection dysregulated astrocytic gene expression lead-

ing to brain abnormality in human U251 cells as similar to MPAs (Fig 7), which suggests ZIKV-

infected MPAs as a compatible infection model in the exploration of neural disorders.

Discussion

An increase of defects in neurodevelopmental has been associated with ZIKV, a flavivirus

mainly transmitted by mosquitoes and sexual transmission [54,55]. Current studies have

Table 2. The enrichment of top 10 genes in ZIKV infected MPAs.

List of most variable differentially expressed genes from RNA-seq data. (FC� 1.5, P < 0.05)

Expression NCBI ID Gene ID Description ZIKV Mock log2(V/M) P-values

Up-regulated 14528 ENSMUSG00000037580 GTP cyclohydrolase 1 411.0951 255.2346 0.686851214 2.80E-05

16948 ENSMUSG00000024529 lysyl oxidase 1955.848 1278.814 0.611777167 1.96E-14

14600 ENSMUSG00000055737 growth hormone receptor 971.2079 693.0997 0.485122031 1.40E-05

16878 ENSMUSG00000034394 leukemia inhibitory factor 821.1017 591.2651 0.475197313 6.50E-05

19878 ENSMUSG00000020580 Rho-associated coiled-coil containing protein kinase 2 5737.706 4195.744 0.45306051 7.90E-19

17294 ENSMUSG00000051855 mesoderm specific transcript 1454.704 1083.248 0.427033195 1.43E-06

20393 ENSMUSG00000019970 serum/glucocorticoid regulated 1304.022 974.9833 0.418896285 9.53E-06

230257 ENSMUSG00000028382 polypyrimidine tract binding protein 3 1069.396 808.1253 0.40267405 9.09E-05

66234 ENSMUSG00000031604 methylsterol monooxygenase 1 2787.93 2108.884 0.400968214 2.97E-09

19205 ENSMUSG00000006498 polypyrimidine tract binding protein 1 4517.417 4254.308 0.085671 0.084453

Down-regulated 17196 ENSMUSG00000041607 myelin basic protein 621.6153 945.9696 -0.607703751 1.71E-07

50913 ENSMUSG00000039830 oligodendrocyte transcription 1866.69 2697.02 -0.53178784 2.98E-16

17172 ENSMUSG00000020052 achaete-scute family bHLH transcription factor 1 321.8875 465.8106 -0.53166219 0.000573

17762 ENSMUSG00000018411 microtubule-associated protein tau 685.4954 958.5018 -0.483424535 3.92E-06

18823 ENSMUSG00000031425 proteolipid protein (myelin) 1 549.6362 767.9758 -0.482498168 3.89E-05

13618 ENSMUSG00000022122 endothelin receptor type 5027.983 6649.826 -0.40246941 6.08E-21

18128 ENSMUSG00000026923 notch 1 3787.42 4951.807 -0.387878131 1.88E-15

23805 ENSMUSG00000020135 adenomatosis polyposis coli 2 2954.399 3839.891 -0.378530646 1.38E-12

20847 ENSMUSG00000040033 signal transducer and activator of transcription 2 2639.62 3375.84 -0.354998851 5.01E-10

12266 ENSMUSG00000024164 complement component 3 204812 261725.1 -0.353735272 6.43E-87

ENSMUXXXX, ensemble gene IDs; V, MPAs with ZIKV infection; M, MPAs with mock infection; FC, fold change

https://doi.org/10.1371/journal.pntd.0009362.t002
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Fig 4. ZIKV infection dysregulates certain astrocytic genes in MPAs. MPAs were infected with ZIKV at MOI of 2 for 0, 24, and 48 h,

respectively. (A) ZIKV NS5 RNA was determined by qPCR analysis in MPAs. (B) The mRNA expressions of PTBP1, GHR, LIF, PTBP3,

EDNRB, and MBP were determined by qPCR. The data represent the relative expression of target genes normalized to GAPDH as a reference
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revealed that ZIKV can infect human neurospheres, neural progenitor cells, and brain orga-

noids [31,56–58]. However, the exact mechanisms of infection and specifically which cell pop-

ulations in the nervous system respond to ZIKV and contribute to brain developmental

disorders is still unclear. In current study, we used the RNA sequencing to analyze the astro-

cytic mRNAs that are dysregulated upon ZIKV infection. Utilizing different bioinformatic

analysis coupled with gene expression profiling, our findings suggest that ZIKV can potentially

alter the astrocytic gene expression, which is associated with brain development and neurolog-

ical conditions [18]. Almost half or more of the brain cells are represented by glial cells (in spe-

cific parts up to 90%) and glial cell development is critical for normal brain size and function

[59]. Astrocytes are the abundant and first line of the brain glia cells that are infected or

respond to ZIKV infection [24]. Several studies have been reported on the association of ZIKV

with brain development or associated diseases but yet there are no potential therapeutic

options to overcome indicated neurological conditions [18]. For a developing brain, astrocytes

are the drivers and initiators of ZIKV infection. Therefore, this virus not only infects brain

cells and its precursors but also can penetrate the placental barrier and causes different neuro-

logical disorders linked to PNS and CNS [6].

Several studies reported the gene expression profiles in ZIKV-induced human and mouse

neuronal cells [60–62], however, the association between the changes in astrocytic mRNAs

expression and neurodegeneration or brain development is not described. In this study, we

internal control. (C) The protein expressions of PTBP1, LIF, GHR, EDNRB, and MBP were determined by Western blot analyses. The β-actin

was selected as an internal control. (D and E) Confocal microscopy images from MPAs stained with PTBP1, GHR, LIF, EDNRB, and MBP

(green) for target genes and DAPI (blue) for nuclei, scale bar = 20 μm (D). Relative protein expression to control is quantified using Image J

software (E). Data are shown as fold change from mock control. All the experiments were performed in triplicate, non-significant (ns);

P< 0.05 (�); P< 0.01 (��); P< 0.001 (���). Student’s t-test. The underlying numerical data for “Fig 4A, 4B, and 4E” is provided in the

supporting file “S1 Data”.

https://doi.org/10.1371/journal.pntd.0009362.g004

Fig 5. Validation of astrocytic altered genes upon ZIKV infection. MPAs were infected with ZIKV at MOI of 2 for 0 and 24 h, respectively.

(A-F) The expression patterns of top 6 shortlisted genes: PTBP1 (A), GHR (B), LIF (C), PTBP3 (D), EDNRB (E), and MBP (F), were measured

by RNA-seq and qRT-PCR (qPCR), respectively. GAPDH was used as an internal control in qRT-PCR. The individual bars represent the qPCR

data as the means ± SD, n = 3. The underlying numerical data for “Fig 5A–5F” is provided in the supporting file “S1 Data”.

https://doi.org/10.1371/journal.pntd.0009362.g005
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Fig 6. ZIKV infection differentially alters certain astrocytic genes in U251 cells. U251 cells were infected with ZIKV at MOI

of 2 for indicated periods. (A) Cell viability was measured by the CCK-8 assay. Data represent as fold change compared to

mock-treated cells. (B) ZIKV NS5 RNA was determined by qPCR with GAPDH as an internal control, and (C) viral dsRNA was
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immunoprobed with dsRNA-antibody (red), along with GFAP (green) for astrocytes and DAPI (blue) for nuclei by

Immunofluorescent (IF), scale bar = 20 μm. (D and E) The mRNA expressions of PTBP1, GHR, LIF, PTBP3, EDNRB, and

MBP were determined by qPCR (D) and protein expressions of PTBP1, GHR, LIF, EDNRB, and MBP was determined by

Western blot analyses (E), respectively. In the qPCR analysis, the data represent the relative expression of target genes

normalized to GAPDH as a reference internal control. In Western blot analysis, the β-actin was selected as an internal control.

(F and G) Confocal microscopy images from MPAs stained with PTBP1, GHR, LIF, EDNRB, and MBP (green) for target genes

and DAPI (blue) for nuclei, scale bar = 20 μm (F). Relative protein expression to control is quantified using Image J software

(G). Data are shown as fold change from mock control. All the experiments were performed in triplicate, non-significant (ns);

P< 0.05 (�); P< 0.01 (��); P< 0.001 (���). Student’s t-test. The underlying numerical data for “Fig 6A, 6B, 6D, and 6G” is

provided in supporting file “S1 Data”.

https://doi.org/10.1371/journal.pntd.0009362.g006

Fig 7. A mechanism underlying the brain-related neurological disorders upon ZIKV infection. The neurotropic ZIKV favorably infects

and replicates in astrocytes of the fetal brain cerebral cortex. ZIKV can alter the astrocytic genes including PTBP1, LIF, PTBP3, GHR, EDNRB,

and MBP, which are involved in various functions leading to neurological conditions such as microcephaly and brain development

impairment. The numerical data used in all figures are included in S1 Data.

https://doi.org/10.1371/journal.pntd.0009362.g007
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aimed to figure out the underlying link between the ZIKV and brain astrocyte cells. Initially,

we constructed a ZIKV infection model in MPAs by isolating cortical astrocytes from the post-

natal mouse brain, following ZIKV infection for indicated time points. ZIKV infection was

confirmed in the MPAs and human astroglioma U251 cells, indicating these two kinds of

astrocytes susceptible to ZIKV infection and considerable infection model in the exploration

between ZIKV and astrocytes. At present, human neural progenitor cells [63], brain organoids

[56,57,64] are the platform to study zika virus-associated microcephaly and embryonic brain

development in vitro. Primary cell culture is increasingly being a major tool in virus and host

interaction, which provides an excellent model for the study of normal physiology of the cells

when exposed to virus infection [65]. Our study identified MPAs along with U251 cells behav-

ing as a considerable tool to explore the relationship of ZIKV and host, which is consistent

with evidence that ZIKV can target human glial cells [66,67].

We evaluated the ZIKV-induced MPAs for transcriptomics by RNA-seq and illustrated a

huge number of astrocytic genes altered by ZIKV infection. Dysregulation of the neuronal

genes, such as RBBP8, ASPM, AXL, TBR2, MCPH1, and CENPF upon ZIKV infection may

cause different neurological or brain development related disorders [35]. By applying the bio-

informatic tools, our RNA-seq data showed 27,812 genes alteration from MPAs upon ZIK

infection, and around 355 genes were significantly dysregulated from each group of the differ-

entiated the up- and down-regulated genes. Cellular function of the astrocytic genes, including

modulation of stress response, remyelination, cell growth dysregulation, inhibition of differen-

tiation, and modulation of stress response, have been identified in C6/36, Vero cells, human

neural stem cells, and mouse glial cells [68,69]. The bioinformatic analysis revealed that ZIKV

infection could interrupt neurogenesis, neuron differentiation, development, migration, and

maturation, astrocytes projection, and brain development, as well as multiply pathways,

including Hippo signaling pathway, focal adhesion, PI3K-Akt signaling pathway, and tight

junction. To make the RNA-seq results more authentic, we further evaluated 6 genes associ-

ated with neurological disorders or brain development were significantly dysregulated upon

ZIKV infection. Our results demonstrated that the expressions of PTBP1, PTBP3, LIF, and

GHR were upregulated while EDNRB and MBP were downregulated in both ZIKV-infected

MPAs and U251 cells, implying a potential dysfunction in ZIKV-induced neural disorders.

Among the selected differentially expressed genes, the RNA binding PTBP1 and PTBP3

from PTB family, which are responsible for the conversion of astrocytes into neurons [27],

neurodevelopment including control of neuronal progenitor cells (NPCs) and embryonic

stem cells (ESCs) splicing, and control of neural differentiation timing [70], are naturally

decreased during neural progenitors’ differentiation [71] and give rise to multiple neuronal

cell lineage in the brain [70,72]. On this account, our results suggest that the ZIKV-induced

upregulation of the PTBP1 and PTBP3 levels in astrocytes may decrease or inhibit the conver-

sion to neurons and eventually lead to various neurological conditions or make neurological

infections more venerable.

LIF is a pleiotropic cytokine that promotes neurogenesis in fetus cerebrum [73,74] and

autoimmune diseases treatment [75]. It is involved in neuroprotection, axonal regeneration,

and preventing demyelination [76]. In addition, it induces neuronal progenitors [73] and acts

as a stimulator for astrocytes differentiator [28]. Various studies reported that neurons and

astrocytes are produced from the same precursor of CNS [28]. Based on these reports, our

findings suggest that LIF works as a stimulator for astrocytes differentiation, so the upregula-

tion of LIF may lead to the production of more astrocytes and fewer neurons, which results in

different brain development defects.

We also reported the ZIKV-induced downregulation of EDNRB and MBP genes expression

in astrocytes. EDNRB promotes reactive astrogliosis and helps in repairing brain injuries
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(remyelination) [77,78], while MBP releases from a sheath which plays a vital role in compacting

myelin and protection of myelin sheath from degradation by myelinotoxic factors (proteinases)

produced during multiple sclerosis [79], revealing that these two genes are essential housekeep-

ing factors for normal myelin sheath control. Based on the previous studies, our results suggest

that the downregulation of these genes might be the cause of neurological or brain disorders

related to demyelination. Moreover, our results are consistent with the fact that the depletion or

low EDNRB expression leads to defective B cell differentiation or intrinsic lymphoid defects

[80], similar to that MBP reduction causes neurodegenerative disorders like microcephaly [81].

GHR promotes normal human postnatal growth and its deficiency or mutation may lead to

utero and severe postnatal growth failure, intellectual impairment, microcephaly, and sensori-

neural deafness [82]. Additionally, upregulation of GHR levels have been reported to increase

the risk of cancer in general and regulate key cellular functions, such as metastasis, apoptosis,

proliferation, and differentiation [83]. The disruption of GHR also cause Laron syndrome

(microcephalic syndrome) which not only affects the brain but also total somatic dwarfism

[84,85]. In current study, the upregulation of GHR suggests that the alteration of this gene by

ZIKV may lead to neurological impairments causing reported diseases, which further indicate

that MBP and GHR are directly involved in the brain development and microcephaly.

Actually, there are some limitations in the study and some considerations should be taken

into account when interpreting the findings. Firstly, the model we selected is the primary cells

with some disadvantages, including limited potential for self-renewal and differentiation,

which needs a further platform, such as human neural progenitor cells or brain organoids

when studying ZIKV-associated microcephaly or embryonic brain development in vitro. Sec-

ondly, there should be more ZIKV strains included to access the astrocytic gene alteration to

uncover the common rules of ZIKV-associated neurodevelopment. Thirdly, the dysfunctional

genes associated with ZIKV-induced neurodevelopment are identified with observable expres-

sion regardless of poorly expressed genes, which may contribute to the uncertainty of findings.

Even so, we verified a considerable model that ZIKV alters the transcriptome and discovered

potential genes associated with neurodevelopment in MPAs, which requires an advanced

model (e.g., human neural progenitor cells or brain organoids) and viral scope of ZIKV for

biological functional exploration of neurodevelopment with genetic approaches (e.g.,

CRISPR-Cas9 or RNAi) in the future study.

In conclusion, the present study revealed ZIKV-infected MPAs as a compatible infection

model for the exploration of ZIKV and astrocytes in neural disorders. In addition, we system-

atically exposed dysregulation in a cluster of neural genes by ZIKV infection in astrocytes,

which provides novel clues for the mechanism involved in ZIKV-associated neurodevelop-

ment or brain development impairment, and also lay the foundation for an approach to mech-

anistic research to develop potential vaccines or treatment against ZIKV infection to guard

innumerable children and mothers exposed to the unfolding epidemics.
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bar = 50 μm.
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