
1Scientific Reports |         (2019) 9:12483  | https://doi.org/10.1038/s41598-019-48184-3

www.nature.com/scientificreports

Delta-radiomics features during 
radiotherapy improve the 
prediction of late xerostomia
Lisanne V. van Dijk1, Johannes A. Langendijk1, Tian-Tian Zhai1,2, Thea A. Vedelaar1, 
Walter Noordzij3, Roel J. H. M. Steenbakkers1 & Nanna M. Sijtsema1

The response of the major salivary glands, the parotid glands, to radiation dose is patient-specific. This 
study was designed to investigate whether parotid gland changes seen in weekly CT during treatment, 
quantified by delta-radiomics features (Δfeatures), could improve the prediction of moderate-to-severe 
xerostomia at 12 months after radiotherapy (Xer12m). Parotid gland Δfeatures were extracted from in 
total 68 planning and 340 weekly CTs, representing geometric, intensity and texture characteristics. 
Bootstrapped forward variable selection was performed to identify the best predictors of Xer12m. 
The predictive contribution of the resulting Δfeatures to a pre-treatment reference model, based on 
contralateral parotid gland mean dose and baseline xerostomia scores (Xerbaseline) only, was evaluated. 
Xer12m was reported by 26 (38%) of the 68 patients included. The most predictive Δfeature was the 
contralateral parotid gland surface change, which was significantly associated with Xer12m for all weeks 
(p < 0.04), but performed best for week 3 (ΔPG-surfacew3; p < 0.001). Moreover, ∆PG-surfacew3 showed 
a significant predictive contribution in addition to the pre-treatment reference model (likelihood-ratio 
test; p = 0.003), resulting in a significantly better model performance (AUCtrain = 0.92; AUCtest = 0.93) 
compared to that of the pre-treatment model (AUCtrain = 0.82; AUCtest = 0.82). These results suggest 
that mid-treatment parotid gland changes substantially improve the prediction of late radiation-
induced xerostomia.

Xerostomia is one of the most frequently reported side effects following radiotherapy of head and neck cancer 
(HNC) patients and affects patient-reported quality of life1. For the prediction of late xerostomia, Normal Tissue 
Complication Probability (NTCP) models have been developed with pre-treatment dose-volume parameters and 
baseline complaints as most important predictors2,3. However, xerostomia NTCP models based on information 
during treatment are less explored. Since in-treatment parameters contain information on the patient-specific 
response to treatment, they may resolve some of the unexplained variability that remains for NTCP models that 
are based on pre-treatment variables only. These in-treatment parameters could therefore be used to improve the 
prediction of late xerostomia. Adequate prediction supported by in-treatment data may offer new opportunities 
to guide treatment adaptation aiming at a further reduction of late radiation-induced side effects.

Several studies have investigated changes of the parotid glands during and after treatment in CT images4–7 and 
have shown a weak to moderate relationship between parotid gland dose and volume change4,6. However, knowl-
edge of the relationship between parotid gland changes and patient-reported xerostomia is still limited. Therefore, 
in our previous study, we investigated the association between late patient-reported xerostomia and parotid gland 
changes quantified in radiomics features, or also called image biomarkers, extracted from CT images before and 
6 weeks after treatment. That study showed that the parotid gland surface reduction (∆PG-surface6w-postRT) was 
strongly associated with the development of xerostomia at 6 and 12 months after radiotherapy8.

However, this post-treatment model does not allow for treatment adaptation, as the total prescribed radiation 
dose has already been administered. Hence, the next step is to investigate parotid gland changes during treatment.

The aim of the current study was to identify quantitative parotid gland changes during treatment that predict 
the development of late xerostomia. These parotid gland changes were extracted from pre-treatment and weekly 
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CT-images during radiotherapy, from which delta radiomics features (∆features) were quantified, representing 
differences in intensity, texture and geometric characteristics of the parotid glands.

Results
Patients.  Moderate-to-severe xerostomia was reported by 26 (38%) of all 68 patients included at 12 months 
after radiotherapy (22 in the training set and 4 in the test set). At 6 months after radiotherapy, the moderate-to-se-
vere xerostomia reporting rate was 46 (52%) out of a total of 88 patients.

∆features selection.  For the geometric features, a change of contralateral parotid gland surface 
(∆PG-surface) was the most frequently selected ∆feature for all weeks predicting Xer12m (see Supplementary 
Data 4 for frequency plot), except for week 2 where the ∆PG-‘bounding box volume’ frequency was slightly 
higher. The ∆PG-surface frequency was especially high in week 3 (725 times selected in the 1000 bootstrap sam-
ples). In other weeks, the subsequently selected ∆features, ∆‘volume’, ∆‘bounding box volume’ and ∆‘volume 
times mean intensity’, were highly correlated with ∆PG-surface for all weeks with ρ = 0.79–0.93, ρ = 0.66–0.79 
and ρ = 0.82–0.91, respectively.

For the intensity and texture ∆features, no clear selection of ∆features that were most frequently selected for 
all weeks could be made (see Supplementary Data 4 for frequency plot). Overall, the most frequently selected 
∆features on average were: coarseness from the neighbourhood grey tone difference matrix (coarseness), kurto-
sis and the median intensity (median). The ∆features kurtosis and median were weakly correlated to coarseness 
(ρ = 0.13, 0.18), but were stronger correlated to each other (ρ = 0.79).

A heatmap of all ∆IBMs and histograms of the most frequently selected ∆IBMs are depicted in Supplementary 
Data 5 to illustrate the distribution and relation between the ∆IBMs.

∆feature: univariable analysis.  The univariable analysis also showed that ∆PG-surface was the most 
significant ∆feature. This geometric ∆feature was significantly associated with Xer12m at all weeks (p < 0.04) 
but was most significant in week 3 (p < 0.001). This week showed the largest regression coefficient of all weeks 
(Supplementary Data 6).

For the intensity and texture ∆features, none of the most frequently selected ∆features were significantly asso-
ciated with Xer12m in any of the weeks (coarseness: p ≥ 0.06; kurtosis ≥0.08; median: p ≥ 0.07) (Supplementary 
Data 6).

∆features, dose and toxicity: multivariable analysis.  Since the ∆features showed the best perfor-
mance in week 3, the multivariable analysis was performed with the selected week 3 ∆features only.

In the training set (56 patients), discrimination of the reference ‘pre-treatment’ model (Xerbaseline and PGdose) 
was good (AUCtrain = 0.83 (AUCinternal.val. = 0.82)), yet the geometric ∆feature model with ∆PG-surfacew3 and 
Xerbaseline performed better (∆feature model 1: AUCtrain = 0.88 (AUCinternal.val. = 0.84)) in predicting Xer12m 
(Table 1). Moreover, the addition of ∆PG-surfacew3 to the pre-treatment model (likelihood-ratio test, p = 0.003), 
significantly improved different aspects of performance (∆feature model 2: AUCtrain = 0.92 (AUCinternal.val. = 0.89); 
Table 1). Validated in the test set (14 patients), the models showed stable performance (Table 1). Furthermore, 
also in the test set ∆feature model 2 showed the highest performance (AUCtest = 0.93 and R2 = 0.49). Ultimately, 
Table 2 gives the model coefficients that were optimized for the entire cohort, with the coefficients corrected for 
optimism using bootstrapping. The performance measures of the final model are shown in Supplementary Data 7.

Acute xerostomia scores at week 3 (Xerw3) significantly improved ∆feature model 2 (Xerbaseline, PGdose 
and ∆PG-surfacew3) (likelihood-ratio test, p = 0.01), but the improvement in performance was relatively small 
(AUCtrain = 0.93 (AUCinternal.val. = 0.89)) and decreased when validated in the test set (AUCtest = 0.88). The rela-
tionship between ∆PG-surfacew3 and Xerw3 was not significant (p = 0.14). This is also demonstrated in Fig. 1, 
where patients with a large and small surface reduction at week 3 (median ∆PG-surfacew3 = −2.73) showed a 
clear differentiation of actual moderate-to-severe xerostomia incidences at 6 or 12 months after treatment, but 
not for acute time points.

Pre-treatment 
reference model ∆feature model 1 ∆feature model 2

Xerbaseline Xerbaseline Xerbaseline

PG dose PG dose

∆PG-Surface w3 ∆PG-Surface w3

Training set 56 patients

Apparent

Nagelkerke R2 0.46 0.53 0.59

Area Under the Curve (AUC) 0.83 (0.70–0.96) 0.88 (0.79–0.97) 0.92 (0.85–0.99)

Discrimination slope 0.39 0.45 0.48

Internal validation
Nagelkerke R2 0.41* 0.45 0.51

AUC 0.82* 0.84 0.89

Test set 14 patients Validation
Nagelkerke R2 0.36 0.39 0.49

Area Under the Curve (AUC) 0.80 0.85 0.93

Table 1.  Performance of NTCP models predicting Xer12m with and without ∆image biomarkers in the training 
and the test set. *No variable selection was performed for internal validation of the reference model.
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No significant relationship was found between ∆PG-surface and Xerbaseline (p = 0.17). Xerw3 was significantly 
associated with both PGdose (p = 0.04) and Xerbaseline (p = 0.03), probably explaining the marginal prediction 
improvement of Xer3w to the ∆feature model with PGdose and Xerbaseline.

For the secondary endpoint Xer6m, ∆PG-surfacew3 also added significantly to the pre-treatment model in pre-
dicting Xer6m (likelihood-ratio test, p = 0.02). See Supplementary Data 8 for more details. None of the frequently 
selected intensity or texture ∆features showed any significant improvement either compared to or in addition to 
the pre-treatment model (likelihood-ratio test, p > 0.27) in predicting Xer12m or Xer6m.

Parotid gland dose and ∆features.  The linear relationship of contralateral parotid gland mean dose and 
∆PG-surface was significant for all weeks (p < 0.008; Fig. 2). Depicted in Fig. 2, the regression coefficients of this 
linear relationship effectively increased over time, as did the coefficient of determination, but remained weak.

The selected intensity and the texture ∆features, ∆median and ∆coarseness were significantly correlated 
(p < 0.05) to parotid gland dose for week 2, 3, 5, 6 and 5, 6, respectively (Supplementary Data 9). However, the 
coefficient of determination was relatively low (R2 = 0.00–0.21). ∆LZLGE was not significant for any week.

Discussion
The current study shows that surface change of the contralateral parotid gland (∆PG-surface) assessed during 
the course of radiotherapy was strongly associated with the development of late xerostomia (Xer12m and Xer6m). 
The association of this geometric ∆feature was statistically significant during the entire course of treatment but 
performed best for changes obtained between treatment planning and week 3. This time point is still clinically 
relevant, as any treatment adaptations could still influence the patient’s toxicity outcome. ∆PG-surfacew3 did 
not only show improved predictive performance over PGdose, but it also improved the pre-treatment model 
performance significantly. The resulting model that was based on Xerbaseline, PGdose and ∆PG-surfacew3 showed 

Model

β

odds ratio (95% CI) p-valueUncorrected Corrected

Pre-treatment reference model

intercept −3.794 −3.385*

Xerbaseline 2.531 2.280* 12.56 (3.39–46.54) <0.001

Parotid gland dose 0.099 0.089* 1.1 (1.03–1.18) 0.005

∆feature model 1

intercept −3.139 −2.515

Xerbaseline 2.533 2.074 12.59 (3.13–50.73) <0.001

∆PG-surfacew3 (cm2) −0.568 −0.465 0.57 (0.41–0.79) 0.001

∆feature model 2

intercept −4.515 −3.305

Xerbaseline 2.591 1.936 13.35 (3.13–56.95) <0.001

Parotid gland dose 0.072 0.054 1.07 (0.77–1.51) 0.074

∆PG-surfacew3 (cm2) −0.481 −0.360 0.62 (0.57–0.67) 0.005

Table 2.  Estimated coefficients (uncorrected and corrected for optimism) of pre-treatment and ∆image 
biomarkers models fitted to the entire dataset. *No variable selection was performed for internal validation of 
the reference model.

Figure 1.  Actual moderate-to-severe xerostomia incidence and 95% confident intervals at baseline, weekly 
during, and 6 weeks (week 12), 6 months, and 12 months after treatment for patients, with parotid gland 
surface reduction at week 3 (∆PG-Surfacew3) larger (blue) or smaller (yellow) than the median reduction 
(|median| = 2.73).
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excellent performance when predicting Xer12m in both the train (AUC = 0.92), test (AUC = 0.93) and when fitted 
to the entire cohort (AUC = 0.91). However, these results should be confirmed by external validation in larger 
patient cohorts.

Castelli et al. showed that parotid gland dose could significantly be reduced with an adaptive radiotherapy 
approach (ART)9. By re-planning the dose distribution on weekly CTs, an average NTCP reduction of 11% (max-
imum 30%) was observed. However, weekly re-planning is time consuming. This highlights the potential of the 
∆feature NTCP model with ∆PG-surfacew3, since it could select patients during treatment that have a high risk of 
developing xerostomia. If these high-risk patients could, subsequently, receive less PGdose by re-planning, their 
risk of xerostomia could be further reduced. Alternatively, the model-based approach has been introduced to 
select patients for proton therapy. Patients can be selected that have a clinically relevant NTCP-reduction with a 
proton plan compared to their photon based treatment plan10. Proton therapy has the potential to better conform 
the dose to the tumour while sparing the surrounding normal tissue, due to the intrinsic properties of protons11. 
By incorporating patient-specific ∆feature response information in the pre-treatment reference model, patients 
that do not initially qualify could be reclassified for proton therapy. Accordingly, treatment can be changed from 
photon to proton therapy, when relevant differences are seen in the new ΔNTCP values.

In a previous study, the geometric radiomics feature differences were calculated between 6 weeks 
post-treatment and prior to treatment (∆feature6week-postRT)8. The association of ∆feature6week-postRT with Xer12m 
was investigated in a patient cohort (n = 107) independent of the current cohort. Interestingly, the most stable 
and predictive post-treatment ∆feature was also the contralateral ∆PG-surface. Similar to the results of the cur-
rent study, inclusion of ∆PG-surface substantially improved the pre-treatment model. Using the same coefficients 
of the post-treatment model with ∆PG-surface6w-postRT, Xerbaseline and PGdose in the current cohort, also showed 
a comparable performance (AUC = 0.89) to that of the model trained in the current cohort (AUC = 0.91). The 
other way around, using the coefficients of the current model in the previous cohort also resulted in a comparable 
improvement in performance for the model in the post-treatment cohort (Supplementary Data 10). This suggests 
that the ∆PG-surfacew3 model would also perform well when externally validated in a cohort where ∆PG-surface 
is acquired at week 3. In both studies, ∆PG-volume was highly correlated to ∆PG-surface, and also performed 
well in predicting late xerostomia.

In line with other studies that observed a relationship between PGdose and PG shrinkage4,6,12,13, linear regres-
sion in the current study also showed that there was a weak to moderate correlation between ∆PG-surface and 
PGdose. Interestingly, the correlation between PGdose and ∆PG-surface effectively increased over the time 
of treatment, illustrated by the increasing values of the regression coefficients and R2 every consecutive week. 
This suggests that the effect of planning PGdose on ∆PG-surface becomes clearer as more dose is administered. 
However, such an effect was not seen for the association between ∆PG-surface and Xer12m, since the univariable 
logistic regression coefficient and the performance of ∆PG-surface increased from week 2 to 3, but decreased 
for the subsequent weeks. Hence, we concluded that the best moment for predicting Xer12m was during week 3. 
The explanation may be that most parotid glands shrink when irradiated, as reported in previous studies4–7, but 
patients that have a parotid gland that shrinks early in treatment have a higher risk of developing late xerostomia. 
Therefore, ∆PG-surfaceweek3 could be a marker to differentiate between patients that develop permanent damage 
of the parotid gland versus those that can recover.

In addition to these observations, ∆PG-surface was not associated with acute xerostomia, although it was 
strongly associated with the development of late xerostomia. Figure 1 also demonstrated this, as ∆PG-surfacew3 
did not show a clear differentiation between the actual incidences of moderate-to-severe xerostomia at week 3 or 
any of the other acute time points. In contrast, this differentiation can be clearly seen for 6 and 12 months after 
radiotherapy. Furthermore, acute xerostomia scores at 3 weeks (Xerw3) did significantly add to the model with 

Figure 2.  Univariable linear regression of contralateral parotid gland mean dose (PGdose) predicting parotid 
gland surface reduction (∆PG-surface) for different weeks (lines) and regression characteristics (Table). 
Correlation increases over time, but remained weak. Data point represent ∆PG-surface values for week 6.
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Xerbaseline, ∆PG-surface and PGdose, although the improvement in performance measures was small. This is prob-
ably due to the correlation between Xerw3 and both PGdose and Xerbaseline. Further research needs to be performed 
on larger datasets in order to investigate whether acute toxicities can contribute to ∆feature models.

Changes in intensity or texture features were not related to the development of xerostomia. In contrast, many 
of these ∆features were significantly related to PGdose, even though no relationship was seen with the devel-
opment of xerostomia. Furthermore, detailed investigation of the most frequently selected intensity or texture 
∆features showed that these ∆features contained one or two outliers that determined the effect. The influence of 
outliers indicates the importance of evaluating the selected features before presenting them in a final model. In 
this study, the analysis of ∆features was used rather than the features directly extracted per week. The results of 
these absolute weekly features were not significant. In contrast, in a previous study, a pre-treatment CT feature 
that indicates tissue heterogeneity, was significantly associated with the development of late xerostomia14. It might 
be that the effect of pre-treatment is too weak to be observed in this relatively small dataset. In addition, using 
proportional ∆features instead of absolute difference ∆features did not improve the results of this study either.

The limitations of this study are the low numbers of patients included in this analysis and no direct external 
validation was performed. Nevertheless, we have validated our results by splitting our dataset in a training set, 
for which variables were selected, and tested them in a small unseen cohort. The models performed well in both 
the training as the test cohort. Finally the models were fitted to the entire dataset, to make full use of the total 
number of patients in estimating the most optimal coefficients given all data. Furthermore, only pre-treatment 
PGdose rather than the accumulated dose over all weekly CT scans was evaluated, since this was outside the 
scope of the paper. Brouwer et al. showed that accumulated dose calculated on weekly CTs was almost equal to 
the pre-treatment PGdose15. Using accumulated PGdose could improve the predictive performance of PGdose. 
Additionally, other modalities, such as positron emission tomography and magnetic resonance imaging could 
potentially provide better information during treatment on function loss of the PG gland. Future studies using 
these modalities could improve the quantification and understanding of the development of late xerostomia.

In conclusion, contralateral parotid gland surface area reduction during the course of radiotherapy 
(ΔPG-surface) was associated with the development of late xerostomia both at 6 and 12 months after radiother-
apy. The model consisting of Xerbaseline, parotid gland dose and ∆PG-surface, as assessed at week 3 during treat-
ment (ΔPG-surfacew3), showed the best performance, and substantially improved the pre-treatment model based 
on parotid gland dose and Xerbaseline only (from AUC of 0.83 to 0.91). This mid-treatment model may be a good 
candidate to identify patients most at risk of developing late xerostomia and who may benefit from treatment 
adaptations, but external validation is warranted.

Method
Patients and image acquisition.  The study cohort included consecutive HNC patients that were treated 
with definitive radiotherapy and received weekly CTs between January 2014 and December 2016. The cohort, 
sorted by treatment start date, was split in a training set (80%; 54 patients) and test set (20%; 14 patients). 
Radiation plans were adapted where necessary due to anatomical changes causing reduced target coverage. 
Patients were treated with IMRT or VMAT using a simultaneous integrated boost (SIB) technique, either as a 
single modality or in combination with concurrent chemotherapy or cetuximab. Plans were optimised to spare 
the parotid glands and swallowing organs at risk (superior pharyngeal constrictor muscle and supraglottic area) 
as much as possible without compromising the dose to the target volumes16. The primary tumour and pathologic 
lymph nodes were generally prescribed 70 Gy (2 Gy per fraction) and the cervical lymph node levels were pre-
scribed an elective radiation dose of 54.25 Gy (1.55 Gy per fraction)17. More detailed descriptions of the radiation 
protocols used was reported in previous work16. Patient characteristics are listed in Table 3.

Patients were excluded if they had salivary gland tumours, underwent prior surgery and/or underwent 
re-irradiation. An additional requirement was that patient-rated follow-up information at 6 and/or 12 months 
after radiotherapy was available.

CT scans (Somatom Sensation Open, Siemens, Forchheim, Germany; voxel size: 0.94 × 0.94 × 2.0 mm3; 100–
140 kV) were acquired within 2 weeks prior to treatment (CT0) and weekly during treatment (CTw1–6), where CTw1 
was generally acquired on the day of the first or second fraction. Patients only received intravenous contrast for 
CT0. All scans were acquired with a thermoplastic mask in their radiotherapy treatment position.

All patients provided written informed consent before starting therapy that their data could be used within the 
department’s research program. The Dutch Medical Research Involving Human Subjects Act is not applicable to 
data collection as part of routine clinical practice and therefore, the hospital ethics committee granted us a waiver 
from needing ethical approval for the conduct of studies based on these data. All patients received standard clin-
ical care of adaptive radiotherapy.

Endpoints.  Patient-rated xerostomia scores were collected prospectively on a routine basis; before, weekly 
during, and subsequently 6 and 12 months after radiotherapy using the EORTC QLQ-H&N35 questionnaire, 
as part of the standard follow-up programme (SFP) (NCT02435576)2,18. The primary endpoint of this study was 
moderate-to-severe patient-rated xerostomia at 12 months after radiotherapy (Xer12m) and the secondary end-
point was moderate-to-severe patient-rated xerostomia at 6 months (Xer6m). This corresponds to the 2 highest 
scores of the 4-point Likert scale (not, a bit, quite a bit, a lot).

∆features definitions.  Parotid glands were delineated on the CT0 and CT1 according to the consensus 
guidelines of Brouwer et al.19. Delineations were warped from CT1 to the weekly CTs using the deformable 
image registration tool in the treatment planning system RayStation v5.99 (RaySearch Laboratories, Stockholm, 
Sweden), the warped structures were carefully checked and manually corrected where necessary.
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The radiomics features were extracted from the planning and the weekly CTs with Matlab-based (Mathworks, 
Natick, MA, USA; version R2014a) in-house developed software. The definitions and formulas were in line with 
the ‘Image biomarker standardisation initiative’20. The geometric changes (geometric ∆features) were calculated 
by subtracting the radiomics features of CTw2–6 from those of CT0. This resulted in 15 geometric ∆features per 
weekly CT, that for example represent volume, surface or compactness changes. Intensity features describe first 
order and histogram characteristics of CT intensities of a parotid gland (e.g. mean or variance). Textural features 
describe the intensity heterogeneity and were extracted from the grey level co-occurrence matrix (GLCM)21, 
grey level run-length matrix (GLRLM)22,23, grey level size-zone matrix (GLSZM)24 and neighbourhood grey tone 
difference matrix (NGTDM)25. Contrast enhancement was only used for CT0, and not for the weekly CT-scans. 
Since this can affect the intensity and texture feature values, CTw1 (generally acquired before the 2nd radiation 
fraction) was considered to be the baseline CT. Hence, intensity and texture changes were quantified by calculat-
ing the difference between CTw1 and the CTw2–6. As the intensity and texture features can be influenced by metal 
artefacts, slices with metal artefacts were deleted and features were calculated on the remaining slices only.

Figure 3 depicts the calculation of the ∆features and CT time points. For a complete list of the 15 geometric, 
17 intensity and 66 texture features refer to the Supplementary Datas 1–3, respectively. Only ∆features of the 
contralateral parotid gland were reported, as they performed better than those of the ipsilateral parotid gland. The 
geometric ∆features were analysed separately from intensity and texture ∆features.

Follow-up info at 
12 months

Follow-up info at 
6 months

Characteristics N = 68 % N = 88 %

Sex

Female 20 29 26 30

Male 48 71 62 70

Age

18–65 48 71 62 70

>65 20 29 26 30

Tumour site

Oropharynx 22 32 27 31

Hypopharynx 0 0 1 1

Nasopharynx 5 7 5 6

Larynx 22 32 27 31

Oral cavity 15 22 23 26

Unknown primary 1 1 1 1

Other 3 4 4 5

Tumour classification

T0 1 1 1 1

T1 11 16 14 16

T2 14 21 19 22

T3 17 25 19 22

T4 23 34 33 38

Unknown 2 3 2 2

Node classification

N0 23 34 28 33

N1 9 13 13 15

N2abc 31 46 41 47

N3 3 4 4 5

Systemic treatment

Yes 34 50 47 53

No 34 50 41 47

Treatment technique

IMRT 27 40 30 34

VMAT 41 60 58 66

Bilateral

Yes 57 84 72 82

no 11 16 16 18

Baseline xerostomia

Any 26 38 36 41

None 42 62 52 59

Table 3.  Patient characteristics of patients that had follow-up information available at 12 and 6 months after 
treatment.
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Clinical variables age and gender were investigated, but not reported as they did not show, to have a significant 
relation with the development of late xerostomia, which is in line with previous analyses2,26,27.

∆feature selection.  To identify the most predictive ∆features, ∆feature variable selection was performed 
each week. Firstly, ∆features values were normalised by taking the difference between each value and the aver-
age across patients, and then dividing by the standard deviation. Secondly, a pre-selection that was based on 
inter-variable correlation was performed to reduce the number of variables. If the (Pearson) correlation of two 
variables was larger than 0.80, only the ∆feature with the highest univariable association with the endpoint was 
selected. Thirdly, stepwise forward selection was used to select the most important predictors (likelihood-ratio 
test: p-value < 0.01)28. The entire variable selection procedure (normalisation, pre-selection and forward selec-
tion) was repeated on 1000 bootstrapped samples (i.e. with replacement), according to the TRIPOD guidelines29. 
The variable selection frequencies were evaluated to identify the most stable predictive variables per week. The 
Pearson correlation between the selected ∆features was also investigated.

∆feature: univariable analysis.  In order to identify the optimum week for predicting Xer12m with ∆fea-
tures, the univariable associations were investigated for the selected ∆features per week in the entire cohort.

∆feature, dose and toxicity: multivariable analysis.  A reference ‘pre-treatment model’ that was based 
on baseline xerostomia scores (Xerbaseline; none vs. any) and the contralateral PGdose, was fitted to the current 
train set2. The prediction performance of the ‘pre-treatment model’ was first compared with that of models based 
on Xerbaseline and the selected ∆features. Subsequently, the addition of the selected ∆features to the ‘pre-treatment 
model’ was investigated in terms of significance (likelihood-ratio test) and performance.

The resulting multivariable logistic regression models were tested in the unseen data of the test set. Model 
discrimination was measured with the area under the receiver operating characteristic curve (AUC) and the 
discrimination slope. Nagelkerke R2 was used as a measure for explained variance. Ultimately, the final model 
coefficient estimations were performed on the entire cohort. Model calibration was tested for these final models 
with the Hosmer–Lemeshow test and by repeating the entire variable selection on 1000 bootstrap samples, and by 
calculating the average of all resulting linear predictor slopes and intercepts. The coefficients were corrected for 
optimism according to this internal validation procedure.

Since our previous study showed that acute xerostomia scores significantly improved the ∆feature model 6 
weeks after treatment8, we also investigated if the addition of acute toxicity as assessed during treatment to the 
∆feature-models improved model performance.

The relationships between the resulting ∆feature predictors, Xerbaseline, PGdose and acute xerostomia scores, 
were additionally explored with univariable logistic regression.

Parotid gland dose and ∆features.  The relationship of the mean contralateral PGdose and the ∆features 
was investigated with linear regression. Model performance was measured with the coefficient of determination 
(R2), and normality of the residuals of the regression models was checked.
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