
RESEARCH ARTICLE

Prioritizing investments in rapid response

vaccine technologies for emerging infections:

A portfolio decision analysis

Dimitrios GouglasID
1☯*, Kevin Marsh2☯

1 Coalition for Epidemic Preparedness Innovations, Oslo, Norway, 2 Patient-Centered Research, Evidera,

London, United Kingdom

☯ These authors contributed equally to this work.

* dimitrios.gouglas@cepi.net

Abstract

This study reports on the application of a Portfolio Decision Analysis (PDA) to support

investment decisions of a non-profit funder of vaccine technology platform development for

rapid response to emerging infections. A value framework was constructed via document

reviews and stakeholder consultations. Probability of Success (PoS) data was obtained for

16 platform projects through expert assessments and stakeholder portfolio preferences via

a Discrete Choice Experiment (DCE). The structure of preferences and the uncertainties in

project PoS suggested a non-linear, stochastic value maximization problem. A simulation-

optimization algorithm was employed, identifying optimal portfolios under different budget

constraints. Stochastic dominance of the optimization solution was tested via mean-vari-

ance and mean-Gini statistics, and its robustness via rank probability analysis in a Monte

Carlo simulation. Project PoS estimates were low and substantially overlapping. The DCE

identified decreasing rates of return to investing in single platform types. Optimal portfolio

solutions reflected this non-linearity of platform preferences along an efficiency frontier and

diverged from a model simply ranking projects by PoS-to-Cost, despite significant revisions

to project PoS estimates during the review process in relation to the conduct of the DCE.

Large confidence intervals associated with optimization solutions suggested significant

uncertainty in portfolio valuations. Mean-variance and Mean-Gini tests suggested optimal

portfolios with higher expected values were also accompanied by higher risks of not achiev-

ing those values despite stochastic dominance of the optimal portfolio solution under the

decision maker’s budget constraint. This portfolio was also the highest ranked portfolio in

the simulation; though having only a 54% probability of being preferred to the second-ranked

portfolio. The analysis illustrates how optimization modelling can help health R&D decision

makers identify optimal portfolios in the face of significant decision uncertainty involving

portfolio trade-offs. However, in light of such extreme uncertainty, further due diligence and

ongoing updating of performance is needed on highly risky projects as well as data on deci-

sion makers’ portfolio risk attitude before PDA can conclude about optimal and robust

solutions.
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1. Introduction

The Coalition of Epidemic Preparedness Innovations (CEPI) was set up in 2016 to support the

development of vaccines for Epidemic Infectious Disease (EID) threats, contributing to the

world’s preparedness for unexpected EID outbreaks [1–3]. A key strategic objective of CEPI

has been to establish platform technology capabilities that can accelerate development,

manufacturing and clinical evaluation of vaccines in response to outbreaks of newly emerging

infections [1,4]; its importance exemplified by the world’s vaccine development response to

the COVID-19 pandemic. In 2017, CEPI launched a Call for Proposals (CfP) to select a portfo-

lio of platform technologies that would enable achievement of this strategic objective through

an initial total investment of approximately US$ 140 million [5]. It was anticipated that sup-

porting a diverse range of vaccine platforms could improve response to epidemic outbreaks by

facilitating the rapid development of a novel vaccine should a previously unknown pathogen

emerge [6]. Six platform projects that had participated in this CfP are now developing

COVID-19 vaccines, several of which are in advanced clinical trials.

Platform technologies can generally be viewed as standardized, reproducible processes to

develop and manufacture vaccines, which have previously been established through the devel-

opment of other vaccines. Rapid response platforms can, in principle, improve the efficiency

and overall timeframe of vaccine development; allowing for the start of clinical phase 1 testing

just months after the viral sequence of a given pathogen is identified [6–9].

The decision to invest in the development of rapid response platforms to aid the response

to the emergence of previously unknown pathogens faces challenges. First, whether an invest-

ment will generate benefit is subject to significant uncertainty. The successful development of

a platform is highly uncertain, facing obstacles associated with organizational know-how and

capabilities, technical and regulatory hurdles, and sustained utilization [10]. These challenges

compound the well documented challenges of vaccine development–long timelines, scientific

risks and operational complexities [11–15]. Assuming a platform is successfully developed, the

benefit that the platform will deliver is subject to other sources of uncertainty [16], including:

not knowing if the platform will enable the development of a vaccine that will protect against

an unexpectedly emerging pathogen; and not knowing what the value of that protection will

be–i.e., how many people would be put at risk by the pathogen and what risk the pathogen

would pose to them.

Given these challenges, a single standardized financial or health-economic value metric is

unlikely going to be able to measure the value of investments. In such a context, a multi-crite-

ria value framework could be more appropriate, incorporating stakeholder preferences to

inform how criteria should be traded off [17–19]. Such a framework would require the elicita-

tion of preferences of relevant stakeholders involved.

Any such analysis is also likely to have to accommodate portfolio level effects. A single plat-

form approach may be insufficient for rapid vaccine development in response to outbreaks

caused by a multitude of unknown pathogens. Instead, a mix of platforms may be required to

increase the likelihood of protection [6,20,21].

This study reports on a Portfolio Decision Analysis (PDA) application [22] to address the

above challenges, and support CEPI’s investment decisions. To the best of the authors’ knowl-

edge, no previous PDA to support pharmaceutical R&D has attempted to simultaneously test

all above challenges–uncertainty in project evaluation; portfolio-level effects; and formally

incorporating stakeholder preferences.

PDA has been increasingly used in R&D project selection across multiple application

domains [22–26] due to its support in reducing the number of portfolio alternatives consid-

ered to a manageable size [27,28]; enhancing transparency through the consideration of all
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relevant criteria [22,24,25]; making relevant conflicts explicit [17,22,24]; accounting for the

interconnectedness of projects [29] and providing insight about the overall value, cost and bal-

ance of a portfolio [29–32].

The increased use of PDA has also been seen in the field of pharmaceutical R&D decision

making specifically [29–33]. This literature includes studies that address uncertainty and that

incorporate stakeholder preferences. But to the best of the authors’ knowledge, no study has

addressed both challenges simultaneously.

A commonly acceptable measure of uncertainty for pharmaceutical R&D portfolio deci-

sion-making is lacking [34]. Uncertainty has been addressed through use of decision tree anal-

yses [33,35–37] as well as stochastic optimization methodologies [e.g. 34,38–47]. In all these

studies the notion of uncertainty is partly conflated with that of risk of project failure, or

inversely, probability of success (PoS). However, several studies introduce measures of uncer-

tainty that capture variance of R&D portfolio performance more broadly, such as: Value at

Risk (VaR) or Conditional Value at Risk (CVaR) [34], fuzzy value [43], reward/loss ratios

[38,44,46] or value probability thresholds [34,38,40,44–46,48,49], variance of portfolio value

distribution [39,42,44,50,51], semivariance below or above portfolio value thresholds [42], or

covariance of portfolio value, cumulative probability distribution of portfolio value and Gini

criteria [41]. A final set of methods emerging from the health economic literature attempt to

measure the impact of this variance on the probability that a portfolio is chosen [42,52,53].

The main logic of these approaches is to generate model outputs in multiple iterations within a

Monte Carlo simulation, and to determine, across all iterations, the proportion of outputs that

fall favourably in relation to a given decision maker satisfaction threshold; allowing this way

for probabilistic rankings to be constructed.

A handful of studies have formally incorporated decision maker preferences into PDA for

pharmaceutical R&D [16,54,55], and few other studies have illustrated how preferences could

be applied in hypothetical pharmaceutical R&D portfolio selection problems [43,44,46,48].

[54] employed an Analytic Hierarchy Process to assess the intensity of importance of decision

criteria and alternatives in pairwise comparisons, allowing them to generate weighted scores to

rank alternatives and to inform strategic investment decisions in a pharmaceutical company

setting. [17] elicited stakeholder preferences using a swing-weighting technique, and then

incorporated these into a multi-criteria decision analysis (MCDA) to evaluate projects, and

consequently to generate an efficiency frontier. Building on the [17] model, [55] illustrated

how optimal solutions along such a value-to-cost frontier can be generated when considering

budget constraints and project interdependencies. [43] used fuzzy set theory to model impre-

cise and preference information associated with R&D project performance, project interac-

tions, and stakeholder satisfaction degrees in resource constraint distributions, enabling the

estimation of an optimal portfolio that maximizes monetary benefits under fuzzy resource

constraints. A handful of other studies assumed stakeholder preferences as priority indices

determining the sequencing of projects entering illustrative pharmaceutical R&D pipeline

optimization problems [44,46,48]. However, no formal preference elicitation process, or out-

come, was reported in any of these studies.

This study attempts to explicitly address uncertainty and formally incorporate stakeholder

preferences into the optimization process. It does so through discrete choice modelling and

testing of multiple uncertainty analysis methods within a stochastic optimization framework,

in a real-life application with a high impact portfolio decision to be made. A commercially

available simulation-optimization algorithm is employed to identify optimal portfolio solu-

tions, and different uncertainty analysis techniques are compared to assess whether the identi-

fied solutions are also stochastically nondominated and robust.
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2. Materials & methods

2.1.Scope and objective

The analysis focused on 16 platform projects that were submitted for an extended review fol-

lowing on the launch of a Call for Proposals (CfP) [5]. Projects were reviewed by CEPI between

March and May 2018. The 16 platform projects had a combined budget of US$ 390 million,

with budgets ranging from US$ 6 million to US$ 65 million, and with a median cost of US$ 22

million (see S1 Data). The goal of the PDA framework was to identify an optimal portfolio of

platform technology investments that would maximize portfolio value under a US$ 140m bud-

get constraint.

All projects were at the preclinical development phase, with the aim that CEPI funding

would advance them through their testing against up to three pilot pathogens to the end of

clinical phase 1. Projects covered 5 different types of platform technologies: RNA, Viral Vector,

DNA, Protein, and gene-encoded mAb. Due to confidentiality restrictions, project owner/

development partner names have been anonymized throughout the remainder of this manu-

script. Projects have been labelled as P1 to P16 and their grouping by platform type 1–5 is sum-

marized in Table 1.

2.2.Study design

Six steps were undertaken to determine the optimal platform technology portfolio solution.

First, project-level and portfolio-level evaluation factors were identified that were of interest to

the decision makers, via stakeholder consultations and review of the literature. Second, these

factors were structured into a platform technology portfolio valuation framework, accounting

for parameter uncertainty. Third, expert assessments of platform project performance were

collected and combined into performance estimates using a Monte Carlo simulation. Fourth,

decision maker preferences were elicited on different types of technology platforms via a Dis-

crete Choice Experiment (DCE). Fifth, project performance and decision maker preferences

were combined in a simulation-optimization model to determine optimal portfolio solutions.

Sixth, stochastic dominance and robustness of the optimization output were tested through a

variety of uncertainty analysis techniques.

2.3.Step 1. Identifying evaluation factors

Stakeholder consultations (see S1 Appendix for details) identified the factors relevant to the

evaluation of platform project portfolios. First, the probability of at least one project per plat-

form type considered induces a sustainable, protection enabling accelerated vaccine R&D

Table 1. Platform projects evaluated under the call for proposals for platform technologies to enable rapid vac-

cine development for epidemic prone infections.

Platform Type Platform Projects

RNA (Platform Type 1) P2 (mRNA), P7 (saRNA), P11 (mRNA), P16 (mRNA)

Viral Vector (Platform Type

2)

P4 (Replication-defective Chimpanzee adenovirus), P10 (Plasmid-Launched-Live-

Attenuated Virus YF), P12 (Simian Adenovirus), P13 (Recombinant attenuated

vesicular stomatitis virus)

DNA (Platform Type 3) P3 (DNA-Needle Free Injection System), P8 (DNA-Electropolation Device), P15

(Lentiviral gene transfer vector)

Protein (Platform Type 4) P1 (Nanoparticle-Subunit), P9 (Tobacco Mosaic virus—Virus Like Particle), P14

(Molecular Clamp Sub-unit)

Gene-encoded mAb

(Platform Type 5)

P5 (Adeno Associated Virus-mediated monoclonal antibody), P6 (RNA vectored

monoclonal antibody)

https://doi.org/10.1371/journal.pone.0246235.t001
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response to unexpected epidemic infection emergencies (PoS�1). The consultation identified

seven factors influencing PoS�1 (see Table 2). Second, stakeholders suggested different value

to PoS�1 generated by different platform types and a non-linearity in preferences for PoS�1.

2.4.Step 2. Defining R&D portfolio value

Based on the factors emerging from the previous step as relevant to the assessment of projects

and of project portfolios, project PoS is defined per Eq (1) as the product of those factors con-

tributing to the overall PoS of project i for a given technology platform type k. N indicates the

total number of project PoS factors considered (which in this case is seven; for descriptions see

Table 1). These factors were defined to be consequentially independent–i.e. the occurrence of

one factor would not affect the probability of occurrence of others–even if some of these could

potentially be correlated with each other in practice. This allowed for their multiplicative com-

bination to generate overall project PoS estimates. The independence of the factors was

ensured through the engagement of experts in the definition and structuring of the PoS factors.

For instance, the risk of project failure because of staff competence (the inverse of factor C1)

was deemed independent to the risk of project failure because of technical factors (C2-C5), as

was the prospect that a project demonstrates clinical benefit (C3) but is not safe (C4), and vice

versa.

~pik
¼
Q

N
~CNik

ð1Þ

Where:

~pik
= platform project PoS

~CNik
= factors contributing to the overall PoS of platform project i

For each platform type k, the probability of at least one project being successfully developed

is defined per Eq (2). This is calculated as the difference between 1 and the product of no

Table 2. Factors influencing PoS of rapid response vaccine platform technology development projects.

Project PoS factor Metric

C1. Applicant competency Likelihood that the applicant is sufficiently competent to deliver on the proposed

activities of the project

C2. Project feasibility Likelihood that the project plans and procedures in place are of sufficient quality to

ensure that three target pathogens are effectively investigated through to preclinical

proof of concept, whereof two target pathogens are further effectively investigated

through clinical Phase I studies

C3. Clinical benefit Likelihood that the platform will enable immune responses providing protection/

clinical benefit against novel emerging infectious diseases on the basis of evidence

provided on any pathogen

C4. Safety potential Likelihood that the platform will be able to generate vaccines, with an acceptable

safety profile, against novel emerging infectious diseases on the basis of evidence

provided against any pathogens on the same platform

C5. Manufacturing scalability

& speed

Likelihood that the platform will enable fast development and production, from

design through clinical release of vaccine, in volumes sufficient to respond to

outbreaks of novel emerging infectious diseases on the basis of evidence provided

against each of the target pathogens and/or any other evidence provided on other

pathogens as part of this application

C6. Operational suitability Likelihood that the platform will enable stable storage and uncomplicated delivery

of vaccine product in an outbreak response under extreme conditions

C7. Operational sustainability Likelihood that the candidate platform developed through this project will remain

in use and available to respond to newly emerging or unexpected pathogen

outbreaks

https://doi.org/10.1371/journal.pone.0246235.t002
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project being successfully developed. s indicates here the total number of projects representing

a technology platform type k. Here, the level of at least one successful project POS�1(k) associ-

ated with a given platform type k suggests that: a) more than 1 platform projects are being con-

sidered, at least one of which will succeed with a given probability; b) the PoS of each of these

projects, as defined by Eq 1, will affect the overall probability of POS�1(k) for the platform type

k they comprise.

gPOS�1ðkÞ ¼ 1 � ð
Qs

ik
ð1 � ~pik

ÞÞ ð2Þ

Where:

gPOS�1ðkÞ = probability of at least one project being successfully developed for platform type

k

As per Eq (3), overall portfolio value is defined as the weighted sum of products of POS�1(k)
per platform type k. A weighting factor (~wk) was added to the value function to reflect stake-

holder feedback that their goal was more than simply maximising POS�1(k) and that the value

of POS�1(k) varied between pathogens. It was not possible to define the source of this value

more precisely and thus captured this as another factor in the value framework. Thus, the vari-

ation in the value of POS�1(k) by platform type was incorporated into the framework as a

weighting factor and captured by eliciting stakeholder preferences (see methods step 4).

~Vp ¼
Pt

k¼1
~wk �

~POS�1ðkÞ ð3Þ

Where:

~Vp = Overall portfolio value

~wk = preference coefficient for platform type k

t = total number of platform types k included in the portfolio

2.4.1.Step 3. Generating project PoS estimates (C1, C2, C3, C4, C5, C6, C7). Each proj-

ect i was quantitatively assessed against PoS factors C1i to C7i by four to five reviewers, each of

whom assessed three to four projects, ensuring their balanced assignment in terms of numbers

as well as representation of required review competencies per project (see S1 Appendix for

details). Overall, a total pool of 27 reviewers was used for assessment of projects. For each of

C1i - C7i, reviewers were asked to define the most likely, worst-case and best-case outcomes

for each project. Reviewers provided initial assessments online (step 3.1 –initial reviewer

assessments) and final assessments following a face-to-face meeting (step 3.2—final reviewer

assessments). Results of project assessments against C1i - C7i were combined to estimate proj-

ects’ overall PoS as per Eq (2), through a random sampling process (10,000 iterations). In each

iteration a reviewer was randomly selected and a PoS factor estimate was randomly drawn

from that reviewer’s distribution, assuming the reviewers’ estimates defined a triangular distri-

bution, and factors were combined as described in Eq (1). Across iterations of the simulation it

was then possible to estimate the mean and variance in projects’ PoS.

2.5.Step 4. Eliciting platform preferences (wk). A DCE [56] was employed to help elicit

stakeholder preferences for platform types, denoted as wk. A DCE elicits from survey partici-

pants’ their choices between pairs of decision options [57]. The options are described using a

pre-defined set of attributes, such that the analysis of choices can be used to generate a utility

function which describes how variation in attributes contributes to the preference for an

option [57].

DCE participants involved 48 individuals, comprising a diverse group of expert stakehold-

ers: 27 external expert reviewers; 8 CEPI expert staff; and 13 members of the Scientific Advi-

sory Committee (SAC). The SAC is CEPI’s formal governance body responsible for making
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recommendations for funding to the CEPI Board. It is an independent, expert and invested

group, under no obligation to agree with expert reviewer assessments or with formal invest-

ment decisions made by the CEPI Board. At the time of this CfP, the SAC comprised: 8 repre-

sentatives of governments, regulators and multilateral organizations; 7 representatives of non-

profit R&D organizations; 6 academics; 4 industry representatives; and 4 independent subject-

matter experts [58].

The 48 DCE participants were given a series of choice sets, in which they were asked to

choose between portfolio alternatives defined by different levels of achievement (POS�1(k)).
For each platform type (the attributes), this likelihood was defined as one of three levels of

achievement (Table 3). Given lack of published evidence on rapid platform project PoS, and

given the time constraints on the analysis, the levels included in the choice model were

informed by the initial reviewer assessments (step 3.1).

Each choice set comprised three portfolios (see example in Fig 1). An experimental design

of 2 blocks of 16 choice sets (32 choice sets in total) was generated using JMP1 Pro 13.2.1 soft-

ware. In order to minimize bias in responses, the order of the attributes within each choice set

and of the choice sets within each survey was randomized between DCE participants, and the

experimental design was assessed for orthogonality and balance. Internal validity of responses

was assessed through dominance and consistency tests (see S1 Appendix for details).

Participants’ choices were analysed using a conditional logistic regression of the following

form and applied using JMP1, Version 13. SAS Institute Inc., Cary, NC, 1989–2007:

Uj ¼
Pt

k¼1
½bbðkÞXbðkÞ þ bcðkÞXcðkÞ� ð4Þ

Where:

Uj = Utility produced by portfolio choice j
Xb(k) = the middle level (b) of PoS�1 performance for platform type k
Xc(k) = the upper level (c) of PoS�1 performance for platfrom type k
βb(k) = Part worth associated with moving from the lower level of PoS�1 performance (a) to

the medium level of performance (b) on platform type k
βc(k) = Part worth associated with moving from the medium level of PoS�1 performance (b) to

the upper level of performance (c) on platform type k
Results of the model were used to estimate preference functions wk for the different plat-

form types as per Eq (5), where values wk are estimated depending on whether POS�1(k) falls

within a b—a versus a c—b range of achievement in the choice model (see Table 2); a being the

lower level of POS�1(k) achievement (which is equal to zero), b the middle level of POS�1(k)
achievement and c the upper level of POS�1(k) achievement, for each platform type k

Table 3. Attributes and levels of achievement employed in the DCE.

Platform types (k) Lower level (a) Middle level (b) Upper level (c)

RNA (Platform Technology Type 1) (POS�1 = 0%) (POS�1 = 30%) (POS�1 = 60%)
Viral Vector (Platform Technology Type 2) (POS�1 = 0%) (POS�1 = 30%) (POS�1 = 60%)
DNA (Platform Technology Type 3) (POS�1 = 0%) (POS�1 = 28%) (POS�1 = 56%)
Protein (Platform Technology Type 4) (POS�1 = 0%) (POS�1 = 20%) (POS�1 = 40%)
Gene-encoded mAb (Platform Technology Type 5) (POS�1 = 0%) (POS�1 = 6%) (POS�1 = 12%)

POS�1(k) represents the likelihood of successfully developing at least one project by platform type k.

https://doi.org/10.1371/journal.pone.0246235.t003
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considered in the choice model.

~wk ¼

~bbðkÞ �
1

b � a
; if ~POS�1ðkÞ � b

~bbðkÞ

~POS�1ðkÞ

þ
~bcðkÞ

~POS�1ðkÞ

�
~POS�1ðkÞ � b
c � b

; if ~POS�1ðkÞ > b
ð5Þ

8
>>><

>>>:

Where:
~bbðkÞ = stochastic parameter of βb(k), following a Normal distribution
~bcðkÞ = stochastic parameter of βc(k), following a Normal distribution
Given the anticipated heterogeneity in stakeholder preferences, wk was modelled as a sto-

chastic preference parameter in the overall value function described in Eq (3), drawing ran-

domly (10,000 iterations) from the respective platform type’s utility coefficient distribution fit

to the DCE data. Utility coefficients generated from conditional logistic regression models are

normally distributed, justifying the distributional choices in Eq 5.

2.6.Step 5. Constructing optimal portfolios

To construct optimal portfolios a mathematical programming problem was solved using a sim-

ulation-optimization algorithm provided by the Analytic Solver1 platform of FrontlineSol-

vers1. The R&D portfolio selection problem was to select a set of platform projects from a

pool of candidate projects that maximizes portfolio value under a given budget constraint.

Since performance uncertainty and preference heterogeneity were expected to be encountered

in making R&D project portfolio decisions, a stochastic mixed integer programming model

was designed to support optimal R&D portfolio decisions in an uncertain R&D environment,

per Eq (6).

arg max
x

f ðxÞ≔fxjf ðxÞ ¼ ~Vp ¼
Pt

k¼1
~wk½1 � ð

Qs
ik
ð1 � ~pik

Xik
ÞÞ�g ð6Þ

s:t:
P

1 � ik � s

1 � k � t

Bik
Xik
� B ð6:1Þ

Fig 1. Example choice set in the DCE.

https://doi.org/10.1371/journal.pone.0246235.g001
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Xik
f0; 1g8ik ð6:2Þ

Given the above non-smooth optimization problem formulation has many potentially feasi-

ble solutions, the Analytic Solver1 platform’s evolutionary algorithm was used to identify

optimal portfolios. The algorithm starts by randomly drawing from a population of candidate

solutions. It learns and adapts its search for better optima in relation to a current solution, as

the composition of the population of candidate solutions changes. This adaptation is sup-

ported by random changes to the original population of candidate solutions, yielding new and

improved candidate solutions. Throughout this process, an evolutionary algorithm selects the

fittest and eliminates the least fit candidate solutions.

Given that the optimization objective function depends on multiple, stochastically indepen-

dent uncertainties, the evolutionary algorithm applied to the objective of maximizing expected

Vp is unlikely to identify the highest Vp. Instead, Vp was maximized given chance constraints,

defined as the percentile of the values computed for this objective function, across trials of the

Monte Carlo simulation. Specifically, the addition of a chance constraint VaRa Vp� 95% to

the optimization model allowed the identification of portfolio solutions with the highest Vp

under different budget constraints, which other model runs did not when maximizing by

expected Vp or by Vp against 50%� VaRa Vp� 90%. Varying project allocations under differ-

ent budget constraints from US$ 6 million (lowest budget of the evaluated projects) to US$

390 million (total budget if all projects were to be considered), the model was also able to iden-

tify optimal portfolio solutions along an efficiency frontier.

2.7.Step 6. Uncertainty analysis

To further test the impact of uncertainty on the optimization, all possible portfolio alternatives

were first identified under the US$ 140 million constraint, through multiple optimization runs

(approximately 40,000 runs), each time marginally varying the budget constraint (by approxi-

mately US$ 0.0003 million). For each portfolio alternative under the given budget constraint,

their mean, variance, semivariance, absolute deviation, and the mean-Gini statistic were then

estimated, allowing for stochastic dominance testing (see S1 Appendix for details).

A probabilistic sensitivity analysis was also conducted to test robustness of the optimal port-

folio solution, by estimating the rank probability of portfolio alternatives. This was done in

pairwise comparisons between the optimal portfolio and all alternative portfolios identified at

Indices and sets Parameters

i2I
k2K
Vp
B
s
t

Projects

Technology platform types

Value of the portfolio

Budget available

The total number of projects representing a

technology platform type

The total number of technology platform types

~p~
ik

~w~
k

Bik

PoS distribution of project i representing technology

platform type k
Preference coefficient for a given ~POS~

�1 in a

technology platform type k.

Budgetary cost of project i representing technology

platform type k
Variables

Xik

1; if project i representing platform type k is selected

0; otherwise

(

https://doi.org/10.1371/journal.pone.0246235.t004
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the US$ 140 million budget constraint. For each pairwise comparison, the pair of portfolios

were ranked in each of 10,000 simulation iterations, and the probability that the optimal port-

folio would outrank each of these portfolio alternatives by Vp was estimated across all

iterations.

3. Results

3.1.Project PoS

Fig 2A–2C present the PoS distributions of the 16 projects, based on initial versus final

reviewer assessments. They demonstrate that PoS estimates substantially overlap between

Fig 2. a, b. Project PoS (Mean, 95% CI). Displaying the mean and variance in PoS of projects generated by the

simulation (10,000 iterations) under methods steps 3.1 and 3.2 (initial versus final reviewer assessments). c. Project PoS

distributions (final reviewer assessments). Displaying the final project PoS distributions for the 16 projects assessed.

Each bar chart represents another project, with the vertical axis indicating the frequency of occurrence of PoS

estimates out of 10,000 simulation iterations, and the horizontal axis indicating different levels of PoS estimates

emerging across the 10,000 simulation iterations.

https://doi.org/10.1371/journal.pone.0246235.g002
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projects, though final PoS estimates are significantly lower than per initial assessments, chang-

ing the rank ordering of projects by PoS, within and between platform types.

3.2.Portfolio preferences (wk)

Table 4 shows the choice model estimated from the DCE. It demonstrates how the utility that

stakeholders place on a chosen portfolio varies with the probability of at least one project suc-

cessfully developed per platform type POS�1(k). Stakeholders attach different value to POS�1
generated by different platforms. For instance, there is a non-overlap between confidence

intervals in 0–30% POS�1(k) gains of RNA versus Protein and in 0–28% gains of Viral Vectors

versus DNA. Moreover, there are consistently decreasing returns to investing in increasing

POS�1(k) of a single platform type. For instance, stakeholders prefer a gain of 0% to 30% in

POS�1(k) of RNA to the same gain in POS�1(k) of other platforms. However, once it goes above

30%, the incremental return on POS�1(k) for RNA becomes less, justifying diversifying the

portfolio into other platform types.

Fig 3A shows the cumulative value of projects, grouped by platform type and ordered by

POS�1 as identified through the initial reviewer assessments. Fig 3B shows the same output,

but drawing from final reviewer assessments. As PoS estimates in this step were reduced, even

cumulative PoS often were not as high as the mid-points in the preference function and thus

failed to reflect the non-linearities in stakeholder preferences. This was an artefact of study

timelines necessitating the design of the DCE based on initial reviewer assessments.

3.3.Optimal portfolios

Fig 4A demonstrates the optimal portfolio solution under the US$ 140 million budget con-

straint, which was also the SAC recommendation to CEPI–composed of the two best perform-

ing projects under each of the platform technology types 1 (RNA), 2 (Viral Vector), and 4

(Protein). The portfolio that was finally approved for funding by the CEPI Board excluded 1

Viral Vector and 1 Protein project from this recommended portfolio. This followed further

due diligence of the recommended projects by internal CEPI expert teams. This portfolio was

also positioned on the optimal value-to-budget frontier. Fig 4A also demonstrates which proj-

ects would have been selected if ranked by their PoS-to-Cost–including a third Viral Vector

project (P12) that the Board did not approve but excluding one RNA project (P2) that was

approved for funding.

Table 4. Choice model derived from responses to the DCE survey.

Term Utility Coefficient (β) Std Error Lower 95% Upper 95% p value

RNA (Platform Type 1)_ POS�1 [0%-30%] 1.313 0.081 1.156 1.474 <0.001

RNA (Platform Type 1)_ POS�1 [30%-60%] 0.360 0.070 0.223 0.498 <0.001

Viral Vector (Platform Type 2)_ POS�1 [0%-30%] 1.167 0.082 1.009 1.329 <0.001

Viral Vector (Platform Type 2)_ POS�1 [30%-60%] 0.463 0.070 0.326 0.600 <0.001

DNA (Platform Type 3)_ POS�1 [0%-28%] 0.833 0.076 0.685 0.984 <0.001

DNA (Platform Type 3)_ POS�1 [28%-56%] 0.118 0.073 -0.026 0.261 0.11

Protein (Platform Type 4)_ POS�1 [0%-20%] 0.710 0.077 0.560 0.861 <0.001

Protein (Platform Type 4)_ POS�1 [20%-40%] 0.266 0.075 0.121 0.413 <0.001

Gene-encoded mAb (Platform Type 5)_ POS�1 [0%-6%] 0.133 0.073 -0.011 0.277 0.07

Gene-encoded mAb (Platform Type 5)_ POS�1 [6%-12%] -0.043 0.076 -0.193 0.106 0.57

AICc = 2706.86; BIC = 2760.6; -2�LogLikelihood = 2686.73.

https://doi.org/10.1371/journal.pone.0246235.t005
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Fig 4B shows the optimal frontier updated to draw from the initial reviewer assessments of

project PoS. In this case, the impact of the non-linear preference function becomes more evi-

dent, as reviewer assessments are distributed across the ranges of performance reflected in the

levels in the DCE.

3.4.Uncertainty analysis

The confidence intervals presented in Fig 4A demonstrate the large amount of uncertainty in

final portfolio valuations. Fig 5 compares the optimal (and SAC recommended) portfolio and

CEPI Board approved portfolios with alternatives under the decision maker’s budget con-

straint through various means of variance–mean-variance, mean-semivariance, mean-stan-

dard deviation, and mean-absolute deviation. This suggests that the optimal portfolio is

stochastically dominant to the CEPI Board approved portfolio. In addition, no portfolio alter-

native with lower, equal or higher variance than the SAC recommended portfolio has an equal

expected value.

The notion of stochastic dominance tested in Fig 5 requires assumptions about the shape of

decision makers’ utility function and the shape of the probability distribution of the optimiza-

tion outcomes, which appear to not be in line with the CEPI Board concerns about the level of

acceptable risk present in the optimal portfolio. Assessment of stochastic dominance using the

Mean-Gini relaxes these assumptions, just requiring that decision makers are risk averse

[42,59].

Fig 6 illustrates the optimal value-to-budget frontier under a US$140 million constraint

using the Mean-Gini statistic. Given that the optimal portfolio solution has both the highest

mean Vp (Figs 4, and 5) and the highest mean-Gini statistic (Fig 6), this analysis confirms sto-

chastic dominance of the optimization solution, given the assumptions on decision maker atti-

tudes to risk underlying these models. Similarly to Fig 4A, the mean-Gini to budget analysis

marginally differentiates from findings of a simple ranking of projects by PoS-to-Cost.

Fig 3. a. Portfolio value associated with probability of�1 project successfully developed per platform type (initial

reviewer assessments). Mean POS�1(k) and Vp estimates are calculated by running the optimization process under step

5 separately for each platform type k, as follows: maximizing Vp several times, each time incrementally increasing the

number of projects (decision variables in the model) entering the portfolio, and repeating this process until all projects

are added. b. Portfolio value associated with probability of�1 project successfully developed per platform type (final

reviewer assessments). Mean POS�1(k) and Vp estimates are calculated by running the optimization process under step

5 separately for each platform type k, as follows: maximizing Vp several times, each time incrementally increasing the

number of projects (decision variables in the model) entering the portfolio, and repeating this process until all projects

are added.

https://doi.org/10.1371/journal.pone.0246235.g003
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Fig 7A illustrates that out of all pairwise comparisons between the optimal solution and

each of the 8,866 unique alternatives with a budget under US$ 140 million, the optimal portfo-

lio had a>54–100% chance of outranking portfolio alternatives. Fig 7B illustrates to what

extent the chance of the optimal portfolio outranking other portfolios changes according to

changes in their project composition.

The optimal portfolio under the budget constraint has a 54% probability of outranking the

second-best portfolio by value. The latter comprises one less project under platform technol-

ogy type 4 (Protein), one additional project under platform technology type 2 (Viral Vector),

and one new project under platform technology type 3 (DNA).

Projects P4, P7, P14 and P2 are included in over 80% of the 88 portfolios that are outranked

by the optimal portfolio by a 54–75% chance in the simulation. Projects P10 and P1, which

were not approved for funding by the CEPI Board, are included in only 56% and 42% of these

portfolios. The probability that other portfolios outrank the optimal portfolio decreases as the

extent that projects P4, P7, P14 and P2 are excluded from these portfolios increases.

Fig 4. a. Optimal Frontier by maximizing portfolio value drawing from final reviewer assessments of project PoS. Fig

4A shows the efficiency frontier constructed by the optimization process under step 5, drawing from final reviewer

assessments of project PoS. This is compared against the frontier that would have been generated if projects were

simply ranked by expected PoS-to-Cost, then incrementally added to the portfolio without accounting for whether the

resulting portfolios would maximize Vp under different budget constraints. b. Optimal Frontier by maximizing

portfolio value drawing from initial reviewer assessments of project PoS. Fig 4B shows the efficiency frontier

constructed by the optimization process under step 5, drawing from initial reviewer assessments of project PoS. This is

compared against the frontier that would have been generated if projects were simply ranked by expected PoS-to-Cost,

then incrementally added to the portfolio without accounting for whether the resulting portfolios would maximize Vp

under different budget constraints.

https://doi.org/10.1371/journal.pone.0246235.g004
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4. Discussion & conclusions

This study has reported on a PDA designed to support a global health R&D funding entity in

making decisions to invest in platform technology projects to support response to unknown

pathogen outbreaks. The funder faced significant uncertainty and portfolio selection trade-

offs. This was particularly so in terms of the future use potential of platforms, but also in terms

of the probability that platforms would be successfully developed and that they would be effec-

tive in the face of outbreaks.

There are three sets of findings that can be drawn from the study. First, the optimization

output corresponded with the SAC’s recommendation to CEPI to fund 2 RNA, 2 Viral Vector

and 2 Protein platform projects. However, the two riskiest of the six projects were eventually

not approved for funding by the CEPI Board. This raised questions about the robustness of the

PDA solution relative to decision makers’ attitude to portfolio risk.

The optimization demonstrated a positive correlation between the expected value of a port-

folio and the variance around this estimate, suggesting a higher risk that the portfolio does not

achieve the mean expected value. Despite this, various uncertainty analysis methods indicated

Fig 5. Optimal frontiers by mean-variance, mean-semivariance, mean-standard deviation, and mean-absolute

deviation, under a US$140 million constraint.

https://doi.org/10.1371/journal.pone.0246235.g005

Fig 6. Optimal Frontier by Mean-Gini performance of the portfolio, under a US$140 million constraint.

https://doi.org/10.1371/journal.pone.0246235.g006
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that the optimal portfolio is also stochastically nondominated, restricted in their conclusions

however by assumptions on decision makers’ attitudes to risk. The Monte Carlo Simulation

suggested that this portfolio only had a 54% probability of ranking first compared with the sec-

ond-best portfolio by value; and that this ranking probability was particularly sensitive to the

downside risk of two out of the six projects comprising this portfolio. Whereas the sensitivity

analysis was able to identify those downside risks, lack of information on decision makers’ atti-

tude to portfolio risk prevented the PDA from concluding as to portfolio robustness during

the CfP process. This would include data on how decision makers trade-off increasing

expected value and increasing variance in expected value, and data on the acceptable level of

outranking probability. Several studies illustrate how this could be done by setting limits on

the variation around an R&D portfolio’s expected value (e.g. see [40,46,52]).

Practically, this finding also points to the importance of experience-based feedback to

sequential updates of previous investment decisions as more information emerges about proj-

ect strengths and risks. Mean-variance analyses ignore the impact of these learnings central to

technology choice problems [60], which are dynamic in nature and require regular monitoring

of progress of investments. The multi-armed bandit literature (e.g. [61,62] offers alternative

perspectives on how portfolio choices can be made when decision-makers are faced with

uncertainty. Here, the emphasis is on avoiding negative outcomes and particular attention is

given on the dynamic process for decision making. The importance of such a sequential

Fig 7. a. Probability ranges of optimal portfolio outranking alternative portfolios under a US$ 140 million constraint.

b. Project composition of portfolio alternatives the optimal portfolio outranks under a US$ 140 million constraint.

https://doi.org/10.1371/journal.pone.0246235.g007
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strategy for managing uncertainty has been illustrated elsewhere in different ways [63,64]:

with uncertainty in health product development gradually diminishing as candidates advance

through development phases, more information about their actual potential is revealed, and

periodic updates of portfolio decisions at key stage gates ensure returns are optimized. Regard-

less of whether one uses a multi-criteria decision analysis framework, statistical decision indi-

ces [65], real options [35] or other decision tree approaches [33], the common need in such a

process is adaptation of models to new knowledge about portfolio performance and to evolv-

ing decision-maker priorities.

Second, the study illustrates some of the methodological challenges, and potential solutions,

facing PDA in the context of early health R&D investment decisions. The analysis demon-

strated that uncertainty was particularly evident in the likelihood that investments could gen-

erate platform projects that would be effective in face of an unexpected epidemic infection

emergency. This is reflected in reviewers’ assessments of project PoS. Given the uncertainties

of whether any technology platform project can ever be applicable as well as rapidly respond to

multiple such disease epidemics [8,66], it is unsurprising that project PoS estimates were low,

despite the optimism of initial assessments informing the model; and with substantial

variation.

The PDA considered the impact of this uncertainty and stakeholder preferences for differ-

ent platform types on portfolio assessment; albeit preferences’ impact on portfolio valuation

was smaller than anticipated, given how levels in the choice model were set–drawing directly

from the initial reviewer assessments, in absence of published benchmarks on rapid platform

PoS. Because of this, capturing the diminishing returns to investing in the same platform types

using the DCE generated only a marginally different optimality frontier than just focusing on

project PoS-to-cost rankings.

Portfolio preferences have been captured in other studies by the introduction of a diversity

criterion or constraint, for instance by: structuring R&D portfolios by disease area, platform

technology type, or early versus late phase of development of projects considered (e.g. see

[29,32,46,50,67–69]), imposing a limit on the allocation of resources between project types by

strategic goal (e.g. see [43]), or restricting resource allocation between R&D activities because

of resource dependencies (e.g. see [44,48]). In practice, platform potential emerges through the

accumulation of evidence of performance against a variety of diseases. This point is exempli-

fied by the experience with the accelerated development of several CEPI funded vaccines using

RNA, Viral Vector, Protein and DNA platforms in response to the COVID-19 pandemic [70].

However, all projects considered in this study were at the same early stages of development.

Moreover, there are extreme uncertainties around their use potential against multitudes of

unknown pathogens if successfully developed in off-epidemic conditions. Valuing the portfo-

lio by disease area or different phases of development would therefore be a challenging task.

Other limit setting approaches would be less relevant as allocation limits are already a function

of the POS�1(k) and of constraints specified in the model.

This study modelled the optimization problem as a nonlinear stochastic problem and used

an evolutionary algorithm to solve it. A key limitation of the evolutionary algorithm is prema-

ture convergence, i.e. the loss of diversity between sets of solutions too quickly in the solution

search process, which can lead to outcomes that are not globally optimal. To avoid this, an

optimization problem can be transformed to a linear or smooth problem, reducing its com-

plexity and addressing the challenge of non-convergence. Ultimately, however, there is a

degree of choice in how one models real-life problems and a trade-off that one needs to make

between accurate reflection of real-life complexity and model simplification for computational

efficiency and precision. In this study, the identification of all portfolio alternatives helped con-

firm the optimality of the solution generated by the model. This was possible because the
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optimization problem was small but would be an intractable exercise in larger problems,

where model transformations would allow for globally optimal solutions to be found in more

efficient ways.

Finally, several practical limitations with the elicitation of stakeholder portfolio preferences

were identified. First, the time constraints facing decision makers are not always amenable to

rigorous preference elicitation. Second, in the context of sample size limitations, as is often the

case when working with expert groups, there are limitations on the complexity of the value

models that can be characterized by choice models, such as DCEs. However, this will be less of

a concern when stakeholders’ values of interest to decision makers is a larger group. In health-

care settings this typically relates to patients or the general population. In this study, it was the

values of a broader set of experts beyond those (SAC members) making formal recommenda-

tions to the CEPI Board, which were of interest to decision-making. Consequently, the consid-

erations of these values made it also practically possible for a DCE to be employed as the

stakeholder group was large enough relevant to the number of attributes and levels considered

in the model. In addition, logistical limitations meant that it was necessary to elicit preferences

using a survey. This decision was vindicated by the results of the choice analysis, which was

sufficiently precise to be able to differentiate the utilities associated with many of the levels in

the choice sets. Other preference elicitation methods could also be employed, such as work-

shop-based swing weighting (e.g. [17]), however such methods are generally restricted by prac-

tical constraints of time, location and availability of stakeholders engaged.

The analysis demonstrates that while optimization modelling can help decision makers

identify optimal portfolios in the face of significant decision uncertainty and portfolio trade-

offs, in the presence of such problem characteristics further data on decision makers risk atti-

tude is required before PDA can conclude about the optimal portfolio. Collecting such data

will, however, face practical constraints. It will be necessary to identify such requirements early

in the decision-making process, so that time and resources are available to elicit decision mak-

ers’ preferences in the context of health R&D decision making.
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