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Abstract: The present paper is the first study on the hygrothermal analysis (i.e., effect of temperature
and moisture loadings) of laminated composite skew conoids with reasonable depth and thickness.
In order to solve the hygrothermal problem of laminated composite skew conoids, the cubic variation
in displacement field, along with cross curvature effects of the shell, were considered. In the present
analysis, the shear correction factor is not needed due to the parabolic variation of transverse shear
strain. The zero transverse shear stress conditions at the top and bottom of the shell were imposed
in the mathematical model. The novelty of our model is reflected by the simultaneous addition of
twist curvature in the strain field, as well as the curvature in the displacement field allowing the
reasonably thick and deep laminated composite rhombic conoid. The conoid behavior differs from
the usual shells, like cylindrical or spherical ones, due to its inherent twist curvature with the complex
geometry and different location of maximum deflection. The finite element (FE) implementation of
the present realistic mathematical model was carried out using a nine-noded curved isoparametric
element with seven unknowns at each node. The C0 FE implementation of the present mathematical
model was done and coded in FORTRAN. The present model results were compared and found
in good agreement with other solutions published in the literature. Hygrothermal analysis was
performed for skew conoids having a different skew angle, temperature, moisture concentration,
curvatures, ply orientation, thickness ratio, and boundary conditions.

Keywords: hygrothermal analysis; finite element method; shell; laminated

1. Introduction

Nowadays, laminated composite structures are gaining increasing attention due to their enhanced
properties, such as high strength to stiffness ratio, high strength to weight ratio, improved toughness,
and resistance to oxidation and corrosion. Laminated composite conoids are structurally stiff and
lightweight; thus, they can be applied to cover column-free large space in aircraft hangars, industrial
structures, and large assembly halls. In their service lifespan, laminated structures are often exposed
to adverse temperature and moisture loading. The changes in temperature and moisture cause
deformation and stresses in laminated composite structures and hence lead to the failure of the
structure. Therefore, it is important to conduct the analysis of laminated composite elliptic paraboloids
under hygrothermal loading.

Materials 2019, 12, 225; doi:10.3390/ma12020225 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0003-0083-9052
https://orcid.org/0000-0001-8409-3299
https://orcid.org/0000-0002-1238-1272
http://dx.doi.org/10.3390/ma12020225
http://www.mdpi.com/journal/materials
http://www.mdpi.com/1996-1944/12/2/225?type=check_update&version=3


Materials 2019, 12, 225 2 of 16

For the analysis of plate or shell, classical plate theory (CPT) proposed by Kirchhoff [1] is the
first theory which was implemented by numerous researchers for the analysis of thin plate or shell
structures. However, CPT neglects the effects of shear deformation and further assumes that normal to
the mid-plane remains straight and normal to the mid-surface after deformation. As a consequence,
the CPT usually underestimates the deflection parameter and overestimates the natural frequencies
and buckling loads, especially for thick plates. Additionally, this theory may be unsuitable for the
structures made of thick and deeply laminated shells. The major limitation of this theory was identified
during the analysis of thick plates, where the contribution of shear deformation cannot be neglected.
In order to propose an alternative solution, a theory which considers the variation of shear deformation
in a linear sense was introduced by Reissner-Mindlin (Mindlin, [2]; Reissner, [3]) as first-order shear
deformation theory (FSDT). However, the linear assumption of shear deformation variation leads to
the use of a shear correction factor in order to account for the realistic parabolic variation of transverse
shear strain. As cited in the literature, these factors are very sensitive to the geometric properties,
loading, and boundary conditions. As far as addressing the issues related with CPT and FSDT are
concerned, many higher order shear deformation theories were proposed (Reddy [4]; Lo et al. [5]) to
accomplish the realistic parabolic variation of transverse stresses through the thickness. Generally,
HSDT (Higher order Shear Deformation Theory) involves the higher order term in Taylor’s expansion
of the displacement component along the thickness direction.

Researchers have used various approaches to conduct the hygrothermal analysis of shell or
plate. The problem of thermal flexure of an anisotropic thin plate was studied by Pell [6]. Whitney
and Ashton [7] presented the effect of environment on laminated composite plates. They developed
the equations for the laminated plate, which include the effect of expansional strains induced by
temperature and moisture. The hygrothermal response of the laminated composite plate was studied
by Pipes et al. [8]. They used the classical equation of diffusion to accurately describe the diffusion
of moisture through the thickness. However, their results were limited to thin geometry. Reddy and
Hsu [9] developed an FE formulation for an anisotropic composite plate subjected to mechanical and
thermal loadings. They validated their results using an exact closed-form solution of a laminated
composite plate subjected to sinusoidal loadings. In the same year, Wu and Tauchert [10] presented the
thermal deformation and stress results in antisymmetric angle-ply and cross-ply laminates. They also
validated their results by developing the exact solutions for the response of simply supported plates
to general three-dimensional temperature variations. Deflections were computed to illustrate the
thermoelastic behavior of laminates subjected to constant and linearly varying temperature. In order
to study the hygrothermal behavior of shells, Lawrence and Doxsee [11] used a higher order theory.
Their formulations are valid for the various shapes of shells as well as arbitrary moisture and
temperature distributions. Lee and Yen [12] applied the FE method to study the problem of temperature
and moisture effects on the cylindrical composite shell. Lee et al. [13] used CLPT (Classical Laminated
Plate Theory) and von Karman larger deflection theory to study the hygrothermal effect on the
cylindrical bending of symmetric angle-ply laminates under uniform transverse load. Ram and
Sinha [13] used the FE method with the quadratic isoparametric element to study the hygrothermal
effect on the bending behavior of laminates. A survey on the response to the thermal loading was
conducted by Tauchert [14]. He discussed the thermally induced bending, buckling, post-buckling
large deformation, and vibrational analysis. The thermal analysis of cross-ply shallow shells was
presented by Khdeir et al. [15] using an exact analytical solution. Ali et al. [16] developed an accurate
model for the thermal and mechanical analysis of thick laminates using a new displacement-based
higher order theory. Zenkour and Fares [17] developed a single layer model for the thermal bending
analysis of laminated cylindrical shells using FSDT. The static and dynamic behavior of thick composite
laminates under hygrothermal condition was presented by Patel et al. [18] using HSDT. Khare et al. [19]
presented closed form solutions for the thermo-mechanical analysis of doubly curved laminated shells
using a 2D HSDT theory. A unified shear deformation plate theory was used by Zenkour [20] to study
the thermo-elastic behavior of anti-symmetric and symmetric cross-ply laminates. Brischetto and
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Carrera [21] presented a bending analysis of a multilayered plate under thermo-mechanical loadings.
Nonlinear flexural analysis of laminates subjected to hygro-thermo-mechanical loading was studied
by Upadhyay et al. [22]. Lal et al. [23] presented a direct iterative based C0 nonlinear FE method for
the plate and the spherical shell panel subjected to hygro-thermo-mechanical loading. An efficient
HSDT was used by Singh and Chakrabarti [24] for the hygrothermal analysis of laminates. In the
framework of the Carrera’s unified formulation, a refined 2D model was proposed by Brischetto [25]
for the bending analysis of multilayered composite and sandwich shells under hygrothermal and
mechanical loadings. Ali et al. [26,27] performed the hygrothermal analysis of cylindrical shells using
HSDT. An experimental and a numerical study based on FSDT was presented by Biswal et al. [28] for
the dynamic analysis of laminated shallow shells under hygrothermal conditions. A sinusoidal shear
deformation theory was used by Zenkour and Alghanmi [29] to study the sinusoidal hygrothermal
loading on multilayered plates. Jin and Yao [30] presented an efficient improved C0-type global-local
model (IGLM) to study the bending analysis of thick cross-ply laminates under hygrothermal loadings.

Hadid [31] used a combined variational approach for simply supported and clamped
elastic conoids to explore the bending response. In his mathematical formulation, he reduced
displacement-based shell equations by utilizing the “Kantorovich method” into a differential equation.
A modified isoparametric element was used by Choi [32] to perform the static analysis of truncated thin
conoids. Ghosh and Bandyopadhyay [33] used a doubly curved quadratic isoparametric eight-node
element to study the bending behavior of conoids. In 1990, Ghosh and Bandyopadhyay [34] presented
an approximate static analysis of truncated conoids using “Galerkin method” in a simple form.
The bending behavior of laminated parabolic conoids was presented by Dey et al. [35], using the FE
method. Das and Bandyopadhyay [36] investigated the bending response of conoids using the FE
analysis and Experimental analysis. The effect of cutouts on the bending behavior of conoids was
presented by Ghosh and Bandyopadhyay [37], using their own formulation stated above. Das and
Chakravorty [38] employed the first order shear deformation theory (FSDT) for the static analysis of
laminated conoids. Their FE code was developed using the eight-node curved isoparametric elements.
The bending behavior of stiffened conoids was studied by Das and Chakravorty [39], who used a
beam element having three nodes in assemblage with an eight-noded shell element. Many other
researchers [40–44] have worked on development of theory of laminated structures.

The literature survey reveals that there are no results on the hygrothermal analysis of the laminated
composite skew conoids. Therefore in this paper, an attempt was made to study this phenomenon.
A C0 FE model using a nine-noded continuous curved isoparametric element was developed by the
authors for the present study.

2. Mathematical Formulations

2.1. Displacement Fields and Strains

A composite laminated parabolic conoid having a and b sides in x and y-direction, respectively,
and a uniform thickness h in z-direction is shown in Figure 1a–c. The x and y axes represent the lines
of curvature and the reference plane was selected at z = 0. The surface equation of conoidal shell

z(x, y) = 4
[

hl + (hh− hl)
x
a

][y
b
− y2

b2

]
, where hl is the minimum rise and hh is the maximum rise of

the conoidal shell.

Curvature
1

Rx
=

∂2z
∂x2 ,

1
Ry

=
∂2z
∂y2 and cross curvature

1
Rxy

=
∂2z(x, y)

∂x∂y
(i.e., twist of the surface

with respect to x and y directions) were used in the model. The present theory is suitable for shallow
and moderately thick conoidal shells.
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Figure 1. (a) Geometry of a conoidal shell. (b) 3D Geometry of a conoidal shell. (c) Laminated 
composite conoidal shell. 

The enhanced displacement field with curvature effect can be expressed as:  

2 3
0

2 3
0

0

( , , ) 1 ( , ) ( , ) ( , ) ( , ),

( , , ) 1 ( , ) ( , ) ( , ) ( , ),

( , , ) ( , )

x x x
x

y y y
y

z
u x y z u x y z x y z x y z x y

R

z
v x y z v x y z x y z x y z x y

R

w x y z w x y

θ ξ ζ

θ ξ ζ

 
= + + + +  
  

  = + + + +     
= 


 (1) 

where Rx and Ry are curvatures along x and y-direction. 
Displacement components 0u , 0v , and 0w  are the translations at the reference plane of the 

conoids. Rotation to the normal reference plane about y and x-axis are ( , )x x yθ  and ( , )y x yθ . The 

xξ , xζ , yξ , and yζ  are higher-order terms that can be found using the zero transverse stress 
conditions at the top and bottom of conoids. 

The enhanced strain-displacement relationships with the cross curvature effect are expressed as: 

0 0

0 0

2

x
x

y
y

xy
xy

xz
x xy

yz
y xy

u w

x R

v w

y R

v u w

x y R

u vu w

z x R R

v uv w

z y R R

ε

ε

γ

γ

γ


∂ = + ∂


∂ = + ∂ 

∂ ∂ = + + ∂ ∂ 
∂ ∂ = + − −

∂ ∂ 


∂ ∂ = + − − ∂ ∂ 

 (2) 

Figure 1. (a) Geometry of a conoidal shell. (b) 3D Geometry of a conoidal shell. (c) Laminated
composite conoidal shell.

The enhanced displacement field with curvature effect can be expressed as:

u(x, y, z) =
(

1 +
z

Rx

)
u0(x, y) + zθx(x, y) + z2ξx(x, y) + z3ζx(x, y),

v(x, y, z) =
(

1 +
z

Ry

)
v0(x, y) + zθy(x, y) + z2ξy(x, y) + z3ζy(x, y),

w(x, y, z) = w0(x, y)

 (1)

where Rx and Ry are curvatures along x and y-direction.
Displacement components u0, v0, and w0 are the translations at the reference plane of the conoids.

Rotation to the normal reference plane about y and x-axis are θx(x, y) and θy(x, y). The ξx, ζx, ξy, and
ζy are higher-order terms that can be found using the zero transverse stress conditions at the top and
bottom of conoids.

The enhanced strain-displacement relationships with the cross curvature effect are expressed as:

εx =
∂u
∂x

+
w
Rx

εy =
∂v
∂y

+
w
Ry

γxy =
∂v
∂x

+
∂u
∂y

+
2w
Rxy

γxz =
∂u
∂z

+
∂w
∂x
− u0

Rx
− v0

Rxy

γyz =
∂v
∂z

+
∂w
∂y
− v0

Ry
− u0

Rxy



(2)

where
1

Rxy
is the cross curvature of the shell.

The zero shear force condition at the free surface:

σxz

(
x, y,±h

2

)
= 0 i.e., Q44γxz

(
x, y,±h

2

)
+ Q45γyz

(
x, y,±h

2

)
= 0, (3)
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and

σyz

(
x, y,±h

2

)
= 0 i.e., Q45γxz

(
x, y,±h

2

)
+ Q55γyz

(
x, y,±h

2

)
= 0, (4)

where Qij are the material constants.
From Equations (3) and (4), we get:

γxz

(
x, y,±h

2

)
= γyz

(
x, y,±h

2

)
= 0

Now the condition γxz

(
x, y,±h

2

)
= 0 yields the following:

θx +
∂w0

∂x
− v0

Rxy
+

h
2
(2ξx) +

3h2

4
(ζx) = 0 (5)

θx +
∂w0

∂x
− v0

Rxy
− h

2
(2ξx) +

3h2

4
(ζx) = 0 (6)

From Equations (5) and (6):

ξx = 0 and ζx = − 4
3h2

[
∂w0

∂x
+ θx −

v0

Rxy

]
(7)

Similarly, from γyz

(
x, y,±h

2

)
= 0 we get:

ξy = 0 and ζy = − 4
3h2

[
∂w0

∂y
+ θy −

u0

Rxy

]
(8)

Substituting Equations (7) and (8) in Equation (1), we get:

u(x, y, z) =
(

1 +
z

Rx

)
u0 + θx

(
z− 4z3

3h2

)
+ ψx

(
− 4z3

3h2

)
+ v0

(
4z3

3h2Rxy

)
v(x, y, z) =

(
1 +

z
Ry

)
v0 + θy

(
z− 4z3

3h2

)
+ ψy

(
− 4z3

3h2

)
+ u0

(
4z3

3h2Rxy

)
w(x, y, z) = w0(x, y)


(9)

In-plane displacements contain the
∂w0

∂x
and

∂w0

∂y
terms that are expressed in terms of the

independent ψx and ψy variables, respectively, to avoid the difficulty associated with C1 continuity
and to make it C0 continuity.
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The strain component can be generalized as:

{ε} =



∂u
∂x

+
w
Rx

∂v
∂y

+
w
Ry

∂v
∂x

+
∂u
∂y

+
2w
Rxy

∂u
∂z

+
∂w
∂x
− u0

Rx
− v0

Rxy
∂v
∂z

+
∂w
∂y
− v0

Ry
− u0

Rxy



=



(
1 +

z
Rx

)
εx0 + κx

(
z− 4z3

3h2

)
+ κ∗x

(
− 4z3

3h2

)
+ γx0

(
4z3

3h2Rxy

)
+

w0
Rx(

1 +
z

Ry

)
εy0 + κy

(
z− 4z3

3h2

)
+ κ∗y

(
− 4z3

3h2

)
+ γy0

(
4z3

3h2Rxy

)
+

w0
Ry(

1 +
z

Ry

)
γx0 + Kxy

(
z− 4z3

3h2

)
+ K∗xy

(
− 4z3

3h2

)
+
(
εxo + εyo

)( 4z3

3h2Rxy

)
+

(
1 +

z
Rx

)
γy0 +

2w0
Rxy

θx

(
1− 4z2

h2

)
+ ψx

(
1− 4z2

h2

)
+ v0

(
4z2

h2Rxy
− 1

Rxy

)
θy

(
1− 4z2

h2

)
+ ψy

(
1− 4z2

h2

)
+ u0

(
4z2

h2Rxy
− 1

Rxy

)



(10)

where
εx0 =

∂u0

∂x
, εy0 =

∂v0

∂y
, γx0 =

∂v0

∂x

κx =
∂θx

∂x
, κy =

∂θy

∂y
, γy0 = −∂u0

∂y

κ∗x =
∂ψx

∂x
, κ∗y =

∂ψy

∂y
, κxy =

(
∂θy

∂x
+

∂θx

∂y

)
, κ∗xy =

(
∂ψy

∂x
+

∂ψx

∂y

)
The strains associated with Equation (10) are related to the generalized strains by the means of

the following expression:
{ε} = [H]{ε} (11)

where {ε} =
[
εxεyγxyγxzγyz

]T and {ε} =
{

εx0, κx, κ∗x , γx0, εy0, κy, κ∗y , γy0,
κxy, κ∗xy, w0, θx, ψx, v0, θy, ψy, u0

}T

; [H] is the matrix of

order 5 × 17 containing the terms involving z and h.
Further, the strain vector {ε} can be interrelated with the displacement vector {d} by means of the

following relationship:
{ε} = [B]{d} (12)

where {d} =
{

u0, v0, w0, θx, θy, ψx, ψy
}

, [B] is the differential operator matrix of the interpolation
function which can be derived from Equation (10).

2.2. Constitutive Equation

For a shell of constant thickness h and composed of thin layers of orthotropic material, the
constitutive equations can be derived as:

σx

σy

τxy

τyz

τxz


k

=


Q11 Q12 Q16 0 0
Q12 Q22 Q26 0 0
Q16 Q26 Q66 0 0

0 0 0 Q44 Q45
0 0 0 Q45 Q55


k



εx − αx∆T − βx∆C
εy − αy∆T − βy∆C

γxy − αxy∆T − βxy∆C
γyz

γxz


k

(13)

where
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Transformed reduced stiffness matrix
[

Qij

]
can be formed with the material properties.

(E1, E2, µ12, G12, G13, G23) and fiber orientation (θ) of lamina [45].
∆T = Change in temperature.
∆C = Change in moisture concentration.
βx; βy; βxy = transformed swelling or contraction coefficients due to moisture.
αx; αy; αxy = transformed thermal expansion or contraction coefficients due to temperature.

3. Finite Element Formulations

A nine-noded isoparametric element was used for the present analysis.

{w} = [N]{δ} (14)

Stress at any point can be found using consecutive equation for hygrothermal analysis
(Equation (6))

{σ} =
[
Q
]
{εn} (15)

where
{εn} = {ε− εth − εm}

Now εn is total strain
{ε} = [H]{ε} (16)

where ε is strain due to mechanical loadings; εth is strain due to thermal loadings; εm is strain due
to moisture.

{ε} = [B]{d} (17)

where {d} is the vector of nodal displacement.
In an FE formulation, the displacement and temperatures and moistures are interpolated within

the domain of the element using the same interpolations functions.
By applying the virtual work method and equating the work done by internal forces we get

[K]{δ} = {P} (18)

where [K] is the element stiffness matrix and {P} is nodal load vector.

{P} =
x

[N]
T

qdxdy (19)

Thermal loading is obtained by the following Equation.{
PeN

}
=

x
[B]

T
[H]T

{
FN
}

dxdy (20)

{
FN
}T

=
[

NN
x , NN

y , NN
xy, MN

x , MN
y , MN

xy, 0, 0,−−−
]

(21)

{
NN

x , NN
y , NN

xy

}T
=

n

∑
k

zk∫
zk−1

{
Qij

}
k

{ε}kdz (22)

{
MN

x , MN
y , MN

xy

}T
=

n

∑
k

zk∫
zk−1

{
Qij

}
k

{ε}k (23)

Here i, j = 1, 2, 6. Also, {εk}T =
[
εx, εy, εxy

]
.
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An arbitrary temperature distribution can be assumed without loss of generality of the form

T(x, y, z) = T0 +
( z

h

)
T1(x, y) (24)

where T0 is the initial constant temperature.
Case 1. When temperature is uniform across the depth

εx

εy

εxy

 =


αx

αy

αxy

∆T


αx

αy

αxy

 =

 c2 s2 −2cs
s2 c2 2cs
cs −cs c2 − s2

[Q]k


α1

α2

α12


(25)

where α1, α2, and α12 are the coefficients of thermal expansion referred to the principal material axes of
the lamina and αx, αy, and αxy are the transformed coefficients of thermal expansion referred to the x-y
coordinate system.

{F} =
y

[B]T [H]T


αx

αy

αxy

Tdv (26)

Case 2. When temperature is varying across the depth

{F} =
y

[B]T [H]T


αx

αy

αxy

[1/2(TU + TL + z/h(TU − T))]Tdv (27)

where TU = Temperature at the top surface and TL = Temperature at the bottom surface.

Skew Transformations

It is not possible to specify the boundary conditions in terms of the global displacements u0, v0, w0,
etc., because the edges of the boundary elements of skew shells (Figure 2) are not parallel to the global
axis (x, y, and z).

Hence, to specify the required boundary conditions at the skew edge, it is necessary to use the
edge displacements ul

0, vl
0, wl

0 in the local coordinates xl , yl , zl . Thus, it was mandatory to transform
the element matrix corresponding to the global axis to the local axis. The transformation between the
local and global axes was done using a simple transformation rule and could be expressed as:

di = [T]dl
i (28)

where dl
i and di are the generalized displacement vectors in the local and global coordinate systems of

node I, respectively defined as:

{di} =
{

u0, v0, w0, θx, θy, ψx, ψy
}T (29){

dl
i

}
=
{

ul
0, vl

0, wl
0, θl

x, θl
y, ψl

x, ψl
y

}T
(30)
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Therefore, the nodal transformation matrix on the skew boundary may be presented as:

Transformation matrix [T] =



cos α − sin α 0 0 0 0 0
sin α cos α 0 0 0 0 0

0 0 1 0 0 0 0
0 0 0 cos α − sin α 0 0
0 0 0 sin α cos α 0 0
0 0 0 0 0 cos α − sin α

0 0 0 0 0 sin α cos α


(31)
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4. Results and Discussion

The following boundary conditions were used in the presented analysis:

i. Simply supported (SSSS):

At x = 0, a; v = w = θy = ψy = 0
At y = 0, b; u = w = θx = ψx = 0

ii. Clamped (CCCC):

At x = 0, a and y = 0, b; u = v = w = θx = θy = ψx = ψy = 0

iii. Clamped-simply supported (CSCS):

At x = 0 and y = 0; u = v = w = θx = θy = ψx = ψy = 0
At x = a; v = w = θy = ψy = 0 and at y = b; u = w = θx = ψx = 0

“C” represents the clamped boundary conditions, “S” represents the simply supported boundary
conditions, and “F” represents the free boundary conditions.

The non-dimensional formulae used in this paper are:

w =
10wh

α0T0a2 , σx =

(
a
2

,
b
2

,−h
2

)
σx

α0T0ET
, σy =

(
a
2

,
b
2

, z
)

σy

α0T0ET
, and τxy =

(
0, 0,−h

2

)
τxy

α0T0ET

The material properties used in this paper are: E1/E2 = 25, G12 = G13 = 0.5E2, G23 = 0.2E2, µ12 =
0.25, ρ = 1, and α1/α2 = 3 unless mentioned otherwise.
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4.1. Convergence Study

A convergence study was performed by varying the mesh size (Nx × Ny) from 8 × 8 to 20 ×
20, where Nx and Ny are numbers of elements in x and y-direction. Table 1 shows that the values of
non-dimensional deflection of laminates (0◦/90◦/0◦) converged for the Nx × Ny = 16 × 16. All the
consecutive analyses were carried out with the 16 × 16 mesh size.

Table 1. Non-dimensional deflection and stresses of a SSSS square laminate (0◦/90◦/0◦) under
sinusoidal loading of amplitude q. (Geometric properties: a/b = 1, a/h = 100 and material properties:
E1/E2 = 25, G12 = G13 = 0.5E2, G23 = 0.2E2, µ12 = 0.25).

h/a Reference Theory W σx σy τxy

0.10

Present (8 × 8) 0.7174 0.5917 0.5544 0.0285
Present (12 × 12) 0.7175 0.5880 0.5511 0.0282
Present (16 × 16) 0.7176 0.5866 0.5499 0.0282
Present (20 × 20) 0.7176 0.5866 0.5498 0.0280

Pagano [46] 3D Elasticity 0.7405 0.5900
Chakrabarti and Sheikh [47] HSDT 0.7140 0.5806 0.2722 0.0279
Chakrabarti and Sheikh [47] FSDT 0.6700 0.5219 0.2582 0.0254

4.2. Comparison Study

Non-dimensional central deflection and stresses of laminates are compared with the 3D elastic
solution of Pagano [46] and Chakrabarti and Sheikh [47]. Table 1 reveals that the present results are
closer to the 3D results than the results of Chakrabarti and Sheikh [47]. Central deflection (mm) of a
two-layered (0◦/90◦), simply-supported square laminate with different thickness ratios was presented
in Table 2. The present results are in good agreement with the ones obtained by Brischetto and
Carrera [21]. Table 3 shows the central deflection of SSSS rectangular laminated plates subjected to
sinusoidal temperature gradient (thickness ratio (h/a) = 0.01). The present findings were validated
with the results of Singh and Chakrabarti [24], Prathap and Naganarayana [48], Reddy and Hsu [9],
and NASTRAN.

Table 2. In-plane displacements and transverse displacement of two-layered (0◦/90◦),
simply-supported square laminate. (Material properties: E1 = 172 GPa, E2 = 6.909 GPa, G12 = G13 =
3.45 GPa, G23 = 1.38 GPa, µ12 = 0.25).

Thickness Ratio Brischetto and Carrera [21] Present

100 5.9448 5.9424
50 1.4857 1.4857
10 0.0587 0.0590
5 0.0141 0.0144

Table 3. Effect of aspect ratio on the deflection w for SSSS composite plates subjected to sinusoidal
temperature gradient (thickness ratio (h/a) = 0.01) (Thickness ratio (h/a) = 0.01 and material properties:
E1/E2 = 25, G12 = G13 = 0.5E2, G23 = 0.2E2, µ12 = 0.25).

Reference
0◦/90◦/0◦ 0◦ 0◦/90◦

a/b = 1 a/b = 1.5 a/b = 2 a/b = 1 a/b = 1

Present 1.0174 0.8585 0.6319 1.0226 1.1080
Singh and Chakrabarti [24] 1.0429 0.8802 0.6566 1.0332 1.1520

Prathap and Naganarayana [48] 1.0249 0.8802 0.6566 1.0332 1.1434
NASTRAN [24] 1.0028 0.8346 0.6108 1.0109 1.9374

Reddy and Hsu [9] 1.0949 0.9847 0.7643 1.0313 1.6765
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The non-dimensional central deflections of three-layer (0◦/90◦/0◦) laminates under sinusoidal
temperature or hygrothermal distribution (∆T = 300 ◦C, ∆C = 0.01%) are shown in Table 4. Remarkably,
the obtained numerical results are in line with the ones obtained by Zenkour and Alghanmi [29].

Table 4. The validation of dimensionless center deflections of three-layer (0◦/90◦/0◦) rectangular
plates subjected to sinusoidal hygrothermal distribution (∆T = 300 ◦C, ∆C = 0.01%).

a/b
a/h = 10 a/h = 20 a/h = 50

Present Zenkour and
Alghanmi [29] Present Zenkour and

Alghanmi [29] Present Zenkour and
Alghanmi [29]

1 2.7360 2.7749 2.1691 2.3654 1.9906 2.2355
1.5 3.2156 3.2273 2.9160 2.8521 2.8168 2.7148
2 3.0517 2.8496 2.9415 2.6631 2.8971 2.5849

In Table 5, the proposed model was validated with the deflection value of isotropic conoids along
y/b = 0.5. It was observed that the results of our calculations are closer to the experimental results by
Hadid [31] than the FSDT results (after Das and Chakravorty) [38]. The authors also validated their
model for the composite conoids. Table 6 shows that the results obtained by the present approach are
better than the ones reported by Das and Chakravorty [38] (based on FSDT).

Table 5. Validation of deflection (W × 10−2) of isotropic conoid subjected to uniformly distributed load
along y/b = 0.50. (Geometric properties: a = 95 in, b = 95 in, hh = 18.0 in, hl = 9.0 in, h = 05 in, Material
properties: E = 5,620,000 psi, n = 0.15, Loading: q = 60 psf).

x/a Das and Chakravorty 1 [38] Hadid 2 [31] Present

0.10 0.9142 0.9857 0.9694
0.40 2.0428 1.8285 1.8146
0.60 1.6000 1.4000 1.4771
0.70 1.3571 1.3000 1.2637
0.80 0.9714 1.0000 0.9946

Note: 1 = FSDT, 2 = Experimental.

Table 6. Comparison study for maximum non-dimensional deflection (W × 104) in downward direction
for different laminations of conoid. (Geometric properties: a/b = 1, a/h = 100, hl/hh = 0.25. and material
properties: E1/E2 = 25, G12 = G13 = 0.5E2, G23 = 0.2E2, µ12 = 0.25).

Lamination (◦)
Maximum Non-Dimensional Downward Deflection (W×104)

Present Theory Das and Chakravorty [38]

0/90 0.305
(0.20, 0.50)

0.319
(0.19, 0.50)

0/90/0 0.314
(0.30, 0.50)

0.298
(0.13, 0.50)

45/−45 0.696
(0.25, 0.50)

0.722
(0.25, 0.50)

45/−45/45 0.610
(0.27, 0.40)

0.629
(0.25, 0.38)

Note: (x, y) represents the maximum deflection in downward direction.

4.3. Parametric Study

In this section, many new results were calculated based on the developed FE model.
The dimensionless maximum deflections of three-layered laminated composite skew conoids
(hl/hh = 0.25) subjected to sinusoidal hygrothermal loading were presented in Table 7. It can be
seen that along with an increase in the hl/hh ratio of the conoids, the value of dimensionless maximum
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deflection increases as well. This is because of a reduction of shell stiffness occurring due to a decrease
in shell action (as one curved edge in converting into straight). The maximum dimensionless deflection
increases for the 30◦ and 45◦ skew angles and decreases for the 15◦ and 60◦ skew angles. It can
be noticed that the location of maximum deflection depends upon the hl/hh ratio and skew angle,
unlike in other shells. Table 8 shows the effect of boundary conditions on a maximum deflection of
skew conoids subjected to hygrothermal loading. The maximum non-dimensional deflection was
noticed for the CCFF boundary conditions and minimum deflection was found for the CCSS shell,
among all the considered boundary conditions. The location of maximum deflection is also dependent
upon the boundary conditions. Table 9 shows the effect of lamination angle on a non-dimensional
deflection of laminated composite conoids subjected to a hygrothermal loading. It can be noticed that
non-dimensional maximum deflection decreases as the number of layers increase. It can be noticed that
with an increase in skew angle, the non-dimensional maximum deflection decreases for a moderately
thick shell (a/h = 10). The value of maximum non-dimensional deflection of skew conoids with various
side to thickness ratios was presented in Table 10. It can be observed that with an increase in the
thickness of the shell, the value of maximum dimensionless deflection for all the considered skew
angles increases as well. The non-dimensional maximum stresses of laminated composite conoids are
shown in Table 11. It was noticed that non-dimensional stresses decrease along with the hl/hh ratio.

Table 7. Effect of curvature (hl/hh) on the dimensionless maximum deflections of three-layer
(0◦/90◦/0◦) skew conoids subjected to sinusoidal hygrothermal distribution (∆T = 300 ◦C, ∆C = 0.01%).

Skew Angle
hl/hh

0.25 0.20 0.15 0.10 0.05 0.00

0◦ 0.242
(0.40, 0.50)

0.259
(0.38, 0.50)

0.279
(0.35, 0.50)

0.306
(0.33, 0.50)

0.341
(0.28, 0.50)

0.386
(0.28, 0.50)

15◦ 0.203
(0.44, 0.53)

0.215
(0.44, 0.51)

0.229
(0.41, 0.51)

0.245
(0.41, 0.51)

0.265
(0.39, 0.51)

0.288
(0.39, 0.51)

30◦ 0.359
(0.54, 0.67)

0.352
(0.54, 0.67)

0.343
(0.54, 0.67)

0.333
(0.54, 0.67)

0.323
(0.54, 0.67)

0.312
(0.54, 0.67)

45◦ 0.384
(0.74, 0.57)

0.381
(0.74, 0.57)

0.378
(0.74, 0.57)

0.373
(0.73, 0.58)

0.368
(0.73, 0.58)

0.363
(0.73, 0.58)

60◦ 0.220
(0.91, 0.43)

0.221
(0.91, 0.43)

0.222
(0.91, 0.43)

0.223
(0.91, 0.43)

0.223
(0.91, 0.43)

0.222
(0.91, 0.43)

Note: (x, y) represents the maximum deflection in downward direction.

Table 8. Effect of boundary condition on the dimensionless maximum deflections of three-layer
(0◦/90◦/0◦) skew conoids subjected to sinusoidal hygrothermal distribution (∆T = 300 ◦C, ∆C = 0.01%).

Skew Angle
Boundary Conditions

SSSS CCCC CSCS CCSS CCFF CFCF

0◦ 0.242
(0.40, 0.50)

0.231
(0.40, 0.50)

0.231
(0.43, 0.50)

0.226
(0.40, 0.50)

0.615
(0.43, 0.50)

0.471
(1.00, 0.28)

15◦ 0.204
(0.44, 0.53)

0.209
(0.42, 0.43)

0.201
(0.42, 0.46)

0.203
(0.42, 0.43)

0.471
(0.45, 0.39)

0.882
(1.07, 0.27)

30◦ 0.360
(0.54, 0.67)

0.165
(0.45, 0.35)

0.165
(1.30, 0.74)

0.158
(0.45, 0.35)

0.442
(1.25, 0.87)

1.444
(1.16, 0.28)

45◦ 0.385
(0.74, 0.57)

0.102
(0.49, 0.27)

0.124
(1.43, 0.60)

0.096
(0.49, 0.27)

0.789
(1.31, 0.71)

0.665
(1.19, 0.19)

60◦ 0.221
(0.91, 0.43)

0.047
(0.53, 0.18)

0.069
(1.46, 0.41)

0.044
(0.51, 0.15)

0.781
(1.34, 0.50)

0.444
(1.87, 0.50)



Materials 2019, 12, 225 14 of 16

Table 9. The dimensionless maximum deflections of skew conoids (hl/hh = 0.25 and a/h = 10) subjected
to sinusoidal hygrothermal distribution (∆T = 300 ◦C, ∆C = 0.01%).

Skew Angle 0◦/90◦ 45◦/−45◦ 0◦/90◦/0◦ 45◦/−45◦/45◦ 0◦/90◦/90◦/0◦

0◦ 0.323 0.249 0.201 0.210 0.132
15◦ 0.266 0.264 0.172 0.188 0.125
30◦ 0.176 0.223 0.115 0.144 0.080
45◦ 0.084 0.132 0.104 0.080 0.108
60◦ 0.094 0.125 0.105 0.125 0.098

Table 10. The non-dimensional central deflections of laminated skew conoids subjected to
sinusoidal hygrothermal.

Skew Angle a/h = 5 a/h = 10 a/h = 20 a/h = 50 a/h = 100

0◦ 7.742 6.527 4.878 4.241 4.849
15◦ 3.253 2.691 2.101 1.885 2.036
30◦ 1.084 0.888 0.697 1.031 1.799
45◦ 0.200 0.169 0.222 0.431 0.770
60◦ 0.102 0.095 0.104 0.145 0.220

Table 11. Effect of curvature (hl/hh) on the dimensionless maximum stresses of two-layer (0◦/90◦)
conoids subjected to sinusoidal hygrothermal distribution. (∆T = 300 ◦C, ∆C = 0.01%).

Stresses
hl/hh

0.25 0.20 0.15 0.10 0.05 0.00

σx −463.40 −486.05 −485.00 −445.01 −346.33 −170.05
σy −2738.92 −2569.06 −2381.98 −2172.71 −1935.42 −1663.12
τxy 3838.81 3786.63 3561.32 3055.54 2115.01 545.88

5. Conclusions

A C0 finite element (FE) formulation using Sanders’ approximations was developed and used to
study the hygrothermal response of composite skew conoids. Numerous novel results were produced
for the hygrothermal (Temperature and Moisture) response of laminated conoids having different skew
angles, temperature, moisture concentrations, radii of curvatures, thickness ratios, ply orientation, and
boundary conditions, which should be beneficial for a future study.

The following general conclusions can be drawn:

• The value of non-dimensional deflection of conoids under hygrothermal loadings increases along
with the hl/hh ratio.

• The value of non-dimensional deflection of moderately thick shell under hygrothermal loadings
decreases with an increase in the skew angle.

• The non-dimensional deflection of shells under temperature and moisture loading decreases with
the increase in the number of plies.

• The non-dimensional maximum deflection of skew conoids under hygrothermal loading increases
with the decreases in the a/h ratio.
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