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Abstract

Aims

The cancer stem cell concept proposes that tumor growth and recurrence is driven by a

small population of cancer stem cells (CSCs). In this study we investigated the expression

of induced-pluripotent stem cell (iPSC) markers and their localization in primary low-grade

adenocarcinoma (LGCA) and high-grade adenocarcinoma (HGCA) and their patient-

matched normal colon samples.

Materials and methods

Transcription and translation of iPSC markers OCT4, SOX2, NANOG, KLF4 and c-MYC

were investigated using immunohistochemical (IHC) staining, RT-qPCR and in-situ hybrid-

ization (ISH).

Results

All five iPSC markers were detected at the transcriptional and translational levels. Protein

abundance was found to be correlated with tumor grade. Based on their protein expression

within the tumors, two sub-populations of cells were identified: a NANOG+/OCT4- epithelial

subpopulation and an OCT4+/NANOG- stromal subpopulation. All cases were accurately

graded based on four pieces of iPSC marker-related data.

Conclusions

This study suggests the presence of two putative sub-populations of CSCs: a NANOG+/

OCT4- epithelial subpopulation and an OCT4+/NANOG- stromal subpopulation. Normal

colon, LGCA and HGCA could be accurately distinguished from one another using iPSC
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marker expression. Once validated, novel combinations of iPSC markers may provide diag-

nostic and prognostic value to help guide patient management.

Introduction

The cancer stem cell (CSC) concept hypothesizes that tumor growth is driven by CSCs, a small

subpopulation of cancer cells with stem cell characteristics [1–4]. CSCs produce identical

daughter pluripotent cells, as well as progenitor cells which are more committed and sit on a

hierarchy between CSCs and terminally differentiated cancer cells [5–7]. Cells within this hier-

archy can be identified by their expression of different combinations of markers [6, 8]. Tang

[5] postulates that progenitor cells are responsible for uncontrolled growth.

Takahashi and Yamanaka [9] first used octamer-binding transcription factor 4 (OCT4,

POU5F1), sex-determining region Y-box 2 (SOX2), Krüppel-like factor 4 (KLF4) and c-MYC
to produce induced-pluripotent stem cells (iPSCs). The Thomson laboratory produced iPSCs

from human fibroblasts using OCT4, SOX2, NANOG and LIN28 [10].

OCT4 is a transcription factor involved in stem cell maintenance, and has been observed

in normal colon stem cells [11]. Studies have shown OCT4 expression in colorectal cancer

(CRC), often in the cytoplasm of epithelial cells [11–13]. The OCT4B isoform is unable to act

as a transcription factor and is often localized to the cytoplasm, while the OCT4B1 spliced vari-

ant is over-expressed in high-grade CRC [14].

SOX2 maintains pluripotency of ESCs and neural progenitor cells and is critical for early

embryogenesis [11, 15]. It is involved in regulating OCT4 transcription by binding to its pro-

moter region [16–18]. Studies have localized SOX2 to the cytoplasm and nuclei of both normal

and cancerous crypt epithelial cells [19]. SOX2 expression is associated with lymph node infil-

tration and metastasis in CRC [20].

NANOG transcription is controlled by the OCT4/SOX2 transcription factor complex [16,

21]. NANOG has been detected in colon cancer and dysplastic polyps, often exhibiting strong

nuclear staining in a subpopulation of epithelial cells within the crypts [11, 22].

c-MYC has been well-studied for its role as a proto-oncogene and is often over-expressed in

cancer [9]. Duplication of the c-MYC gene is associated with a worse prognosis in CRC [23].

Therapy-naïve CRC cells with high c-MYC expression progress more quickly, and CRC metas-

tases exhibit greater c-MYC expression than the primary tumor [24].

KLF4 is associated with colon sphere-forming cells and involvement in cell cycle, pluripo-

tency and self-renewal [16, 25]. KLF4 is a marker of differentiation down the goblet cell epithe-

lial lineage from intestinal stem cells [26]. In CRC, KLF4 levels decrease with increasing

histological grade, with poorly-differentiated (high-grade) tumors expressing less KLF4 than

well-differentiated (low-grade) tumors [27].

Primary colon adenocarcinoma (CA), the most common type of CRC, is categorized as

low-grade (well- and moderately-differentiated tumors with greater than 50% crypt and gland

composition) or high-grade (poorly-differentiated tumors with densely-packed tumor cells)

[28]. Although CSCs have been previously studied in CRC, the putative subpopulations of

CSCs are yet to be characterized. We hypothesized that CA contains subpopulations of CSCs

which can be identified by their expression patterns of iPSC-related markers. In this study, we

investigated the level of iPSC marker transcription and translation, and their distribution

within the epithelium and stroma, to determine the difference between low-grade CA

(LGCA) and high-grade CA (LGCA) and their patient-matched normal colon (NC), using
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3,3-diaminobenzidine (DAB) and immunofluorescence (IF) immunohistochemical (IHC)

staining, RT-qPCR, and in-situ hybridization (ISH).

Materials and methods

Tissue samples

Snap-frozen and formalin-fixed paraffin-embedded (FFPE) tissue samples of LGCA from ten

patients and HGCA from eight patients, with patient-matched normal colon (NC) tissue sam-

ples from 17 of the 18 patients, were provided by the Gillies McIndoe Research Institute Tissue

Bank for this study, which was approved by the Central Health and Disability Ethics Commit-

tee (Ref. 15/CEN/106).

DAB IHC staining

DAB IHC staining was performed on the entire cohort. 4 μm-thick FFPE sections of NC,

LGCA and HGCA tissue samples were stained for iPSC markers OCT4, SOX2, NANOG,

KLF4 and c-MYC. Positive human control tissues included in each run to validate the staining

were seminoma for OCT4 and NANOG, normal skin for SOX2, normal breast tissue for KLF4

and prostatic tissue for c-MYC. Each IHC staining procedure also included a matched isotype

antibody as a negative control. Protocols were performed as previously described [29].

Staining was carried out on the Leica BOND™ RX Auto-stainer using primary antibodies

for OCT4 (1:30; cat#MRQ-10, Cell Marque, Rocklin, CA, USA), SOX2 (1:200; cat#ab97959,

Abcam, Cambridge, MA, USA), NANOG (1:200; cat#EP225, Cell Marque), KLF4 (1:200;

cat#NBP2-24749SS, Novus Biologicals LLC, Littleton, CO, USA) and c-MYC (1:1000;

cat#ab32, Abcam).

IF IHC staining

Protein localization was performed on three LGCA and three HGCA and their patient-

matched normal colon samples by dual IF IHC staining, carried out on the Leica BOND™ RX

Auto-stainer. Secondary antibodies used were Vectafluor Excel goat anti-mouse 488 (ready-

to-use; cat#DK2488, Vector Laboratories, Burlingame, CA, USA) and Alexa Fluor donkey

anti-rabbit 594 (1:500; cat#ab150076, Life Technologies, Carlsbad, CA, USA). All stained slides

were mounted as previously described [29]. Negative controls were performed using matched

isotype controls for both mouse (ready-to-use; cat#IR750, Dako, Copenhagen, Denmark) and

rabbit (ready-to-use; cat#IR600, Dako).

ISH

ISH staining was performed on 4 μm-thick FFPE sections of six LGCA and six HGCA tissue

samples and their patient-matched NC tissue samples. This was carried out on the Leica

BOND™ RX Auto-stainer using probes for OCT4 (NM_002701), SOX2 (NM_003106),

NANOG (NM_024865), KLF4 (NM_004235) and c-MYC (NM_002467), using the ViewRNA

eZ Detection Kit to detect the presence of mRNA (Affymetrix, Santa Clara, CA, USA). Positive

controls were human seminoma for OCT4, NANOG and KLF4, normal skin for SOX2, and

normal colon tissue for c-MYC. To determine specificity of the probes, negative controls were

run using a probe for Bacillus (NM_L38424).

Image capture and analysis

DAB IHC and ISH images were captured using an Olympus BX53 light microscope fitted with

an Olympus SC100 digital camera and CellSens 2.0 software (Olympus, Tokyo, Japan). Images
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were used for manual cell counting using ImageJ software (National Institutes of Health,

Bethesda, MD, USA). Six images were captured per stained slide. When capturing images,

areas with muscle and blood vessels were avoided. All positively and negatively stained cells

within these images were counted and identified as either epithelial (crypt) or stromal cells.

Cell were counted as positive if they had any level of staining (weak, moderate or strong) in the

nucleus and/or cytoplasm. IF IHC-stained slides were visualized and imaged using an Olym-

pus FV1200 biological confocal laser-scanning microscope (Olympus) and processed using

CellSens 2.0 software (Olympus).

RNA extraction

RNA was extracted from the same cohorts of six LGCA and six HGCA tissue samples and

their patient-matched NC tissues, using a QIAcube (Qiagen) as previously described [30].

RT-qPCR

RT-qPCR reactions were run on the Rotor-Gene Q (Qiagen), as previously described [30]

using Taqman primers (Thermo Fisher) for OCT4 (Hs00999632_g1; 77kb), SOX2

(Hs01053049_s1; 91kb), NANOG (Hs04399610_g1; 101kb), KLF4 (Hs00358836_m1; 110kb)

and c-MYC (Hs00153408_m1; 107kb).

Statistical analysis

Statistical analysis was carried out using SPSS V22. Protein expression of iPSC markers in the

stroma and the crypt were compared using a t-test for both normal and tumor samples. Statis-

tical significance was defined as a p<0.05.

The differences between LGCA and HGCA tissue samples were calculated using Analysis

of Variance (ANOVA). A discriminant function analysis was also performed using the four

sets of data which had the highest correlation for either LGCA or HGCA tumors. This pro-

duced a canonical correlation value and Wilkes Lambda variance value, representing the level

of confidence for which these four pieces of data taken from any given specimen is able to be

used to predict the grade of the tumor. mRNA levels were compared between normal stroma

and tumor stroma, and between normal epithelium and tumor epithelium, using a t-test to

determine statistical significance.

Results

DAB IHC staining

EPCAM was used to distinguish between epithelial cells and stromal cells (S1 Fig). It was

found that EPCAM expression was restricted to epithelial cells in all NC, LGCA and HGCA

tissues.

OCT4 (Fig 1A–1C, brown) was detected in the nucleus of 2.5% of NC epithelial cells, likely

to be the normal intestinal stem cells (A). However, it was found in the cytoplasm of 25% of

stromal cells in LGCA (B) and 30% of stromal cells in HGCA (C) with little or no presence in

the epithelium (0.7%). SOX2 (Fig 1D–1F, brown) was expressed in the cytoplasm of epithelial

and stromal cells in NC, LGCA and HGCA tissue samples. Overall, NC (D) samples stained

more strongly than LGCA (E) and HGCA (F) tissue samples. SOX2 was abundant in the nuclei

of NC epithelium. NANOG (Fig 1G–1I, brown) was not detected in NC (G) but was present in

HGCA (75% of cases, weak-to-moderate; H) and LGCA (40% of cases, weak; I) tissue samples.

c-MYC (Fig 1J–1L, brown) was observed in the nuclei and cytoplasm of NC (J), LGCA (K)

and HGCA (L) epithelium. KLF4 (Fig 1M–1O, brown) showed perinuclear expression in NC
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epithelial cell cytoplasm (M). HGCA epithelium (N) exhibited more nuclear staining than

LGCA (O) and NC (M) epithelium. KLF4 expression was seen in 22% of NC stromal cells of

LGCA samples, and 44% of NC stromal cells of HGCA samples. Its expression was lower in

LGCA than the NC samples with 14.4% of LGCA stromal cells staining positively, while 47.9%

of stromal cells in HGCA samples expressed KLF4. Positive and negative controls are shown

in S2 Fig, and cell counting data is displayed in S1 Table.

Fig 1. DAB IHC staining. Representative 3,3-diaminobenzidine immunohistochemical-stained images showing protein expression

of induced-pluripotent stem cell markers OCT4 (A-C, brown), SOX2 (D-F, brown), NANOG (G-I, brown), KLF4 (J-L, brown) and

c-MYC (M-O, brown) in normal colon (A,D,G,J,M), low-grade (B,F,H,K,N) and high-grade (C,F,I,L,O) colon adenocarcinoma

tissue samples. Nuclei were counter-stained with hematoxylin (A-O, blue). Original magnification: 400x.

https://doi.org/10.1371/journal.pone.0221963.g001
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Two CSC subpopulations were identified by DAB IHC staining (Fig 2): one within the CA

epithelium, with 9.7% of LGCA and 52.4% of HGCA epithelial cells expressing NANOG (Fig

2A); and the other within the CA stroma, with OCT4 being expressed by 24.3% of LGCA and

30.8% of HGCA stromal cells (Fig 2B). Discriminant value analysis revealed that all LGCA and

HGCA tissue samples could be graded with 100% accuracy based on stromal expression of

KLF4 in NC (p = 0.020) and the tumors (p = 0.034), and OCT4 (p = 0.001) and NANOG

(p = 0.026) in CA epithelium (canonical correlation = 0.981; Wilkes Lambda = 0.037).

IF IHC staining

IF IHC staining expanded on DAB IHC data by revealing localization of two iPSC markers

simultaneously, as well as being a more sensitive detection method.

OCT4 (Fig 3A–3I, green) was expressed in the nucleus of few epithelial cells in NC (Fig 3A,

3D and 3G) and the cytoplasm of cells in the stroma of LGCA (Fig 3B, 3E and 3H) and HGCA

(Fig 3C, 3F and 3I) tissue samples. KLF4 (Fig 3A–3C, red) stained positively in the cytoplasm

of epithelial cells in NC (Fig 3A), LGCA (Fig 3B) and HGCA (Fig 3C), and some stromal cells

in LGCA (Fig 3B, red) and HGCA (Fig 3C) samples. Epithelial cells in NC (Fig 3A) but not the

stromal cells in LGCA (Fig 3B) or HGCA (Fig 3C) samples co-expressed OCT4 and KLF4 in

their cytoplasm. NANOG (Fig 3D–3F and 3J–3L, red) was absent in NC (Fig 3D and 3J) but

was seen in the cytoplasm of epithelial cells in LGCA (Fig 3E and 3K) and HGCA (Fig 3F and

3L) samples. SOX2 (Fig 3G–3I, red) was widely expressed in the epithelial cells and some stro-

mal cells in both NC (Fig 3A), LGCA (Fig 3H) and HGCA (Fig 3I) tissue samples. SOX2 and

OCT4 were co-expressed in epithelial cells in NC (Fig 3G) and stromal cells in LGCA (Fig 3H)

and HGCA (Fig 3I). Cytoplasmic and nuclear staining of c-MYC (Fig 3J–3L, green) was weak

in NC (Fig 3J), LGCA (Fig 3K) and HGCA (Fig 3L) epithelial and stromal cells. Stromal cells

co-expressing OCT4 and SOX2 and those that stained positively for c-MYC had the same mor-

phology and were assumed to be the same cell type. c-MYC and NANOG were co-expressed

in HGCA epithelial cells (Fig 3L). From the above data we inferred that there was an epithelial

subpopulation co-expressing NANOG, SOX2 and KLF4, and a stromal subpopulation co-

expressing OCT4, SOX2 and c-MYC. Split images for Fig 3 are shown in S3 Fig.

RT-qPCR

RT-qPCR demonstrated mRNA expression of all five iPSC markers in both the NC, LGCA

and HGCA tissue samples (Fig 4). SOX2 mRNA was below the detection threshold in three

NC tissue samples, and OCT4 was not detected in one NC tissue sample. NANOG, KLF4 and

c-MYC mRNA was detected in all 12 NC tissue samples. All LGCA and HGCA tissue samples

expressed mRNA for OCT4, NANOG, KLF4 and c-MYC. One LGCA and one HGCA tissue

sample did not reach the detection threshold for SOX2. ΔCT and fold-change data is displayed

in S2 Table.

ISH

ISH demonstrated the presence of mRNA for OCT4 (Fig 5A–5C, brown), SOX2 (Fig 5D–5F,

brown), NANOG (Fig 5G–5I, brown), KLF4 (Fig 5J–5L, brown) and c-MYC (Fig 5M–5O,

brown) in NC (Fig 5A, 5D, 5G, 5J and 5M), LGCA (Fig 5B, 5E, 5H, 5K and 5N) and HGCA

(Fig 5C, 5F, 5I, 5L and 5O) tissue samples. Positive and negative controls are shown in S4 Fig,

and cell counting data is displayed in S3 Table.

ISH cell counting demonstrated OCT4, SOX2, NANOG and c-MYC had higher mRNA lev-

els in CA epithelium and stroma when compared to NC (Fig 6). Conversely, KLF4 was more
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Fig 2. DAB IHC data. Percentage of cell population stained positively for induced-pluripotent stem cell markers OCT4, SOX2,

NANOG, KLF4 and c-MYC by 3,3-diaminobenzidine immunohistochemical staining, for the epithelium (A) and the stroma (B).

Normal colon samples from patients with low-grade colon adenocarcinoma (LGCA; pale blue, n = 9) are displayed separately to

normal colon samples from patients with high-grade colon adenocarcinoma (HGCA; dark blue, n = 8). LGCA samples are shown in

pale yellow (n = 10), and HGCA samples are shown in dark yellow (n = 8). Statistical significance with a p-value between 0.05 and

0.01 is shown by �, and that for<0.01 is represented by ��. Error bars show standard error.

https://doi.org/10.1371/journal.pone.0221963.g002
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highly expressed in NC epithelium than that of CA. All differences between CA and their

patient-matched NC tissue samples showed statistical significance (p<0.05).

Discussion

This study investigated the transcriptional and translational expression of OCT4, SOX2,

NANOG, KLF4 and c-MYC to identify their presence in CSC subpopulations within CA.

RT-qPCR and ISH data for SOX2 corroborated with each other, with RT-qPCR failing to

detect SOX2 in three NC samples and two CA samples, and ISH showing SOX2 to be the least

abundant in terms of the number of cells containing mRNA. However, SOX2 was one of the

most abundant markers at the protein level. Other studies have also shown an abundance of

SOX2 protein in both the nuclei and cytoplasm of CRC tumor cells [11, 19]. Furthermore, ISH

Fig 3. IF IHC staining. Representative immunofluorescence immunohistochemical-stained images showing protein expression of induced-pluripotent

stem cell markers OCT4 (A-J, green), KLF4 (A-C, red), NANOG (D-G, H-J, red), SOX2 (H-J, red), and c-MYC (H-J, green) in normal colon (A,D,E,H),

low-grade (B,E,F,I) and high-grade (C,F,G,J) colon adenocarcinoma tissue samples. Cell nuclei were counter-stained with 4’, 6’-diamidino-2-

phenylindole (A-L, blue). Original magnification: 400x.

https://doi.org/10.1371/journal.pone.0221963.g003
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Fig 4. RT-qPCR. mRNA expression of induced-pluripotent stem cell markers OCT4 (A), SOX2 (B), NANOG (C), KLF4 (D) and c-MYC (E) detected by

RT-qPCR. Data displayed as the fold-change of gene expression in tumor samples relative to their patient-matched normal colon sample (Y-axis). A

cohort of six LGCA tissue samples are shown in blue, and a cohort of six HGCA tissue samples are shown in yellow (X-axis).

https://doi.org/10.1371/journal.pone.0221963.g004
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Fig 5. In-situ hybridization. Representative images of in-situ hybridization, showing mRNA expression of iPSC genes OCT4 (A-C, brown), SOX2
(D-F, brown), NANOG (G-I, brown), KLF4 (J-L, brown) and c-MYC (M-O, brown) in the epithelial cells (arrows) and stromal cells (arrowheads) in

normal colon (A,D,G,J,M), low-grade (B,E,H,K,N) and high-grade (C,F,I,L,O) colon adenocarcinoma tissue samples. Nuclei were counter-stained with

hematoxylin (blue). Original magnification: 1000x.

https://doi.org/10.1371/journal.pone.0221963.g005
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showed abundance of c-MYC mRNA but DAB IHC staining showed weak protein staining,

which may be due to the concentration of primary antibody used for DAB IHC staining.

KLF4 has been previously studied in CRC and shown to be associated with epithelial-to-

mesenchymal transition (EMT), cell migration and metastasis [16]. However, studies on the

role of KLF4 in cancer often yield conflicting results [31]. In NC, KLF4 helps direct epithelial

progenitor cells down the goblet cell lineage, the most abundant epithelial cell type in colonic

Fig 6. In-situ hybridization data. In-situ hybridization analysis showing the percentage of the cell population

expressing mRNA for iPSC genes in the epithelium (A) and the stroma (B). Normal colon samples from patients with

low-grade colon adenocarcinoma (LGCA) are represented in pale blue, normal colon samples from high-grade colon

adenocarcinoma (HGCA) patients in dark blue, LGCA samples in pale yellow, and HGCA samples in dark yellow.

Statistical significance with a p-value between 0.05 and 0.01 is shown by �, and that for<0.01 is represented by ��.

Error bars show standard error.

https://doi.org/10.1371/journal.pone.0221963.g006
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crypts [26]. As the grade of CA increases, the tumors are less differentiated, and this may

explain the observation of decreased KLF4 in both LGCA and HGCA tumors, relative to NC.

Our finding of higher KLF4 and OCT4 protein expression in the stroma of HGCA may reflect

the migration of cancer cells by EMT, away from the epithelium, which has been postulated as

a major factor in CRC progression [32]. Furthermore, when applying the concept of a stem

cell hierarchy in cancer [6–8], we propose that cells at different levels of this hierarchy will

express different combinations of these markers. For instance, OCT4 is known to be expressed

by primitive stem cells such as ESCs [16, 33], whereas KLF4 is associated with a more differen-

tiated phenotype [26, 27].

In this study, IF IHC staining identified two distinct CSC subpopulations: a NANOG+/

OCT4- subpopulation localized to the epithelium, and an OCT4+/NANOG- subpopulation

within the stroma. The stromal OCT4+ subpopulation did not co-express NANOG or KLF4,

but some stromal cells co-expressed OCT4 and SOX2. Similarly, in the epithelium, SOX2 and

KLF4 staining was widespread but comparatively few of these cells were NANOG+. Based on

the staining patterns, of these markers we infer the presence of two predominant CSC subpop-

ulations in CA: an OCT4+/SOX2+/c-MYC+ subpopulation within the stroma and a NANOG+/

SOX2+/KLF4+ subpopulation within the epithelium.

The literature correlating OCT4 and SOX2 expression with EMT and metastasis provides

evidence supporting a stromal subpopulation expressing these markers that migrates away

from the tumor [20, 31, 34]. Furthermore, NANOG is associated with maintenance of the

stem-like phenotype of CSCs within the tumor, consistent with our observation of NANOG

expression by some epithelial cells within the tumor [35]. KLF4 and c-MYC are associated

with proliferation and differentiation and it is therefore not unexpected that these two markers

were co-expressed by cells within CA [24, 27, 36].

Some stromal cells within CA that stained positively for OCT4 and c-MYC did not express

KLF4 and SOX2. Some of these OCT4+ stromal cells may be cancer-associated fibroblasts

recruited by the tumor and induced to express OCT4 [37]. Alternatively, they may represent a

CSC subpopulation that expresses stem cell markers other than the iPSC-related genes investi-

gated in this study.

The patient-matched ‘normal colon’ samples used as a control may not represent true nor-

mal colon. Other limitations of this study include the lack of functional in vitro and in vivo
investigations which will be the focus of future work.

The significance of OCT4, NANOG and KLF4 expression was seen in the discriminant

values analysis. By considering the expression of stromal KLF4 and epithelial OCT4 and

NANOG, all 18 CA cases could be accurately graded. This is demonstrated to be robust, with a

canonical correlation of 0.981 representing a high degree of statistical significance, and a

Wilkes Lambda value of 0.037 showing that 96.3% of the variance between cases can be

explained by these data.

Once validated, using the localization and expression levels of novel combinations of iPSC

markers may provide a valuable tool to help guide patient management by further stratifying

tumor grade, identifying cases with higher potential for metastasis or relapse, or tracking

response to therapy.

Supporting information

S1 Fig. EpCAM DAB IHC staining. Representative 3,3-diaminobenzidine immunohisto-

chemical images showing protein expression of EPCAM (brown) in normal colon (A), low-

grade colon adenocarcinoma (B&C), negative control (D), and high-grade colon adenocarci-

noma (E&F). In all normal and tumor samples, EPCAM was expressed only by the epithelial
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cells and not by stromal cells. Nuclei were counter-stained with hematoxylin (A-O, blue).

Original magnification: 400x.

(TIF)

S2 Fig. DAB IHC controls. Representative images of 3,3 diaminobenzidine immunohisto-

chemical staining of human positive control tissues demonstrating the expected staining pat-

terns on seminoma for OCT4 (A, brown) and NANOG (B, brown), skin for SOX2 (C, brown),

normal breast tissue for KLF4 (D, brown) and prostatic tissue for c-MYC (E, brown). A section

of colon adenocarcinoma probed with a matched anti-mouse isotype control and primary

antibodies (F) confirmed the specificity of the secondary antibodies. Nuclei were counter-

stained with hematoxylin (B-F, blue). Original magnification: 400X.

(TIF)

S3 Fig. IF IHC controls. Individual stains of immunofluorescence immunohistochemical

staining of normal colon (A,B,G,H,M,N,S,T), low-grade (C,D,I,J,O,P,U,V), and high-grade (E,

F,K,L,Q,R,W,X) colon adenocarcinoma samples shown in Fig 3. Sections were co-stained for

OCT4 (B,D,F,H,J,L,N,P,R, green) with KLF4 (A,C,E, red), NANOG (G,I,K, red) and SOX2

(M,O,Q, red); and c-MYC (T,V,X, green) with NANOG (S,U,W, red). Cell nuclei were

counter-stained with 4’6-diamino-2-phenylinodole (A-X). Scale bars: 20μm.

(TIF)

S4 Fig. ISH controls. In-situ hybridization positive human control tissues for OCT4 (A,

brown), NANOG (B, brown) and KLF4 (C, brown) on seminoma; SOX2 (D, brown) on nor-

mal skin, and c-MYC (E, brown) on normal colon. Negative control (F) performed on sections

of colon adenocarcinoma tissue sample confirms specificity of secondary antibody. Original

magnification: 1000x.

(TIF)

S1 Table. DAB IHC cell counting data. Data showing the percentage of cells with any protein

expression of each induced-pluripotent stem cell (iPSC) marker (weak, moderate or strong) by

cells in the epithelium and those in the stoma with the standard error values in brackets.

LGCA, low-grade colon adenocarcinoma tissue samples; HGCA, high-grade colon adenocar-

cinoma tissue samples. NCLG, normal colon tissue from patients with LGCA; NCHG, normal

colon tissue from patients with HGCA. Significance values for comparisons between LGCA

and HGCA tissue samples and their patient-matched normal colon tissues, for cells in the epi-

thelium and those in the stroma: a p-value between 0.05 and 0.01 is shown by �, and<0.01 rep-

resented by ��.

(PDF)

S2 Table. RT-qPCR data. RT-qPCR data showing expression of induced-pluripotent stem cell

(iPSC) markers OCT4, SOX2, NANOG, KLF4 and c-MYC. ΔCT values calculated by comparing

the gene of interest to housekeeper GAPDH, and ΔΔCT values by comparing high-grade (HG)

and low-grade (LG) tumors to their patient-matched normal colon samples. ΔΔCT values used

to calculate fold changes using the equation 2^(-ΔΔCT).

(PDF)

S3 Table. ISH cell counting data. Data showing the percentage of cells with mRNA expression

of each induced-pluripotent stem cell (iPSC) marker in the epithelium and in the stoma, with

the standard error values in brackets. LGCA, low-grade colon adenocarcinoma tissue samples;

HGCA, high-grade colon adenocarcinoma tissue samples. NCLG, normal colon tissue from

patients with LGCA; NCHG, normal colon tissue from patients with HGCA. Significance val-

ues for comparisons between LGCA and HGCA tissue samples and their patient-matched
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normal colon tissues, for cells in the epithelium and those in the stroma: a p-value between

0.05 and 0.01 is shown by �, and<0.01 represented by ��.

(PDF)

S1 Datasets. Raw data. Raw data collected and analyzed during this study is provided, includ-

ing anonymous patient data, DAB IHC cell counting data, discriminant function analysis out-

put, in-situ hybridization cell counting data, raw RT-qPCR CT values, and cell counting

statistics.
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