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Abstract
Purpose With the recent development of deep learning technologies, various neural networks have been proposed for fundus
retinal vessel segmentation. Among them, the U-Net is regarded as one of the most successful architectures. In this work, we
start with simplification of the U-Net, and explore the performance of few-parameter networks on this task.
Methods We firstly modify the model with popular functional blocks and additional resolution levels, then we switch to
exploring the limits for compression of the network architecture. Experiments are designed to simplify the network structure,
decrease the number of trainable parameters, and reduce the amount of training data. Performance evaluation is carried out
on four public databases, namely DRIVE, STARE, HRF and CHASE_DB1. In addition, the generalization ability of the
few-parameter networks are compared against the state-of-the-art segmentation network.
Results We demonstrate that the additive variants do not significantly improve the segmentation performance. The per-
formance of the models are not severely harmed unless they are harshly degenerated: one level, or one filter in the input
convolutional layer, or trained with one image. We also demonstrate that few-parameter networks have strong generalization
ability.
Conclusion It is counter-intuitive that the U-Net produces reasonably good segmentation predictions until reaching the
mentioned limits. Our work has two main contributions. On the one hand, the importance of different elements of the U-Net
is evaluated, and the minimal U-Net which is capable of the task is presented. On the other hand, our work demonstrates that
retinal vessel segmentation can be tackled by surprisingly simple configurations of U-Net reaching almost state-of-the-art
performance. We also show that the simple configurations have better generalization ability than state-of-the-art models with
high model complexity. These observations seem to be in contradiction to the current trend of continued increase in model
complexity and capacity for the task under consideration.
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Introduction

Retinal vessel segmentation from fundus images is an exten-
sively studied field [14,19,40]. Analysis of the distribution,
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thickness and curvature of the retinal vessels assists the
diagnosis, therapy planning, and treatment procedures of
circulatory system-related eye diseases such as diabetic
retinopathy (DR), glaucoma and age-related macular degen-
eration, which are the leading causes of blindness in the
aging population [48]. Previous work on retinal vessel seg-
mentation can be roughly divided into unsupervised and
supervised categories, where supervised approaches often
outperform the unsupervised ones. Unsupervised approaches
do not require manual annotations, and are usually based on
certain rules, such as template matching [4,21,45], vessel
tracking [49,54], region growing [35], multiscale analy-
sis [3,29,51], and morphological processing [7]. Supervised
approaches rely on ground truth annotations by expert
ophthalmologists. In conventional machine learning-based

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11548-021-02340-1&domain=pdf
http://orcid.org/0000-0003-4805-5222
https://orcid.org/0000-0002-9550-5284


968 International Journal of Computer Assisted Radiology and Surgery (2021) 16:967–978

methods, hand-crafted or learnt features are used as input
for classifiers such as k-nearest neighbors (kNN) [46], sup-
port vector machine (SVM) [33], random forest (RF) [44],
AdaBoost [8], Gaussian mixture model (GMM) [39], and
the multilayer perceptron (MLP) [36]. With the recent
advancements in deep learning-based technologies [27], con-
volutional neural networks (CNNs), which do not explicitly
separate the feature extraction and the classification proce-
dures, are employed in this field and have achieved great
success [9,25,28]. Apart from models that are designed for
high-performance, researchers have proposed to improve the
interpretability of the constructed segmentation pipelines as
well. For instance, the Frangi-Net [11], which is the CNN
counterpart of the classical Frangi filter [6], has been pro-
posed and combined with a preprocessing net [10] to reach
the state-of-the-art performance.

Among the deep learning-based methods designed for
biomedical image segmentation, U-Net [37] is one of the
most successful models. Since published, U-Net and its
variants have achieved remarkable performance in various
applications and have been employed as the state-of-the-art
method for segmentation tasks to compare with [23,47,52].
Isensee et al. [18] even draw an empirical conclusion that
hyper-parameter tuning of theU-Net rather than newnetwork
architecture design is the key to high performance. Since
the U-Net normally contains huge amounts of parameters,
training and inference processes are resource-consuming.
Compression of the network architecture has been tackled
in previous work, such as the U-Net++ [55] by Zhou et al..
Additional convolutional layers are inserted in-between the
skip connections to introduce self-similarity to the structure.
This modification enables easy pruning in the testing phase,
yet introduces parameters in the training phase. Besides, only
one decisive structural factor, namely the number of levels,
is considered.

This work is an extension of our previous publication [31],
which focuses on degenerating the U-Net for retinal ves-
sel segmentation on the DRIVE [41] database. The major
differences comparing to [31] are as follows. Firstly, the U-
Net variant with no skip connections is explored. Secondly,
all experiments are conducted on three additional fundus
databases besides the DRIVE [41], namely the STARE [15],
the HRF [3], and the CHASE_DB1 [34]. Fourfold cross-
validation is performed on these databases. Thirdly, param-
eter searching is conducted for training the default U-Net on
the HRF database, which contains the largest number of fun-
dus images, to explore how the hyperparameters affect the
training process. Fourthly, a five-level U-Net is trained on the
HRF database to explore how enlarging the model influences
the performance. Lastly, the performance and generalization
ability of our few-parameter nets are compared with that of
the SSA-Net [32], which yields state-of-the-art performance
on multiple fundus databases.

We startwith a defaultU-Net andfirstly seek to enhance its
performance by introducing additional resolution scales and
substituting the vanilla U-Net blocks with commonly used
functional blocks, namely the dense block [16], the resid-
ual block [13], the dilated convolution block [50], and the
side-output block [9]. Due to the observation of no remark-
able performance boost, we propose the assumption that the
default U-Net alone is capable or even over-qualified for the
task of retinal vessel segmentation. Thereafter, we turn our
focus onto simplification of the network architecture, aim-
ing for a minimized model which yields reasonably good
performance. Different components of the default U-Net are
explored independently using the “control variates” strategy,
where only one factor is changed while the others are fixed at
one time. The number of U-Net levels, the number of convo-
lutional layers in each U-Net block, and the number of filters
in the convolution layers are step-wise decreased; the non-
linear activation layers and skip connections are removed;
and the size of training set is reduced. Analysis of the perfor-
mance evaluationmetrics yields unexpected conclusion; only
under substantially harsh conditions does the U-Net degen-
erate.With one down-/upsampling step, or one convolutional
layer in each U-Net block, or two filters in the input layer,
the segmentation performance remain satisfactory, produc-
ingAUCscores above0.97.Comparison to theSSA-Net [32],
which is state-of-the-art retinal vessel segmentation network
model, also reveals that the few-parameter networks have
strong generalization ability. The contribution of this work
is two-sided. On the one hand, the importance of different
configuration components of the U-Net model is quantita-
tively assessed, and a minimized well-performing model is
obtained.On the other hand, thiswork provides an exemplary
reminder that the research behavior of pursuingmarginal per-
formance gain at the cost of massive resource consumption
could be unworthy.

Materials andmethods

Default U-Net configuration

The default U-Net configuration in this work is illustrated
in Fig. 1. Likewise the original U-Net [37], each U-Net
block consists of two consecutive convolutional layers with
3 × 3 filters. The number of filters doubles after each
down-sampling, and halves after each up-sampling. Down-
sampling is performed by the max-pooling operation. ReLU
activation layers are employed to introduce nonlinearity into
themodel, and the concatenation operation is used as the skip
connection tomerge the localization and contextual informa-
tion. In comparison to the original U-Net architecture, four
majormodifications aremade. Firstly, ourmodel is composed
of three rather than five scale levels. Secondly, the number of
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Fig. 1 Default U-Net configuration. The dash box defines one U-Net block

Fig. 2 Illustration of the dense block (a), residual block (b), and the side-output block (c)

filters in the first convolutional layer is set to 16 rather than
64. Thirdly, up-sampling is realized with an up-pooling layer
followed by a 1×1 convolutional layer rather than the trans-
posed convolutional layer. Lastly, batch normalization [17]
layers are applied after all but the last ReLU [31] layers to sta-
bilize the training process. The overall architecture contains
108,976 parameters.

Additive variants

Four structural additive modifications are applied on the
vanilla U-Net architecture, namely the dense block [16], the
residual block [13], the side-output block [9] (see Fig. 2), and
the dilated convolution block [50]. These structural modifi-
cations are chosen due to their popularity in the U-Net-based
medical image segmentation community [1,5,22,23,26,30,
43,53]. In the dense block, activationmaps fromall preceding
layers are concatenated to all latter ones. Such connections
createmany additional channels and introduce a large amount
of parameters. Due to computational resource limits, dense
blocks replace the vanilla blocks only in the encoder path.
In the residual block, two additional convolutional layers are
inserted, where the activation maps from the first convolu-
tional layer are added to those of the third layer. The residual
blocks replace the vanilla U-Net blocks in the encoder, the

bottleneck, as well as the decoder. The concatenation opera-
tions in dense blocks and the addition operations in residual
blocks allow for better gradient backpropagation since pre-
ceding layers can receive more direct supervision from the
loss function. In dilated convolution layers, the kernels are
enlarged, creating holes in-between which are filled with
zeros. No additional parameters are introduced, while the
receptive field is enlarged. The dilated convolution block is
employed in the bottleneck of the model. The side-output
blocks are applied in the decoder path to provide step-wise
deep supervision, where the output maps from the U-Net
blocks are passed through a 1×1 convolutional layer, upsam-
pled to the shape of the network input, and comparedwith the
ground truth using a mean square error (MSE) loss. Besides,
a U-Net with five scale levels is trained on the biggest fun-
dus database, namely the HRF [3] database to explore how
enlarged architecture influences the network performance.

Subtractive variants

The default U-Net in this study is configured as described
in “Default U-Net configuration” section. Exploration of the
limits of subtractive U-Net variants follows the “control vari-
ates” strategy, which means only one aspect of the model is
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changed from the default configuration at one time. Experi-
ment series are designed as:

1. Nonlinear activation functions, i.e., the ReLU layers, are
removed.

2. Skip connections between the encoder and the decoder
are removed.

3. The number of convolutional layers in each U-Net block
is reduced to one.

4. The number of filters in the first level is halved from six-
teen down to one. Correspondingly, the number of filters
in deep levels is proportionally decreased.

5. The number of levels decreases step-wise to one, until the
network degenerates into a chain of convolutional layers.

6. The number of images for training the model is consec-
utively halved by a factor of two until only one image is
used.

Parameter searching

In order to investigate on the importance of parameter tun-
ing for the network performance, a random hyperparameter
searching [2] experiment is carried out for the default U-Net
configuration on the HRF [3] database which contains the
largest number of annotated fundus images. Nine different
hyperparameters which control the model architecture and
the training process are considered. The optimum parameter
combination is selected from 29 experiment roll-outs, and
utilized to retrain the default U-Net. The experimental details
for parameter searching are elaborated in the supplementary
material.

Comparison to the state-of-the-art method

To compare the performance of our few-parameter networks
with the state-of-the-art methods, we select the scale-space
approximated network [32] (SSA-Net) which reaches the
highest performance on various fundus databases as the tar-
get model. We firstly rerun the SSA-Net for five repetitive
times to obtain the mean and standard deviation of the exper-
iments rather than merely the optimum results as in [32].
Note that the SSA-Net is trained with the exactly same soft-
ware and configuration as in [32]. Since the SSA-Net utilizes
the backbone of ResNet34 [13] and contains more than 25
million trainable weights, it is natural to propose that the
high performance of the model could be due to overfitting.
Thereafter an experiment to investigate on the generaliza-
tion ability of the network models is designed. Both our
few-parameter networks and the SSA-Net are trained on
the DRIVE database and transferred to the STARE [15]
directly.

Database description

DRIVE

The digital retinal images for vessel extraction (DRIVE) [41]
database contains 40 8-bit RGB fundus images with a resolu-
tion of 565×584 pixels. The database consists of 33 healthy
cases and7 caseswith early signs ofDR, and is evenly divided
into one training and one testing set. In this work, a subset
of four images is further separated from the training set for
validation purpose. For all images, FOV masks and manu-
ally labeled annotations are provided. In the training process,
each minibatch contains 50 image patches of size 168×168,
which are randomly sampled from the training images.

STARE

The structured analysis of the retina (STARE) database [15]
contains 20 8-bit RGB fundus photographs of size 605×700
pixels. Half of the images are from healthy subjects, while
the other half is corrupted with pathologies that affect the
visibility of retinal vessels. Manually labeled vessel masks
are available for all images. FOVmasks are generated using a
foreground /background separation technique named “Grab-
Cut” [38]. Training and testing sets are not predefined. A
fourfold cross-validation is performed, with five images for
testing, eleven images for training and four images for val-
idation in each experiment. During the training process,
minibatches are constructed in the same way as for DRIVE.

HRF

The high-resolution fundus (HRF) image database [3] con-
sists of 45 8-bit RGB fundus photographs of size 2336×3504
pixels. It contains 15 images from healthy patients, 15 from
DR patients, and 15 from glaucomatous patients. For each
image, a manual annotation and an FOV mask are provided.
Training and testing sets are not predefined, and a fourfold
cross-validation is performed for evaluation. In each experi-
ment, 34 images are used for training, seven for validation,
and eleven/twelve for testing. In the training process, each
minibatch contains 15 patches of size 400× 400 pixels.

CHASE_DB1

The CHASE_DB1 [34] database contains 28 fundus images
from both eyes of 14 pediatric subjects with a resolution of
999 × 960 pixels. Ground truth vessel maps are provided,
yet FOV masks are created using the GrabCut algorithm.
For evaluation, a fourfold cross-validation is performed. The
28 images are divided into a training set of 17 images, a
validation set of four images, and testing set containing seven
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Fig. 3 Preprocessing pipeline

(a) Raw (b) Raw patch (c) Prep. patch (d) Label patch

(e) Default U-Net (f) Dense (g) Residual (h) Dilate

(i) Side output (j) Level = 1 (k) Filter = 1 (l) Train set = 1

(m) Conv. = 1 (n) No ReLU (o) No connections (p) 5-level NC

Fig. 4 Probability predictions of U-Net variants with AUC scores pre-
sented on upper right corners. (f–i) are the additive variants of theU-Net.
(j–m) denote U-Net with one level, U-Net with one filter in the initial
convolutional layer, U-Net trainedwith one sample, andU-Net with one

convolutional layer in each block. (n–p) correspond to U-Net without
ReLU layers, three-level U-Net without skip connections, and five-level
U-Net without skip connections
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images in each experiment. For training, aminibatch contains
40 patches of shape 200× 200 pixels.

Preprocessing pipeline

Before fed into network models, raw fundus photographs are
preprocessed using the pipeline illustrated in Fig. 3. Firstly,
the green channels of the RGB images, which exhibit the
best contrast between the retinal vessels and the background,
are extracted. Secondly, the CLAHE [56] algorithm, with
a window size of 8 × 8 pixels and the max slope equals
3.0, is applied to equalize the local histogram in an adaptive
manner and balance the illumination. The data range within
the FOV masks is then normalized between 0.0 and 1.0, and
a Gamma transform with γ = 0.8 is applied to further lift
the contrast in dark small vessel regions. Finally, the data
range within the FOV mask is standardized between −1.0
and 1.0 to generate input for the networks. Additionally for
HRFandCHASE_DB1databases, images are down-sampled
with bilinear interpolation by a factor of 4 and 2, respectively,
before fed into networks, and up-scaled after the network
processing to restore their original shape.

The borders of FOV masks of all databases are inwardly
eroded by four pixels to remove potential border effects and
ensure meaningful comparison. In order to stress on the thin
vessels during training, weight maps are generated and mul-
tiplied to the pixel-wise loss as in Eq. (1), where dxi is the
vessel diameter in the manual label map of the given pixel
xi :

W (xi ) =
{
1.0, if xi in background,
max(1.0, 1.0

0.18·dxi ), if xi in foreground, (1)

Experimental details

The objective function in this work is a weighted sum of two
parts, namely the segmentation loss and the regularization
loss, i.e.,

L = Lseg+L reg = 1

N
·

N∑
i=1

(L focal(xi ) ·W (xi ))+λ ·L�2 , (2)

where L focal(xi ) is the focal loss [24] for a given pixel xi ,
N is the overall number of pixels, and L�2 is the regularizer
loss representing the �2 norm of all network weights. For the
focal loss, the focusing factor γ is set to 2.0 to differentiate
between easy and hard cases, and a class-balancing factor
α is set to 0.9 to emphasize on the foreground pixels. The
�2 loss is combined with the segmentation loss with a factor
λ = 0.2 to prevent over-fitting. The Adam optimizer [20]
with β1 = 0.9, β2 = 0.999 is used for the training process.
The learning rate decays by 10% after each 10,000 iterations.

Different initial learning rates are tailored for different mod-
els to achieve smooth loss curves; the more weights in the
model, the smaller the learning rate. Networks are trained
until convergence is observed in the validation loss curve.
Data augmentation techniques are utilized for better gen-
eralization, including rotation within 20 degrees, shearing
within 30% of the linear patch size, zooming between 50%
and 150% of the linear patch size, additive Gaussian noise
and uniform intensity shifting within the range of 8% of the
image intensities.

Experimentswith eachdifferent configuration are repeated
for five times to make sure that the conclusion is not
dominated by certain specific initialization settings, and to
evaluate the stability of the model. The models are trained
on an NVIDIA GPU cluster. Projects are implemented in
Python 3.6.8., using the framework TensorFlow 1.13.1.

Results

Commonly used performance evaluation metrics for seman-
tic medical image segmentation, namely specificity, sensitiv-
ity, F1 score, accuracy and the AUC score [42], are employed
in this work. Binarization of the prediction maps from a
model is conducted by selecting a threshold which maxi-
mizes the average F1 score of the validation sets. The AUC
score, which is threshold-independent, is chosen as themajor
performance indicator. The mean and standard deviation of
the metric values on each testing image over the five experi-
ment roll-outs are firstly computed individually. The average
of these mean and standard deviation values over all the
testing images are reported in Tables 1, 2, 3 and 4. The eval-
uation results to compare the generalization ability of our
few-parameter networks with the SSA-Net are presented in
Table 5. The significance analysis of predictions from differ-
entU-Net variants is presented in the supplementarymaterial.
The predicted probability maps from different network vari-
ants for one testing image in DRIVE are shown in Fig. 4a–o.

Performance evaluation of structural U-Net variants are
presented in Table 1. For additive variants, we observe that
comparing to the vanilla U-Net, the changes in AUC scores
stay in reach of the standard deviations. This implies that
the introduced functional blocks or the additional levels fail
to incur the expected performance enhancement. As for the
subtractive variants, the performance of U-Net with one con-
volutional layer in each block drops marginally and remains
satisfactory. Removing skip connections barely harms the
network performance; while eliminating the ReLU layer
causes 0.01 decrease in the AUC scores. In Table 2, the eval-
uationmetrics of the U-Nets with decreased number of filters
in the initial convolutional layer are reported. A uniform per-
formance decay is observed as the network shrinks.However,
it is remarkable that the performance remains reasonablewith
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Table 1 Performance w.r.t. structural variants. Additive variants: Ures,
Uden, Udil, Uside denote the U-Net with the residual blocks, U-Net
with the dense blocks, U-Net with the dilate convolution block, U-Net
with the side-output block; subtractive variants: U-lin, U-1C, U-ns rep-

resent U-Net without ReLU layers and U-Net with one convolutional
layer per level, and U-Net without skip connections, respectively. U-
par, U-5lv, and SSA represent default U-Net with parameter searching,
five-level U-Net and the SSA-Net, respectively

Model Parameter AUC Specificity Sensitivity F1 score Accuracy

DRIVE

U 108,976 0.9756 ± 0.0010 0.9758 ± 0.0016 0.7941 ± 0.0073 0.8101 ± 0.0032 0.9518 ± 0.0009

Ures 154,768 0.9765 ± 0.0009 0.9758 ± 0.0009 0.7994 ± 0.0053 0.8133 ± 0.0034 0.9525 ± 0.0008

Uden 2,501,067 0.9754 ± 0.0009 0.9742 ± 0.0017 0.8029 ± 0.0063 0.8110 ± 0.0042 0.9515 ± 0.0012

Udil 108,976 0.9741 ± 0.0013 0.9753 ± 0.0030 0.7944 ± 0.0151 0.8089 ± 0.0047 0.9513 ± 0.0014

Uside 109,072 0.9752 ± 0.0008 0.9757 ± 0.0013 0.7938 ± 0.0073 0.8097 ± 0.0033 0.9517 ± 0.0008

U-lin 108,976 0.9643 ± 0.0016 0.9693 ± 0.0024 0.7874 ± 0.0091 0.7885 ± 0.0035 0.9453 ± 0.0012

U-ns 97,456 0.9752 ± 0.0009 0.9745 ± 0.0015 0.7966 ± 0.0068 0.8082 ± 0.0036 0.9510 ± 0.0010

U-1C 49,072 0.9732 ± 0.0009 0.9742 ± 0.0010 0.7918 ± 0.0055 0.8043 ± 0.0028 0.9501 ± 0.0007

SSA 25,879,328 0.9810 ± 0.0004 0.9774 ± 0.0009 0.8205 ± 0.0051 0.8306 ± 0.0009 0.9567 ± 0.0002

STARE

U 108,976 0.9835 ± 0.0012 0.9813 ± 0.0017 0.7997 ± 0.0114 0.8115 ± 0.0059 0.9621 ± 0.0012

Ures 154,768 0.9836 ± 0.0012 0.9812 ± 0.0015 0.8024 ± 0.0096 0.8132 ± 0.0051 0.9624 ± 0.0011

Uden 2,501,067 0.9796 ± 0.0019 0.9822 ± 0.0013 0.7885 ± 0.0088 0.8075 ± 0.0046 0.9618 ± 0.0009

Udil 108,976 0.9838 ± 0.0023 0.9799 ± 0.0028 0.8092 ± 0.0181 0.8129 ± 0.0122 0.9620 ± 0.0023

Uside 109,072 0.9829 ± 0.0014 0.9816 ± 0.0017 0.7978 ± 0.0100 0.8110 ± 0.0050 0.9621 ± 0.0011

U-lin 108,976 0.9734 ± 0.0044 0.9788 ± 0.0029 0.7556 ± 0.0257 0.7723 ± 0.0149 0.9554 ± 0.0025

U-ns 97,456 0.9853 ± 0.0036 0.9807 ± 0.0057 0.8064 ± 0.0229 0.8149 ± 0.0187 0.9623 ± 0.0048

U-1C 49,072 0.9825 ± 0.0011 0.9815 ± 0.0015 0.7808 ± 0.0099 0.7997 ± 0.0052 0.9602 ± 0.0011

HRF

U 108,976 0.9810 ± 0.0010 0.9761 ± 0.0010 0.7921 ± 0.0073 0.7754 ± 0.0041 0.9590 ± 0.0008

Ures 154,768 0.9820 ± 0.0008 0.9764 ± 0.0009 0.7953 ± 0.0058 0.7785 ± 0.0031 0.9595 ± 0.0007

Uden 2,501,067 0.9821 ± 0.0006 0.9768 ± 0.0007 0.7949 ± 0.0060 0.7799 ± 0.0029 0.9599 ± 0.0006

Udil 108,976 0.9816 ± 0.0006 0.9765 ± 0.0013 0.7951 ± 0.0084 0.7788 ± 0.0034 0.9596 ± 0.0008

Uside 109,072 0.9822 ± 0.0007 0.9762 ± 0.0008 0.7980 ± 0.0061 0.7793 ± 0.0040 0.9595 ± 0.0008

U-lin 108,976 0.9641 ± 0.0069 0.9712 ± 0.0035 0.7599 ± 0.0216 0.7388 ± 0.0117 0.9519 ± 0.0025

U-ns 97,456 0.9815 ± 0.0007 0.9764 ± 0.0010 0.7926 ± 0.0081 0.7771 ± 0.0038 0.9593 ± 0.0008

U-1C 49,072 0.9779 ± 0.0023 0.9756 ± 0.0022 0.7804 ± 0.0136 0.7668 ± 0.0095 0.9575 ± 0.0019

U-par 108,976 0.9825 ± 0.0007 0.9767 ± 0.0010 0.7976 ± 0.0065 0.7809 ± 0.0033 0.9600 ± 0.0007

U-5lv 1,852,336 0.9831 ± 0.0006 0.9766 ± 0.0006 0.8004 ± 0.0050 0.7823 ± 0.0024 0.9602 ± 0.0005

CHASE_DB1

U 108,976 0.9806 ± 0.0010 0.9731 ± 0.0013 0.8225 ± 0.0073 0.7964 ± 0.0045 0.9575 ± 0.0011

Ures 154,768 0.9811 ± 0.0011 0.9737 ± 0.0015 0.8231 ± 0.0088 0.7987 ± 0.0049 0.9581 ± 0.0011

Uden 2,501,067 0.9799 ± 0.0010 0.9734 ± 0.0013 0.8180 ± 0.0068 0.7951 ± 0.0041 0.9574 ± 0.0010

Udil 108,976 0.9783 ± 0.0020 0.9734 ± 0.0020 0.8120 ± 0.0129 0.7921 ± 0.0066 0.9569 ± 0.0015

Uside 109,072 0.9806 ± 0.0010 0.9737 ± 0.0013 0.8174 ± 0.0084 0.7955 ± 0.0056 0.9576 ± 0.0012

U-lin 108,976 0.9619 ± 0.0047 0.9639 ± 0.0041 0.7910 ± 0.0180 0.7475 ± 0.0098 0.9462 ± 0.0029

U-ns 97,456 0.9793 ± 0.0009 0.9728 ± 0.0011 0.8145 ± 0.0061 0.7907 ± 0.0032 0.9564 ± 0.0008

U-1C 49,072 0.9773 ± 0.0012 0.9713 ± 0.0013 0.8096 ± 0.0070 0.7826 ± 0.0041 0.9546 ± 0.0010
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Table 2 U-Net performance w.r.t. different numbers of initial filters

# Parameter AUC Specificity Sensitivity F1 score Accuracy

DRIVE

8 27,352 0.9754 ± 0.0008 0.9754 ± 0.0012 0.7940 ± 0.0055 0.8089 ± 0.0036 0.9514 ± 0.0010

4 6892 0.9748 ± 0.0007 0.9746 ± 0.0012 0.7962 ± 0.0056 0.8080 ± 0.0025 0.9510 ± 0.0007

2 1750 0.9719 ± 0.0008 0.9728 ± 0.0009 0.7889 ± 0.0047 0.7986 ± 0.0021 0.9485 ± 0.0005

1 451 0.9637 ± 0.0014 0.9678 ± 0.0030 0.7776 ± 0.0110 0.7785 ± 0.0052 0.9427 ± 0.0018

STARE

8 27,352 0.9831 ± 0.0010 0.9812 ± 0.0013 0.7900 ± 0.0101 0.8052 ± 0.0053 0.9610 ± 0.0010

4 6892 0.9824 ± 0.0010 0.9811 ± 0.0013 0.7806 ± 0.0082 0.7988 ± 0.0047 0.9599 ± 0.0009

2 1750 0.9787 ± 0.0018 0.9794 ± 0.0017 0.7605 ± 0.0118 0.7799 ± 0.0078 0.9562 ± 0.0015

1 451 0.9752 ± 0.0016 0.9772 ± 0.0018 0.7405 ± 0.0119 0.7595 ± 0.0081 0.9522 ± 0.0017

HRF

8 27,352 0.9811 ± 0.0008 0.9763 ± 0.0009 0.7913 ± 0.0056 0.7760 ± 0.0038 0.9591 ± 0.0008

4 6892 0.9801 ± 0.0009 0.9762 ± 0.0008 0.7897 ± 0.0070 0.7744 ± 0.0038 0.9589 ± 0.0007

2 1750 0.9762 ± 0.0010 0.9752 ± 0.0011 0.7771 ± 0.0074 0.7633 ± 0.0037 0.9568 ± 0.0008

1 451 0.9679 ± 0.0014 0.9735 ± 0.0016 0.7520 ± 0.0111 0.7424 ± 0.0054 0.9531 ± 0.0012

CHASE_DB1

8 27,352 0.9798 ± 0.0010 0.9733 ± 0.0014 0.8169 ± 0.0085 0.7938 ± 0.0039 0.9571 ± 0.0009

4 6892 0.9788 ± 0.0009 0.9723 ± 0.0012 0.8133 ± 0.0069 0.7884 ± 0.0038 0.9559 ± 0.0009

2 1750 0.9734 ± 0.0015 0.9693 ± 0.0016 0.7966 ± 0.0090 0.7686 ± 0.0048 0.9515 ± 0.0011

1 451 0.9615 ± 0.0023 0.9622 ± 0.0042 0.7633 ± 0.0147 0.7269 ± 0.0090 0.9480 ± 0.0032

Table 3 U-Net performance w.r.t. different numbers of levels

# Parameter AUC Specificity Sensitivity F1 score Accuracy

DRIVE

2 23,984 0.9735 ± 0.0006 0.9733 ± 0.0017 0.7970 ± 0.0072 0.8050 ± 0.0027 0.9500 ± 0.0009

1 7344 0.9649 ± 0.0007 0.9652 ± 0.0015 0.7970 ± 0.0060 0.7832 ± 0.0026 0.9429 ± 0.0008

STARE

2 23,984 0.9813 ± 0.0011 0.9820 ± 0.0013 0.7645 ± 0.0090 0.7912 ± 0.0046 0.9590 ± 0.0009

1 7344 0.9702 ± 0.0012 0.9759 ± 0.0011 0.7235 ± 0.0090 0.7413 ± 0.0062 0.9494 ± 0.0012

HRF

2 23,984 0.9794 ± 0.0008 0.9760 ± 0.0011 0.7891 ± 0.0070 0.7736 ± 0.0034 0.9587 ± 0.0008

1 7344 0.9690 ± 0.0029 0.9741 ± 0.0019 0.7520 ± 0.0139 0.7448 ± 0.0086 0.9537 ± 0.0018

CHASE_DB1

2 23,984 0.9771 ± 0.0011 0.9731 ± 0.0013 0.8021 ± 0.0075 0.7844 ± 0.0036 0.9555 ± 0.0008

1 7344 0.9679 ± 0.0023 0.9685 ± 0.0017 0.7746 ± 0.0087 0.7533 ± 0.0058 0.9487 ± 0.0014

AUC scores above 0.96 for all databases even for the model
with a total of 451 parameters and with only one filter in
the first convolutional layer. U-Nets with reduced number
of levels are evaluated in Table 3. We notice that compared
to the default three-level U-Net, the segmentation capability
of the two-level U-Net is basically retained; and that even
if the model degenerates into a chain of convolutional lay-
ers, the predictions remain plausible, reaching AUC scores
above 0.96 for all databases. Experiment series of training
the default U-Net with decreased amount of data in Table 4

show the generalization ability of the model. In accordance
with expectation, a monotonous performance decline con-
curs with a decreasing number of samples in the training set.
However, it is unexpected that the U-Nets trained with only
two images achieve AUC scores above 0.96 in all databases.
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Table 4 U-Net performance w.r.t. various number of training images

# AUC Specificity Sensitivity F1 score Accuracy

DRIVE

8 0.9734 ± 0.0013 0.9732 ± 0.0025 0.7961 ± 0.0120 0.8043 ± 0.0050 0.9498 ± 0.0014

4 0.9686 ± 0.0019 0.9700 ± 0.0041 0.7926 ± 0.0161 0.7935 ± 0.0065 0.9465 ± 0.0021

2 0.9654 ± 0.0032 0.9657 ± 0.0080 0.7919 ± 0.0220 0.7818 ± 0.0123 0.9427 ± 0.0049

1 0.9564 ± 0.0068 0.9672 ± 0.0058 0.7508 ± 0.0274 0.7602 ± 0.0192 0.9387 ± 0.0054

STARE

5 0.9753 ± 0.0042 0.9789 ± 0.0035 0.7780 ± 0.0253 0.7890 ± 0.0149 0.9576 ± 0.0028

2 0.9614 ± 0.0030 0.9709 ± 0.0023 0.7413 ± 0.0110 0.7400 ± 0.0073 0.9463 ± 0.0018

1 0.9511 ± 0.0045 0.9709 ± 0.0026 0.7127 ± 0.0138 0.7197 ± 0.0108 0.9435 ± 0.0023

HRF

14 0.9817 ± 0.0007 0.9764 ± 0.0011 0.7934 ± 0.0071 0.7774 ± 0.0038 0.9593 ± 0.0008

7 0.9805 ± 0.0010 0.9755 ± 0.0015 0.7913 ± 0.0096 0.7730 ± 0.0051 0.9584 ± 0.0011

3 0.9779 ± 0.0017 0.9750 ± 0.0021 0.7804 ± 0.0149 0.7644 ± 0.0083 0.9569 ± 0.0018

1 0.9727 ± 0.0026 0.9724 ± 0.0026 0.7626 ± 0.0200 0.7441 ± 0.0127 0.9529 ± 0.0026

CHASE_DB1

8 0.9771 ± 0.0015 0.9718 ± 0.0022 0.8081 ± 0.0109 0.7833 ± 0.0060 0.9549 ± 0.0015

4 0.9728 ± 0.0020 0.9703 ± 0.0030 0.7953 ± 0.0123 0.7707 ± 0.0091 0.9522 ± 0.0023

2 0.9684 ± 0.0037 0.9693 ± 0.0028 0.7847 ± 0.0148 0.7609 ± 0.0115 0.9502 ± 0.0027

1 0.9590 ± 0.0059 0.9659 ± 0.0045 0.7631 ± 0.0170 0.7366 ± 0.0169 0.9449 ± 0.0044

Discussion and conclusion

In this work, we firstly attempt to improve the capability of
U-Net on the retinal vessel segmentation task by introduc-
ing functional blocks or additional scale levels to the model.
Although the modified models accommodate more param-
eters, their performance does not improve considerably. To
investigate on the impact of hyperparameters on the network
performance, a parameter searching experiment is carried
out for the default U-Net on the HRF database. However,
the optimum set of parameters also fails to introduce signifi-
cant improvement. Thereafter, we turn our research direction
into exploring the minimum configurations of the U-Net by
removing or reducing certain characteristics from a default
U-Net configuration. It is proved thatReLU layers have larger
impact on the model functionality than the amount of param-
eters. Linear U-Nets with no ReLU activation levels arrive
at the lowest segmentation performance among all structural
variants on all four databases. In the DRIVE database, the
default U-Net achieves an AUC score of 0.9756, the U-Net
with two filters in the input layer achieves an AUC score of
0.9719, while U-Net without ReLU layers yields an AUC
score of 0.9643, as presented in Tables 1, 2. One interest-
ing observation is that when skip connections are absent, the
high performance is maintained. A possible explanation is
that the detail loss due to resampling is limited in three-level
models and that the missing details can still be successfully
encoded in the bottleneck. In other words, for this specific

task, skip connections are not necessary when the network is
shallow. The assumption is confirmed by evaluating the seg-
mentation performance on a five-level U-Net without skip
connections. Comparing the prediction of the five-level lin-
ear U-Net in Fig. 4p and that of the three-level linear U-Net
in Fig. 4o, we observe that qualitatively not only are thin ves-
sels neglected, but adjacent big vessels get blended as well;
and that quantitatively the AUC score drastically drops from
0.9819 to 0.9689 as exhibited on the upper right corners of
corresponding image tiles.

The segmentation performance of U-Net-based few-
parameter networks are compared with the state-of-the-art
retinal vessel segmentation model SSA-Net. Although their
model performance is significantly better than ours, the dif-
ferences are on the third digit. Besides, the generalization
ability is another issue.When trained on theDRIVE database
and directly transferred to the STARE database, our few
parameter models exhibit much stronger generalization abil-
ity than the SSA-Net. The AUC scores yielded from our
models are all above 0.96, while that from the SSA-Net is
around 0.94 as presented in Table 5. The poor generalization
ability could be explained by overfitting since the SSA-Net
contains more than 25 million trainable parameters which is
over 250 times more than that of our default U-Net.

The observation that U-Net produces pleasing segmenta-
tion predictions even under extreme configuration conditions
is unanticipated and intriguing. Small networks save both
memory and computational resource, and allow for agile
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Table 5 The AUC scores of transferring each model that is trained on the DRIVE database directly onto the STARE database. Few-parameter
networks include the three-level U-Net with different numbers of filters in the first convolutional layer, and U-Net with few levels

AUC Default U SSA-Net 8 filter 4 filter
0.9760 ± 0.0041 0.9405 ± 0.0090 0.97426 ± 0.0044 0.9751 ± 0.0034

2 filter 1 filter 2 level 1 level

AUC 0.9706 ± 0.0047 0.9667 ± 0.0031 0.9710 ± 0.0029 0.9648 ± 0.0026

usage on mobile devices. Given the fundamental network
architecture, the performance gain caused by increasing the
amount of parameters or trainingdata becomesmarginal once
the corresponding conditions, namely theminimal number of
levels, number of filters, and number of convolutional layer
in each block, are sufficiently satisfied. On the one hand, this
observation could be explained by the simplicity of the task
and the similarity among fundus photographs; on the other
hand, it raises the questionwhether trading immense resource
cost with minor performance increase is worthwhile. As
future work, the same “control variates” methodology could
be applied on alternative tasks for compression. Smart rather
than bulky design should be the preferred research direction.
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