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Rotator cuff tears (RCTs) are common in shoulder disease and disability. Despite
significant advances in surgical repair techniques, 20–70% of patients still have
postoperative rotator cuff dysfunction. These functional defects may be related to
retear or rotator cuff quality deterioration due to tendon retraction and scar tissue at
the repair site. As an effective delivery system, hydrogel scaffolds may improve the healing
of RCTs and be a useful treatment for irreparable rotator cuff injuries. Although many
studies have tested this hypothesis, most are limited to laboratory animal experiments. This
review summarizes differences in hydrogel scaffold construction, active ingredients, and
application methods in recent research. Efforts to determine the indications of hydrogel
scaffolds (with different constructions and cargos) for various types of RCTs, as well as the
effectiveness and reliability of application methods and devices, are also discussed.
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1 INTRODUCTION

The rotator cuff is a complex of the supraspinatus, teres minor, infraspinatus, and subscapularis
muscles and their tendons. They form a cuff-like structure around the humerus head and coordinate
to complete complex shoulder movements (Craig et al., 2017). Rotator cuff injury and especially tear
tends to occur with extrinsic factors such as age, trauma and strain, as well as intrinsic factors such as
tendon degeneration, insufficient blood supply, and subacromial impingement (Nho et al., 2008;
Yadav et al., 2009). This can lead to shoulder pain, reduced strength, and motion range restriction
(Chakravarty and Webley, 1993; Colvin et al., 2012).

Rotator cuff tears (RCTs) require surgical repair, and outcomes have continuously improved with
the development of medical techniques (Gurnani et al., 2015; Deprés-tremblay et al., 2016). Most
patients have pain relief and improved shoulder function following surgery, but 20–70% complain
about postoperative function (Tashjian et al., 2010; Koh et al., 2011; Toussaint et al., 2011). Some
patients’ disability may be related to rotator cuff retear that appears as discontinuity on magnetic
resonance imaging; however, patients with intact structures can still present dysfunction and
weakness that may be related to tendon unit retraction, scar insertion, and adipose infiltration
(Goutallier et al., 1994; Liem et al., 2007; Sugaya et al., 2007; Kuzel et al., 2013). Therefore, the
“healing” concept of rotator cuff repair should be defined more prudently and include structural
integrity and functionality.

Most RCTs occur at the tendon-bone interface where the surgery reconstruction takes place
(Thorsness and Romeo, 2016; Oh et al., 2018), and this site is the key for rotator cuff healing (Li et al.,
2019; Chae et al., 2020; Huang et al., 2020). For better understanding of the rotator cuff healing
process, we need more knowledge about the histological structure. The tendon-bone interface is a
gradient region that includes the tendon, uncalcified fibrocartilage, calcified fibrocartilage, and bone
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with different cells, structures, and mechanical aspects (Bonnevie
andMauck, 1545). The tendinocytes are distributed in the tendon
tissue and contain type I collagen, while fibrochondrocytes are
arranged along the long axis of collagen fibers and distributed in
the non-mineralized fibrocartilage containing types I, II, and III
collagen. Hypertrophic chondrocytes arranged in a columnar
pattern exist in the mineralized fibrocartilage and contain type
I, II, and X collagen. Finally, osteocytes, osteoblasts, and
osteoclasts can be seen in bone and contain type I collagen
(Figure 1). In addition, mineral contents and proteoglycan
species vary among the different regions, and this natural
heterogeneity results in varied mechanical and biological
properties of the interface tissue, effectively reducing stress
and allowing loads to be transferred from the tendon to the
bone (Spalazzi et al., 1932; Rossetti et al., 1476).

Increasing attention has been paid to the application of interfacial
tissue engineering for rotator cuff injury repair. Engineered
interfacial tissue is mainly composed of seed cells, growth factors,
and biomaterials. Seed cells provide the source of regeneration of the
defect tissue through migration, adhesion, proliferation, and
differentiation (Park et al., 2016; Liu et al., 2019). Growth factors
regulate specific signaling pathways to affect a variety of cell
behaviors (Prabhath et al., 2018; Han et al., 2020). Biomaterials
serve as bridges that can provide a suitable growth environment for
seed cells and growth factors to interact (Zhao et al., 2017; Chae et al.,
2020; Veronesi et al., 2020).

Hydrogel is a 3D network structure of hydrophilic polymer
chains (Oliva et al., 2017; Dimatteo et al., 2018). The polymer
system of hydrogel scaffolds provides a good substrate with
potential for cell transplantation and differentiation, endogenous
regeneration, biological repair, and continuous delivery of growth
factors and active substances (Ma et al., 2018; Tang et al., 2018;
Marycz et al., 2019). In order to promote tendon-bone interface
healing for rotator cuff repair, these hydrogel scaffolds should meet
several requirements. First, they must reproduce the multi-regional
structure of tissue interface as much as possible, including matrix

composition, microstructure, and mechanical characteristics.
Second, scaffolds can support the adhesion, proliferation, and
differentiation of specific phenotypes of different stem cells or
progenitor cells. Thirdly, scaffolds should be degradable at a rate
is similar to the tissue regeneration rate to continue releasing
physiological load. Finally, the scaffold design should also
consider clinical use and match with the corresponding
reconstructive surgery.

2 CLASSIFICATIONS AND
CHARACTERIZATION OF HYDROGELS
APPLIED IN ROTATOR CUFF REPAIR
2.1 Classification of Hydrogels
Hydrogels is a big class of biomaterials and can be classified
according to different bases. The first one is whether their source
is natural or synthetic. Natural hydrogels are obtained from plants or
animals consisting of proteins and polysaccharides. They usually
have good biocompatibility and biodegradability but poor
mechanical strength. In recent years, synthetic hydrogels have
gradually replaced natural hydrogels as they have better water
absorption capacity, greater strength, and longer service life.
However, synthetic hydrogels are inferior to natural ones in
biological recognition, intercellular response, and cell-induced
remodeling. Nichol et al. invented a hydrogel called gelatin
methacryloyl (GelMA) that is a hybrid consisting of gelatin and
methacryloyl (Nichol et al., 2010). Its biocompatibility is much better
than gelatin and is similar to collagen, but with better formability. In
the repair of rotator cuff injury, it is often used as a therapeutic
substance carrier in rotator cuff injury repair (Cao et al., 2020; Huang
et al., 2021). Another hydrogel classification is based on polymer
constituents. Homopolymer hydrogels are derived from a single
species of hydrophilic polymer or copolymer. Multipolymers
hydrogels consist of two independent polymers or
interpenetrating polymer networks. Besides, hydrogels can be

FIGURE 1 | Diagram of the four zones at the bone-tendon interface.
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classified based on whether they could responsive to environmental
stimuli such as temperature, pH values, light, ionic strength, and
magnetic fields. For example, ultraviolet light can stimulate the
curing reaction of GelMA and form a three-dimensional
structure suitable for cell growth and differentiation with good
strength that provides a suitable extracellular microenvironment
for stem cells used in rotator cuff repair (Cao et al., 2020). The
classification types are shown in Table 1.

2.2 Characterization of Hydrogels Applied in
Rotator Cuff Repair
The main characterizations of hydrogels include swelling, self-
healing, degradation and biocompatibility abilities. The
physicochemical properties of hydrogels must be considered
for appropriate application in rotator cuff repair. Stem cell
differentiation, the loading of active substances and cytokines,
and mimicking the multilayer structure of tendon-bone interface

TABLE 1 | Hydrogel classification.

Source Natural Synthetic Collagen, Gelatin, Chitosan,
Hyaluronic acid, N-isopropyl

Acrylamide (PNIPAM), Polyethylene
Glycol (PEG), PoloxamerEtc.

Preparation Homopolymer A single species of polymer or copolymer
Multipolymer Two independent crosslinked components

Response Chemical pH response, oxidant response, glucose response
Physical Temperature response, pressure response, light response
Biochemical Enzyme response, ligand response, antigen response

TABLE 2 | Overview of hydrogels applied for rotator cuff repair.

Hydrogel Name
(Abbreviation)

Hydrogel Features/Advantages for
Rotator Cuff Repair

Engineering

Limitations Refs

Gelatin hydrogel Biodegradable, thermo-responsive,
elastic, injectable

Poor mechanical properties faster degradation
rate

Tokunaga et al. (2015a); Tokunaga et al.
(2015b); Kabuto et al. (2015); Tokunaga
et al. (2017)

Collagen hydrogel Natural ECM protein, reasonable
biomechanical properties, injectable

Limited number of functional groups for
crosslinking

Hee et al. (2011); Jiang et al. (2020)

Fibrin hydrogel Easy to be functionalized impressive
stiffness, injectable

Immune response Janmey et al. (2009); Rothrauff et al. (2019);
Jiang et al. (2020)

Gelatin methacryloyl
hydrogel (GelMA)

Self-sterilization, low cost,
Photopolymerized, high compatibility,
injectable

poor tissue adhesivity Rothrauff et al. (2019); Cao et al. (2020);
Huang et al. (2021)

Hyaluronic acid
hydrogel (HA)

Biocompatible, biodegradable,
noncytotoxic, nonimmunogenic

Do not support cell attachment Lin et al. (2021)

Alginate hydrogel Quick cross-linking, mechanically strong Non-biodegradable and elicit immunological
responses

Thankam et al. (2021)

Chitosan hydrogel Therapeutic substance delivery capacity,
injectable

Low solubility and high viscosity Funakoshi et al. (2005)

Chitosan-4-thiobutylamidine
hydrogel (CS-TBA)

Biocompatible, highly absorbent,
injectable, structurally similar to
natural ECM

Low solubility, high viscosity, difficult for
preparation

Teng et al. (2021)

Human tendon-derived
collagen hydrogel (tHG)

Thermo-responsive, injectable, type I
collagen-rich

xenogeneic immune response Kaizawa et al. (2019a); Kaizawa et al.
(2019b)

Ion-based hydrogels Anti-inflammatory Rapid ion release rate Chen et al. (2021); Yang et al. (2021)

Polyethylene glycol diacrylate
(PEGDA)

Biocompatible, degradable, Easily
manipulated, non-immunogenic,
injectable

Limited microenvironment control, Poor
toughness

Chen et al. (2011)

Polyvinyl alcohol (PVA) Mechanically strong, MSC chondrogenic
differentiation

Biologically inert Thankam et al. (2021)

Poly-lactic-co-glycolic acid
(PLGA)

Biocompatibility, easy handling, Similar
mechanical properties with tendon

potential toxicity from dose dumping,
inconsistent drug release and drug-polymer
interactions

Moffat et al. (2009); Xie et al. (2010)
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are all critical issues. The characterization and properties of
hydrogels applied for rotator cuff repair are summarized in
Table 2.

2.2.1 Physicochemical Properties
Physicochemical properties such as swelling and stiffness are
basic characteristics of hydrogels. Swelling property comes from
hydrophilic groups such as hydroxyl and carboxyl groups in the
polymer networks (Cui et al., 2019). The hydrogel is hydrated in
water, allowing soluble molecules to enter the gel and remain
stable, eventually reaching a state of equilibrium. Hydrogen
bonds formed between hydrophilic groups and water
molecules in the polymer chains can stabilize the hydrogel
structure and effectively encapsulate active substances. In the
case of rotator cuff injury, the hydrogel can be used to load
cytokines, active substances, or even stem cells to promote rotator
cuff healing. Hydrogel stiffness is also crucial for cell function and
differentiation. Pelham and Wang first claimed that the stiffness
of biomimetic extracellular matrix (ECM) molecules could be a
key factor in regulating cell shape, motility, and spreading
(Pelham and Wang, 1998). Self-healing hydrogel could fuse
together after being broken into fragments due to new bonds
spontaneously formed. Since rotator cuff repair surgery is mostly
performed arthroscopically, the hydrogel must have good
rheological and mechanical properties. Some hydrogels can be
injected through a tube or syringe with no performance change
(Patil et al., 2018).

2.2.2 Biodegradation and Biocompatibility
The degradation process of hydrogel must meet biological
requirements. In vivo degradation should be considered during
hydrogel preparation. The ideal preparation method must meet
basic requirements for in vivo use, including no introduction of
small molecule cross-linking agents and mild cross-linking
without toxic by-products, (Huebsch et al., 2010; Toh et al.,
2012; Toda et al., 2016). In addition to the physicochemical
properties and functions of existing hydrogels, residual
functional groups (not involved in network crosslinking) can
be used to imbue different hydrogel functions. These groups can
be added directly to the hydrogel to avoid adding these substances
to the cell culture medium. Despite these advantages, covalent
bonding is complex and more likely to produce toxic small
molecules. This is due to purification techniques and
insufficient degradation of cross-linked groups, which must be
taken into account when designing hydrogel precursors. In
general, materials using physically linked thermo-gelling and
cryo-gelling showed low cytotoxicity compared to traditional
photopolymerized hydrogels (Park et al., 2016).

The biomechanical stability of hydrogels is critical for therapy
cargo reasonable release. Natural hydrogel’s biomechanical
stability is poorer than the synthetic biomaterial hydrogel for
which is always damaged by cellular enzyme. However, there are
also some studies to improve the biomechanical stability of
hydrogels by modifying the hydrogels from natural sources.
Shi et al. add bisphosphonates (BPs) into hyaluronan (HA)
and they find it`s enzymatic degradation rate is lower than the
control HA hydrogel in vitro. The mechanism may be that the

covalent incorporation between BPs and HA increases the
hydrogel`s stiffness compared to the unmodified HA hydrogel.
(Shi et al., 2018). Lee et al. find that the hyaluronidase inhibition
activity can be inhibited by TA (tannic acid) and the HA-TA
hydrogels’ enzymatic stability is significantly increased when
compared with the control group (Lee et al., 2018).

Natural polymers (chitosan, collagen, alginate) and synthetic
polymers (polylactic acid [PLA], polylactic hydroxyacetic acid
[PLGA]) have been widely used in drug delivery for their
biocompatibility, mechanical properties, and ease of handling.
Synthetic hydrogels are robust and provide stability, repeatability
and acceptability of cells for microenvironments. Material
modification can promote cell adhesion and differentiation
and maintain multiple potentials. For example, amino acids
and bromo groups can promote the transformation of
adipose-derived stem/stromal cells (ADSCs) into bone cells
and adipose cells, respectively (Benoit et al., 2008; Liu et al.,
2013). Phenyl and sulfhydryl groups have the potential to
promote ADSC differentiation into chondrocytes (Ingber,
2003). Excipients can be added by manipulating the functional
groups of hydrogel precursors to guide cell behavior and
differentiation.

2.2.3 Mechanical Properties
As the delivery system for the therapy cells, hydrogels mechanical
properties are the critical parameters which regulate
mechanotransduction signal-mediated cellular behaviors
(Sieminski et al., 2007; Huebsch and Mooney, 2009). For
example, the cell behaviors were widely regulated by the
substrate stiffness (Wen et al., 2014). Most type of cells benefit
from stiffer substrates for more organized cytoskeletons.
Mechanical stimulation can induce MSCs to differentiate into
tendon-bone cell lineage which is critical for rotator cuff repair
(Visser et al., 2015).

Hydrogel scaffold used for rotator cuff repair and
augmentation should meet the native biomechanical
properties. Kristen et al. report that their PLGA scaffold has
the similar mechanical properties with the tendon. The tensile
modulus of the unaligned and aligned scaffolds averaged 107 and
341 MPa, respectively, while the mean ultimate tensile strength
ranging from 3.7 to 12.0 MPa (Moffat et al., 2009).

For mild rotator cuff lesion, patients prefer conservative
treatment. Therefore, these injectable hydrogels as the carrier
of therapy cargos and cells have a good prospect for clinical
application. Natural injectable hydrogels including collagen,
fibrin, gelatin, chitosan. They usually have good
biocompatibility while limited in the mechanical prosperity
and immune response (Table 2). Synthetic biomaterial
hydrogels such as PEGDA have better tunability, almost no
immune response and stronger mechanical properties.

3 THE FUNCTIONSOFHYDROGEL USED IN
ROTATOR CUFF REPAIR

Hydrogels can serve as delivery systems to carry multiple
therapeutic components including Anti-inflammatory cargos,
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FIGURE 2 | Hydrogels load therapeutic cargos such as Anti-inflammatory cargos, cytokines, stem cells and mental ions to facilitate rotator cuff healing.

FIGURE 3 | (A) Synthesis of Cur&Mg-QCS/PF hydrogels. (B) In vivo application and evaluation of Cur&Mg-QCS/PF hydrogels. (Reprinted from (Lin et al., 2021)
with permission from Theranostics).
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cytokines, stem cells andmental ions. These cargos benefit rotator
cuff healing by different pattern such as anti-inflammation, cell
proliferation, and chondrogenesis. (Figure 2).

3.1 Anti-Inflammatory Effects via its
Therapeutic Cargo
Acute inflammation is the natural response in the early state of
rotator cuff injury, while chronic inflammation is a major cause of
rotator cuff quality deterioration, non-healing, or re-tearing after
repair. Inhibiting chronic inflammation is an effective means to
improve rotator cuff quality, promote healing, and prevent retear
after surgical repair (Childress et al., 2013; Kuo et al., 1932). The
hydrogel itself, such as HA or methacrylated collagen hydrogel or
its therapeutic cargo, such as farnesol and curcumin, can be used
to inhibit chronic inflammation after rotator cuff repair.

Matrix metalloproteinases (MMPs) are calcium and zinc
dependent proteinases that break down ECM proteins.
Elevated levels of metalloproteinases have been correlated with
several inflammatory states including delayed healing wounds,
malignant tumors and rotator cuff tears. In patients with massive
rotator cuff tears, high levels of MMPs are found in the synovial
fluid samples from glenohumeral joints (Jacob et al., 2012; Shih
et al., 2018). With the goal of achieving inherent and long-term
MMP regulation, Liang et al. developed an methacrylated
collagen-HA hydrogel with controlled enzymatic degradability
for MMP regulation. This novel strategy provides new insight
into the hydrogel design for rotator cuff repair (Liang et al., 2018).

Farnesol is a sesquiterpene compound from fruits that exerts
anti-inflammatory and antioxidative effects and promotes the
synthesis of collagen. Lin et al. designed farnesol containing
hydrogel membranes based on gellan gum and HA. The
membranes could swell rapidly and adhere to the tear site,
acting as a barrier and farnesol source during the repair
period. Results indicated that farnesol enhanced collagen
production and the hydrogel membranes was promising in the
repair of rotator cuff injuries (Lin et al., 2021).

Curcumin is a natural compound with favorable anti-
inflammatory properties. Chen et al. developed a novel
hydrogel termed Cur&Mg-QCS/that could release curcumin in
a controlled and highly efficient manner (Chen et al., 2021). The
synthesis pathways is demonstrated in Figure 3A. Curcumin
released at the repair site provided appropriate extracellular
environment for stem cells by exerting antioxidative and anti-
inflammatory effects to regulate levels of reactive oxygen species,
IL-1β, TNF-α, and MMPs (Figure 3B).

3.2 Cytokine Delivery System
Cytokines are small peptides or glycoproteins produced by a
variety of tissue cells. Cytokines include vascular endothelial
growth factor (VEGF), transforming growth factor (TGF)-β,
platelet-derived growth factor (PDGF), epidermal growth
factor (EGF), and insulin-like growth factor (IGF). Cytokines
can mediate cellular interactions and promote cell growth,
collagen deposition, and angiogenesis to facilitate rotator cuff
injury repair (Wu et al., 2017). Effectively transporting cytokines
to the injury rotator cuff has become a research focus. The ideal

delivery system should be easy to use, non-toxic, and
biocompatible.

Arimura et al. confirmed that loading TGF-β1 with gelatin
hydrogel inhibited MMP-9 and MMP-13 expression, thus
increasing collagen accumulation and enhancing the formation
of tough fibrous tissue at the healing site (Arimura et al., 2017).
Fibroblast growth factor 2 (FGF-2) can improve rotator cuff
healing after surgical repair. Tokunaga et al. found that the
application of an FGF-2 impregnated gelatin hydrogel sheet
(GHS) into the bone groove of the greater tubercles is
conducive to the healing of rotator cuff in a rabbit model
(Tokunaga et al., 2015b; Tokunaga et al., 2017). Previously,
our group fabricated a dual-factor releasing sulfhydrylated
chitosan hydrogel to deliver FGF-2 and Kartogenin (KGN) for
the fast healing of the tendon-bone interface. KGN is a kind of
small molecules which is believed to promote the chondrogenic
differentiation of bone marrow-derived mesenchymal stem cells
(BMSCs) (Johnson et al., 2012). KGN upgrades the expression of
TGFβ1 while TGFβ1 stimulated cartilage nodule formation.
Besides, KGN significantly increased the levels of phosphor-
Smads that mediate TGFβ and BMP signaling (Decker et al.,
2014). We found the FGF-2/KGN-loaded hydrogel could be a
promising biomaterial to promote healing rotator cuff (Teng
et al., 2021).

Bone morphogenetic protein (BMP)-7 promotes osteogenesis
of chondrocytes and tendinocytes, as well as matrix formation.
However, retaining local concentrations of BMP-7 is difficult due
to its short half-life. Kabuto et al. studied continuous BMP-7
release using a GHS to stimulate the repair of rotator cuff at the
tendon-bone insertion site (Kabuto et al., 2015). Tokunaga and
colleagues used acidic GHS as a long-term delivery system for
PDGF-BB. The PDGF-BB containing hydrogel attached
supraspinatus tendon and induced superior collagen fiber
orientation than the PDGF-BB free hydrogel (Tokunaga et al.,
2015a).

Platelet-rich plasma (PRP) contains high concentrations of
platelets obtained from the whole blood of animals or human
after centrifugation. PRP also contains a variety of cytokines.
Some groups have claimed that PRP has limited repair effect for
rotator cuff injury, possibly because its release process is too rapid
(Barber, 2018; Cavendish et al., 2020). Kim and colleagues
designed a hydrogel loaded with PRP and self-assembled
peptide (SAP) for RCT healing in a rat model.

SAP is an injectable hydrogel that can be injected into the body
without surgery. The low toxicity and biodegradability make SAP
become popular. Compared with traditional PRP injection, SAP
has a nanofiber structure that can delay the release of factors
contained in physiological environment which promote collagen
production. They found that PRP can promote RCT healing by
improving the collagen arrangement and inhibiting apoptosis and
inflammatory changes (Kim et al., 2017).

3.3 Cellular Delivery System
As the seed of the tissue regeneration, stem cells have been
clinically applied for over 20 years. The most common used
stem cells for rotator cuff repair and regeneration are BMSCs,
ADSCs, and tendon stem cells (Liu et al., 2013).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org June 2022 | Volume 10 | Article 8516606

Xu et al. Hydrogel for Rotator Cuff Repair

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Hydrogels commonly used to deliver stem cells include
tendon-derived collagen hydrogel (tHG), GelMa, and
collagen. The mechanisms by which hydrogel with stem
cells promotes rotator cuff healing include: 1) providing
ECM materials to the damaged tendon, 2) hydrogel
monomer functional groups can be modified to promote
stem cell differentiation, 3) and hydrogel delivery systems
can also deliver cytokines to promote stem cell
differentiation (Toh et al., 2012; Park et al., 2016).

Cao et al. added osteoblasts, fibroblasts, and BMSCs
separately in GelMA and sequentially loaded them on a 3D-
printed multilayered scaffold to mimic the structure of
tendon-bone interface. Chondrogenic differentiation was
observed after in vivo implantation, suggesting that cells in
a GelMA-multiphasic scaffold may be a new strategy to
promote the healing of tendon-bone interface.

Kaizawa et al. invented a type I collagen-rich hydrogel based
on human tendons, combining with ADSCs to improved
mechanical strength of the tendon-bone interface (Kaizawa
et al., 2019a; Kaizawa et al., 2019b). However, another group
using the same model concluded that no biomechanical
advantage was gained (Kaizawa et al., 2019a). Rothrauff
et al. studied the effect of TGF-β3 and ADSCs delivered in
fibrin and GelMA hydrogel on the healing after repairing acute
or chronic massive RCTs in rats. They found the bone mineral
density was improved with the application of fibrin, GelMA
and ADSCs (Rothrauff et al., 2019).

Chen and colleagues developed an injectable hydrogel
prepared by periosteal progenitor cells (PPCs) and
polyethylene glycol diacrylate (PEGDA) with BMP-2 (Chen
et al., 2011). They showed that BMP-2-loaded hydrogels
could promote the differentiation of PPCs into osteoblasts

and thus improve the success rate of tendon and bone healing.
As a widely used biomaterial, PEGDA can provide a suitable
microenvironment for mesenchymal stem cells (MSCs). In
addition, bioactive cargos can be physically encapsulated in
PEGDA hydrogels with MSCs as well.

3.4 Metal Ion Delivery System
Increasing attention has been paid to the role of metal ions in
tendon-bone interface repair, including their anti-
inflammatory, antibacterial, and cell differentiation-
promoting abilities (Wang et al., 2021). Transporting metal
ions and then slowly releasing them at the site of rotator cuff
repair remain challenges.

Yang et al. constructed a gradient bimetal ion-based
hydrogel for the first time by crosslinking sulfhydryl
groups with zinc and copper ions for microstructural
tendon-bone insertion reconstruction (Figure 4) (Yang
et al., 2021). In this bimetallic hydrogel system, zinc and
copper ions act as crosslinkers for the hydrogel and provide
antibacterial effects and induce regeneration in the same
time. The zinc and copper ions gradient layer were
demonstrated to induce the arrangement of collagen and
fibrocartilage at the tendon-bone interface. The gradient
bimetallic ion-based hydrogels provide new insights into
the regeneration of rotator cuff.

Magnesium ions promote cell adhesion, proliferation and
fibrocartilage (Zhang et al., 2019; da Silva Lima et al., 2018;
Hagandora et al., 2012). Besides, it can also regulate immune
response which is essential for tendon-bone healing (Cheng
et al., 2016). However, how to achieve the sustained release of
magnesium ions is the key challenge. Chen et, al. reported a
quaternized chitosan/Pluronic (QCS/PF) hydrogel delivering

FIGURE 4 | (A) The fabrication of gradient bimetallic hydrogels. (B) The application of the gradient bimetallic hydrogel for RCT. (C) The mechanism of gradient
bimetallic hydrogel for the regeneration of tendon-bone interface. (Reprinted from (Yang et al., 2021) with permission from Science Advances).
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magnesium ions through metal coordination for RCT
(Figure 5) (Chen et al., 2020). The self-healing property of
this hydrogel ensured the safety of application in the RCT

repair under external mechanical force, and the adhesive
property increased the stability of material at the tendon-
bone interface.

FIGURE 5 | (A) Scheme of the fabrication of QCS/PF hydrogels and the interaction between Mg2+ and QCS; (B) Application of QCS/PF hydrogels delivering Mg2+

in situ to promote tendon-bone interface regeneration in the rabbit RCT model; (Reprinted from (Chen et al., 2020)with permission from Science Advances).

FIGURE 6 | Illustration of 3D printing multiphasic scaffold for tendon-bone interface engineering. (Reprinted from (Cao et al., 2020) with permission from Elsevier).
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4 MULTILAYER COMPOSITE HYDROGEL
SCAFFOLD FOR ROTATOR CUFF REPAIR

Jiang et al. developed a new method for RCT repair through
combining a cell-laden collagen-fibrin hydrogel with a 3D printed
PLGA scaffold (Jiang et al., 2020). This approach effectively
supported human ADSCs’ proliferation and tenogenic
differentiation. The innovation of this work lies in the good
biocompatibility of PLGA scaffolds fabricated by 3D printing
technology for rotator cuff tendon defect repair.

Cao et al. used 3D printing technology to fabricate a
multiphasic porous scaffold based on poly (ε-caprolactone)
(PCL), PCL/tricalcium phosphate, and PCL/tricalcium
phosphate. The three phases were designed to mimic the
microstructure of tendon-bone interface. Osteoblasts,
fibroblasts, and BMSCs and were separately encapsulated in
GelMA hydrogel and sequentially loaded on the relevant
scaffold phases (Figure 6). They found that 3D printing is an
efficient method to develop multiphasic scaffold for tendon-bone
interface engineering (Cao et al., 2020).

5 CONCLUSION AND OUTLOOK

RCTs are a common injury, and this repair is the most common
shoulder operation. Tendon-bone healing following repair is
influenced by the surgical technique, repair method, rotator
cuff quality, and the biological healing process. This review
covered hydrogels loaded with therapeutic cargoes such as
cytokines, stem cells and bioactive materials that encourage
rotator cuff healing. We recognize that this is a complex
process dependent on numerous cellular signaling pathways
involving different cytokines such as FGF-2, KGN, BMP-2,
BMP-7, and PDGF-BB. Two recent studies have applied
exosomes to rotator cuff injury; they can release a variety of
cytokines that prevent inflammation and promote cell
differentiation and fibrosis through a series of signaling
pathways (Connor et al., 2019; Fu et al., 2021). Hydrogels
loaded with exosomes for wound healing, bone regeneration,
and cartilage repair have been studied (Hu et al., 2020; Wang
et al., 2020; Zhao et al., 2020), but it is not clear whether they can

promote rotator cuff healing, which may be worthy of
investigation.

Besides tendon-bone healing, irreparable RCT management is
another hot research topic. Surgeons encounter many challenges
such as fatty infiltration, muscle atrophy, and tendon retraction in
patients with irreparable RCT (Proctor, 2014; Lenart et al., 2015).
Despite a substantial amount of research into rotator cuff patches,
they have not applied been widely applied in the clinic. Patching
the tendon-bone interface to promote rotator cuff-patch healing
is difficult due to the complex gradual interface from bone tissue
to tendon fiber tissue. Gradient layers of a composite hydrogel
scaffold may be useful in this setting. These patches can
experience stress in the early stage, but as cells migrate and
the tendon fiber tissue grows, there is bionic healing between the
bone and tendon.

The commercial application of hydrogel in wound dressing,
drug delivery, and tissue engineering is quite successful. However,
its application in shoulder is relatively rare. The possible factors
are considered as follows: on the one hand, shoulder
administration needs to be administered by injection or
arthroscopy, which has high requirements on the physical and
chemical properties of hydrogel or surgical techniques. Therefore,
injectable hydrogels have great development potential. On the
other hand, rotator cuff is consisted of tenacious tendons and
construct the basic shoulder function. The hydrogel patch for
rotator cuff tear need to achieve the similar toughness and
strength. At present, the commercial application of some
hydrogel materials to promote bone and cartilage repair
provides ideas for the potential application in rotator cuff injury.
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