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Intravesical chemotherapy after transurethral resection is a treatment option in patients
with non-muscle invasive bladder cancer. The efficacy of intravesical chemotherapy is
determined by the cellular uptake of intravesical drugs. Therefore, drug delivery
technologies in the urinary bladder are promising tools for enhancing the efficacy of
intravesical chemotherapy. Ultrasound-triggered microbubble cavitation may enhance the
permeability of the urothelium, and thusmay have potential as a drug delivery technology in
the urinary bladder. Meanwhile, the enhanced permeability may increase systemic
absorption of intravesical drugs, which may increase the adverse effects of the drug.
The aim of this preliminary safety study was to assess the systemic absorption of an
intravesical drug that was delivered by ultrasound-triggered microbubble cavitation in the
urinary bladder of normal dogs. Pirarubicin, a derivative of doxorubicin, and an ultrasound
contrast agent (Sonazoid) microbubbles were administered in the urinary bladder.
Ultrasound (transmitting frequency 5MHz; pulse duration 0.44 μsec; pulse repetition
frequency 7.7 kHz; peak negative pressure −1.2 MPa) was exposed to the bladder
using a diagnostic ultrasound probe (PLT-704SBT). The combination of ultrasound
and microbubbles did not increase the plasma concentration of intravesical pirarubicin.
In addition, hematoxylin and eosin staining showed that the combination of ultrasound and
microbubble did not cause observable damages to the urothelium. Tissue pirarubicin
concentration in the sonicated region was higher than that of the non-sonicated region in
two of three dogs. The results of this pilot study demonstrate the safety of the combination
of intravesical pirarubicin and ultrasound-triggered microbubble cavitation, that is,
ultrasound-assisted intravesical chemotherapy.
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INTRODUCTION

Bladder cancer is the second most common urological cancer,
and more than 70% of patients have non-muscle invasive bladder
cancer (NMIBC) at the initial diagnosis (Antoni et al., 2017). The
standard therapy for NMIBC is transurethral resection of bladder
tumor (TURBT) followed by intravesical therapy (Eifler et al.,
2015). For patients with low-risk NMIBC, perioperative single
instillation of the chemotherapeutic agent may be considered.
Intravesical bacillus Calmette-Guérin (BCG) immunotherapy or
intravesical chemotherapy is recommended in patients with
intermediate- and high-risk NMIBC (Azevedo et al., 2015).
Although BCG is the most effective agent to reduce the risk of
recurrence and progression, 50–70% of the tumor recurs within
5 years, and up to 30% of those recurrences progress to muscle-
invasive bladder cancer (Dalbagni, 2007; Azevedo et al., 2015).
Moreover, the shortage of BCG has continued in the last decade
and future shortages are to be expected. Some modifications to
the treatment protocol, such as reduction of the instillation dose
and number, are alternatives to the current BCG application for
NMIBC. However, those modifications may be associated with an
increase in the recurrence rate (Fankhauser, et al., 2020).
Intravesical chemotherapy after TURBT also decreases the risk
of recurrence and progression of NMIBC. Mitomycin C (MMC)
is the most common intravesical chemotherapeutic agent.
Previous meta-analysis showed that there were no significant
differences between BCG andMMC therapy in the progression of
the disease, overall survival, and cancer-specific survival
(Malmoström et al., 2009). Other chemotherapeutic agents,
such as gemcitabine and epirubicin, were compared with BCG
therapy in a few clinical trials, and the results suggest inferior
efficacy of those agents to BCG (Porena et al., 2010; Sylvester
et al., 2010). In order to enhance the efficacy of intravesical
chemotherapy, extensive studies have investigated interventional
technologies for increasing the dwell time of drugs and cellular
uptake of drugs (Douglass and Schoenberg, 2016; Tran et al.,
2021). Several clinical trials have shown promising results of
electromotive drug administration, drug-releasing implantation,
hyperthermia, and photodynamic therapy as drug delivery
technologies (Clinicaltrials.gov NCT02307487, NCT03558503,
NCT 03945162).

Ultrasound (US)-triggered microbubble cavitation, also
known as sonoporation, is a minimally invasive drug delivery
technology. Oscillation and collapse of gas-filled microbubbles
upon ultrasound exposure transiently increase the cell membrane
permeability, which results in the uptake of extracellular
molecules by cells (Escoffre and Bouakaz, 2019; Kooiman
et al., 2020). Because NMIBC is confined to the surface of the
bladder lumen (Tran et al., 2021), US-triggered microbubble
cavitation may have the potential for enhancing the efficacy of
intravesical chemotherapy in NMIBC patients. Intravesical
instillation may enable microbubbles to rise up and attach to
the tumor cells that line the surface of NMIBC. Passive regulation
of microbubble attachment to cells was achieved by rising bubbles
(Sasaki et al., 2012). Stimulation of microbubbles adjacent to
tumor cells directly enhances the cellular uptake of
chemotherapeutic agents (Lammertink et al., 2016; Sasaki

et al., 2017). In addition, US-triggered microbubble cavitation
increases tissue penetration of drugs (Nhan et al., 2013) and
enhances diffusion of drugs into the tumor cells (Bhutto et al.,
2018; Derieppe et al., 2019). Meanwhile, an increase in the
permeability of the bladder by US-triggered microbubble
cavitation may change the plasma pharmacokinetics of
intravesical chemotherapeutic agents. Damages to epithelial
cells decreased the transepithelial resistance and significantly
increased water and urea permeabilities of the urinary bladder
(Lavelle et al., 2002). An advantage of intravesical therapy for
NMIBC is that cytotoxic agents are applied to only the bladder
lumen and not to normal tissues (Tran et al., 2021). Therefore, it
is critical for the development of US-assisted intravesical
chemotherapy with minimum invasiveness to restrict the
effects of intravesical drugs on the bladder wall.

Herein, we investigated the plasma concentration of an
intravesical chemotherapeutic agent in the combination of US-
triggered microbubble cavitation. Pirarubicin (4′-O-
tetrahydrpyranyl-doxorubicin), an anthracycline derivative,
was administered into the urinary bladder of normal dogs.
Bladder cancer is the second most common urological cancer
in dogs, and bladder cancer in dogs may be a nonexperimental
animal model of human bladder cancer (de Brot et al., 2018).
Ultrasound-triggered microbubble cavitation was conducted by
the intravesical administration of ultrasound contrast agent
(Sonazoid) microbubbles and US exposure using a clinical US
system. The results of this preliminary safety study suggest that
US-triggered microbubble cavitation would be a minimally
invasive technology for drug delivery in the urinary bladder.

MATERIALS AND METHODS

Animal
All animal experiments were approved by the Experimental
Animals Committee of Hokkaido University (No. 20-0081).
Six healthy intact female beagle dogs were enrolled in this
safety study. The dogs were owned by the laboratory animal
facility of the Graduate School of Veterinary Medicine, Hokkaido
University, which is accredited by the Association for Assessment
and Accreditation of Laboratory Animal Care International. The
median age of the dogs was 3.5 years (range 3–7 years) and body
weight ranged between 9.7 and 11.2 kg (median 10.25 kg). The
dogs were defined healthy based on history, physical
examination, complete blood count, blood biochemistry,
urinary analysis, and abdominal sonography. None of the dogs
had received any medication and had a history of disease or
treatment within the past 6 months.

Intravesical Chemotherapy
The dogs were sedated with an intramuscular injection of
20 µg/kg medetomidine (Domitor, ZENOAQ, Fukushima,
Japan). An indwelling catheter (Figure 1A; two-way Foley
catheter 8Fr, Create Medic, Kawasaki, Japan) was placed in
the sedated dogs, and urine was removed from the bladder
(Figure 1B). Ten milligrams of pirarubicin (Nihon-Kayaku,
Tokyo, Japan) in 20 ml saline was injected into the bladder via
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the catheter and allowed to dwell for 30 min (Figure 1C).
Thereafter, the pirarubicin was removed from the bladder, and
the bladder was washed three times using an irrigation of 0.9%
sodium chloride (UromaticS, Baxter Limited, Tokyo, Japan).

Plasma pirarubicin concentration during and after a single
intravesical instillation was investigated in three dogs. Whole
blood was collected before the intravesical instillation and 15,
30 min, 1, 2, 4, 8, and 24 h after the instillation (Figure 1D).
Plasma was obtained by centrifuging anticoagulated (EDTA)
whole blood. The aliquots of plasma were stored at −80°C
until quantification of pirarubicin.

US-Assisted Intravesical Chemotherapy
The indwelling catheter was placed in the sedated dogs, and urine
was removed from the bladder. Pirarubicin (10 mg) in 20 ml
saline and 0.1 ml Sonazoid microbubbles (Daiichi-Sankyo,
Tokyo, Japan) were injected into the bladder via the catheter.
The contrast agent comprised a phospholipid shell encapsulating
perfluorobutane. Sonazoid was reconstituted in 2 ml of sterilized
distilled water according to the manufacturer’s instructions,
which contains 1.2 × 109 microbubbles/ml with an average
diameter of 3.2 µm (Sontum et al., 1999). Right after the
administration, the dogs were positioned in dorsal recumbency
and ultrasound was performed on the bladder for 1 min (Figures
2A,B). The mixture of pirarubicin and Sonazoid microbubbles
was removed from the bladder 30 min after the US exposure, and
the bladder was washed three times using the 0.9% sodium
chloride irrigation.

Ultrasound was performed using a linear array probe (PLT-
704SBT, Canon Medical Systems, Tochigi, Japan) and a
diagnostic US machine (APLIO XG SSA-790, Canon Medical
Systems). The probe was operated in a pulse subtraction imaging
mode and was manually applied on the abdominal skin of the
dogs (Figures 2A,B). The field of view depth was set to 2 cm, and
a single focus was placed at a depth of 1 cm from the probe surface

(Figures 2C–E). The MI value of 1.33 was indicated on the screen
of the diagnostic machine, which is approximately eight-fold
higher than that for clinical contrast–enhanced US imaging.
Acoustic parameters were as follows: transmitting frequency of
5 MHz, peak-negative pressure of −1.2 MPa, pulse duration of
0.44 μsec, and pulse repetition frequency of 7.7 kHz. The
parameters were measured using a membrane hydrophone
(MHA500B, NTR Systems, Seattle, WA, United States) in a
water tank (Sasaki et al., 2012). The peak negative pressure of
the current setup was the strongest in the pulse subtraction
imaging mode. During the US exposure, B-mode images were
observed on the screen of the diagnostic machine.

Plasma pirarubicin concentration in US-assisted intravesical
chemotherapy was evaluated in three dogs. Whole blood was
collected before the intravesical instillation and 15, 30 min, 1, 2, 4,
8, and 24 h after the instillation (Figure 2F). Plasma was obtained
by centrifuging the anticoagulated whole blood. The aliquots of
plasma were stored at −80°C until pirarubicin quantification. In
order to measure the pirarubicin concentration in the bladder
tissue, another treatment of US-assisted intravesical
chemotherapy was conducted 4 weeks after the first treatment
(Figure 2G). The dogs were euthanized soon after the treatment,
and the bladder was resected. The exposure region of the bladder
wall was dissected into two pieces. One piece was stored in −80°C
for the quantification of pirarubicin, and the other was fixed in
10% neutral-buffered formalin for the histopathological
evaluation. In addition, the apex of the bladder was dissected
into two pieces and was analyzed as the nonsonicated region.

Using the other three dogs, US-assisted intravesical
chemotherapy was repeated weekly for 9 weeks (Figure 3).
The procedures of each treatment were the same with the
single US-assisted intravesical chemotherapy. Whole blood was
collected before and 30 min after the instillation in each
treatment. The dogs were euthanized after the 9th treatment,
and the bladder was resected for histological evaluation.

FIGURE 1 | Intravesical chemotherapy. (A) Indwelling catheter. (B) Catheter was placed in a sedated female beagle dog. (C) Representative B-mode image
acquired in the sagittal plane. * indicates the catheter balloon. Arrow indicates the apex of the bladder (non-sonicated region), and arrowhead indicates the sonicated
region in US-assisted intravesical chemotherapy. (D) Timeline of intravesical chemotherapy. Pirarubicin was retained in the urinary bladder for 30 min. Blood was
collected before the administration of pirarubicin, and 15, 30 min, 1, 2, 4, 8, and 24 h after the instillation.
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FIGURE 2 | Ultrasound-assisted intravesical chemotherapy. (A) Experimental setup. The probe was manually positioned in the transverse plane on a sedated dog.
(B) Representative image of the bladder in the sagittal plane after microbubble instillation. For the treatment, US was performed on the bladder at the cranial of the
catheter balloon using the linear array transducer positioned in the transverse plane. White line indicates a scan plane of the ultrasound during the treatment. (C)
Representative image before starting the sonication; (D) soon after the sonication; (E) 1 min after the sonication. (F) Timeline of US-assisted intravesical
chemotherapy in the plasma pharmacokinetic experiment. Pirarubicin and Sonazoid microbubbles were administered into the bladder, and thereafter ultrasound was
performed for 1 min. Pirarubicin was retained in the urinary bladder for 30 min. Blood was collected before the treatment and 15, 30 min, 1, 2, 4, 8, and 24 h after the
treatment. (G) Timeline of ultrasound-assisted intravesical chemotherapy for histology. Pirarubicin and Sonazoid microbubbles were administered into the bladder, and
thereafter ultrasound was performed for 1 min. Pirarubicin was retained in the urinary bladder for 30 min. The dogs were euthanized at the time of 30 min.
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Pirarubicin Quantification Using LC/MS/MS
Pirarubicin (HPLC grade) was purchased from Sigma-Aldrich
(St. Louis, MO, United States). An analytical grade of all
reagents and double-distilled water (DDW) was obtained
from Kanto-Kagaku (Tokyo, Japan). The quantification of
pirarubicin was conducted using an Agilent 6495B Triple
Quadrupole LC/MS (Agilent Technologies, Santa Clara, CA,
United States). For the measurement of pirarubicin in plasma,
10 µl of plasma was added to 40 µl of 1% formic acid in
acetonitrile and mixed vigorously for 5 min. The mixture was
centrifuged by a centrifuge (Sorvall ST 8FR, Thermo Fischer
Scientific, Waltham, MA, United States) at 10,000 × g for 10 min
at room temperature. The supernatant was ultrafiltered using a
spin column (MonoSpin® Phospholipid, GL Science, Tokyo,
Japan) and the centrifuge at 3,000 × g for 3 min. Thirty
microliters of the filtered sample was mixed with 30 µl of
0.1% formic acid in DDW. The samples were injected onto
the LC/MS/MS. Separation was performed on an Inert Sustain
C18 column (2 μm, 2.0 × 30 mm; GL Science Inc, Tokyo, Japan).
The chromatographic gradient program was started at 60%
mobile phase A (0.1% formic acid in DDW) with 40%
mobile phase B (0.1% formic acid in methanol) at a flow rate
of 0.4 ml/min for 3 min. That was followed by a gradient to
100% B for 30 s. The detection was performed with a positive

electrospray ionization mode. For the measurement of
pirarubicin in tissue, the bladder tissue was homogenized
with 1% formic acid in methanol using 5 mg zirconia beads
and a homogenizer at 2,500 rpm 3 min × 4 times. The tissue
homogenate was centrifuged at 10,000 × g for 10 min. After the
supernatant was transferred into another tube, the sediment was
re-extracted using the same procedure. The supernatant of the
second extraction was mixed with the supernatant of the first
extraction. Sixty microliters of the supernatant were mixed with
60 µl of 0.1% formic acid in DDW and applied to the LC/MS/MS
quantification.

The standard curves for pirarubicin were obtained using
0.5–100 ng/ml standard solutions. The instrument detection
limit was 1 pg, and the method detection limit was 0.5 ng/ml.
In addition, the recovery, accuracy, and precision were 87, 4.8,
and 5.3%, respectively.

Histopathology of the Bladder
Histopathology was performed as described previously
(Maharani et al., 2018). In brief, the tissues were fixed in 10%
neutral-buffered formalin and embedded in paraffin. The
paraffin-embedded tissue samples were sectioned to 3-μm
films. The sections were stained with hematoxylin and eosin
solution (H &E).

FIGURE 3 | Representative H&E staining images of the bladder after the single treatment. (A) Sonicated region at low power field (lpf). bar, 200 µm. (B)
Nonsonicated region at lpf. bar, 100 µm. (C) Sonicated region at high power field (hpf). bar, 50 μm; (D) Nonsonicated region at hpf. bar, 50 µm.
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Statistics
Statistical analysis was performed with commercial software
(JMP Pro version 14.0, SAS Institute Inc., Cary, NC,
United States). The difference in tissue pirarubicin
concentration between the sonicated region and nonsonicated
region of the same bladder was evaluated using the paired t-test. A
p-value below 0.05 was considered statistically significant.

RESULTS

Plasma concentration of intravesical pirarubicin was below the
lower detection limit in a single US-assisted intravesical
chemotherapy and intravesical instillation (Table 1). The peak
area of pirarubicin in all plasma samples was lower than that of
the lowest pirarubicin concentration in the calibration curve. The
tissue concentration of pirarubicin at the sonicated region was
higher than that in the non-sonicated region in two of the three
dogs, while the concentration did not increase in the other dog
(Table 2). The mean tissue concentration of pirarubicin was not
significantly different between the sonicated region and
nonsonicated region (p = 0.09). Figure 3 shows the H&E
staining of the bladder wall after the single treatment of US-
assisted intravesical chemotherapy. Neither detachment of
epithelial cells nor hemorrhage was observed in both the
sonicated and non-sonicated regions.

Pirarubicin was not detected in plasma during the weekly
repetition of US-assisted intravesical chemotherapy (Table 3).
Figure 4 shows the H&E staining of the bladder after the nine
treatments of weekly US-assisted intravesical chemotherapy. The
bladder epithelium was thick in both sonicated and non-
sonicated regions (Figures 4A,B). In addition, congestion in
the lamina propria and mild hemorrhages in the
suburothelium were observed in both regions (Figures 4C, D).
Indeed, this particular dog showed macrohematuria after the
sixth treatment. Macrohematuria in this dog disappeared after
additional bladder irrigation at the seventh treatment.

DISCUSSION

The rationale of intravesical therapy is that intravesical drugs
have cytotoxic effects on the remaining tumor cells in the bladder
lumen and not on normal tissues. Intravesical chemotherapeutic
agents, such as mitomycin C and gemcitabine, are absorbed into
the blood (Dalton et al., 1991; Campodonico et al., 2007).
Meanwhile, the systemic absorption of pirarubicin is not
detected in intravesical instillation after TURBT for patients
with NMIBC (Arakawa et al., 2011). The rapid uptake of
pirarubicin by tumor cells may contribute to the less systemic
absorption (Kunimoto et al., 1983). The increase in systemic
absorption of pirarubicin by US-triggered microbubble cavitation
was not prominent in this preliminary study. Previous studies
showed that the penetration distance of nanoscale agents by US-
triggered microbubble cavitation in in vivo models was up to
80 µm depending on the acoustic intensity and size of agents
(Theek et al., 2016; Yemane et al., 2019; Olsman et al., 2020).
Therefore, it may be possible that US-triggered microbubble
cavitation increases the extravasation of pirarubicin into the
bladder wall, and thereafter pirarubicin rapidly diffuses into
epithelial cells. However, tissue distribution of pirarubicin was

TABLE 1 | Plasma concentration of pirarubicin (ng/ml) in the single treatment.

Before 15 min 30 min 1 h 2 h 4 h 8 h 24 h

Intravesical instillation Dog 1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
Dog 2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
Dog 3 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

US-assisted intravesical chemotherapy Dog 1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
Dog 2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
Dog 3 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

TABLE 2 | Tissue concentration of pirarubicin after the single US-assisted
intravesical chemotherapy.

Dog 1 Dog 2 Dog 3

Sonicated region 1.65 µg/g-tissue 0.19 µg/g-tissue 2.43 µg/g-tissue
Nonsonicated region 0.21 µg/g-tissue 0.21 µg/g-tissue 1.04 µg/g-tissue

TABLE 3 | Plasma concentration of pirarubicin (ng/ml) in the weekly US-assisted intravesical chemotherapy.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th

Before Dog 4 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
Dog 5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
Dog 6 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

After 30 min Dog 4 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
Dog 5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
Dog 6 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
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not investigated in this study. Eight additional weekly instillations
of pirarubicin reduced the recurrence rate in NMIBC patients
with intermediate risk (Naya et al., 2018). Ultrasound-assisted
intravesical chemotherapy was repeated nine times weekly, and
pirarubicin was not detected in plasma at any time points. In
addition to the single treatment, weekly repetition of US-assisted
chemotherapy may not cause systemic side effects. Local side
effects of intravesical pirarubicin are frequent urination, pain on
urination, andmacrohematuria (Okamura et al., 2002; Naya et al.,
2018; Fujita et al., 2020). The incidence of local adverse effects in
patients with pirarubicin maintenance therapy (e.g., eight
additional weekly instillations) was higher than in patients
with single intravesical instillation of pirarubicin (Naya et al.,
2018). Although multiple intravesical chemotherapy without
sonication was not conducted in this study because of the
ethics in animal experiments, histopathology of the bladder
wall showed hemorrhage and congestion at the nonsonicated
region in the multiple treatments. Therefore, it is likely that
macrohematuria was an adverse effect of the repeated intravesical
administration of pirarubicin.

A few clinical studies showed the feasibility of ultrasound-
mediated drug delivery using clinical diagnostic scanners for
cancer treatment (Dimcevski et al., 2016; Wang et al., 2018;

Eisnebrey et al., 2021). However, limited information was
available for the increase in the tissue concentration of the
delivered chemotherapeutic agents. The tissue concentration of
pirarubicin in NMIBC patients after the single intravesical
instillation varies in a wide range (Arakawa et al., 2011).
Dilution by urine and change in urine pH are possible
mechanisms of the wide range of drug concentrations in the
bladder tumor tissue (Gontero et al., 2010). Further clinical
studies should be needed to quantify the amount of delivered
pirarubicin by US-assisted intravesical chemotherapy in NMIBC
patients and dogs with bladder cancer.

A few studies investigated the potential application of US-
triggered microbubble cavitation to intravesical treatment
(Horsley et al., 2019; Ruan et al., 2021). Ruan et al. evaluated
the efficiency of gemcitabine delivery by the combination of US
and drug-loading microbubbles in a mouse orthotopic bladder
cancer model of muscle-invasive bladder cancer (Ruan et al.,
2021). Horsley et al. proposed antibiotic delivery using US-
triggered microbubble cavitation for urinary tract infection
(Horsley et al., 2019). In addition to those applications, our
preliminary results suggest that US-assisted intravesical
chemotherapy for NMIBC may have a promising application
of US-mediated intravesical therapy. Treatment protocol,

FIGURE 4 | Representative H&E staining images of the bladder after the 9th treatment. (A) Sonicated region at low power field (lpf). White arrow indicates
congestion. bar, 100 µm. (B) Nonsonicated region at lpf. White arrow indicates congestion in the lamina propria, and arrow heads indicate hemorrhages in the
urothelium. bar, 100 µm. (C) Sonicated region at high power field (hpf). White arrow indicates congestion in the lamina propria. bar, 50 µm. (D) Nonsonicated region at
hpf. White arrow indicates congestion in the lamina propria. bar, 50 µm.
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including intravesical doses and US parameters, should be
optimized for facilitating the translation of US-triggered
microbubble cavitation from the animal models to the
clinics. The pirarubicin dose and dwell time in the current
protocol would be relevant to clinical treatment. A human
equivalent dose of 10 mg pirarubicin in dogs is 0.54 mg/kg
according to a dose translation formula (Reagan-Shaw et al.,
2007). Pirarubicin is administered at the dose of 30 mg (1 mg/
ml) and retained for 1 h in patients with NMIBC. We used a
clinical US system (Cannon Aplio-XG) and clinical
microbubbles (Sonazoid). Ultrasound parameters in the
current setup were previously investigated for drug delivery
in in vitro and in vivo studies (Sasaki et al., 2012; Sasaki et al.,
2014). Moreover, de Maar et al. demonstrated that delivery
efficiency using a clinical US system would be comparable to
that of a custom-built US system with optimized parameters (de
Maar et al., 2021). Therefore, the treatment protocol of this
preliminary study may be applicable to an efficacy study. Future
clinical studies should assess the efficacy of US-assisted
intravesical chemotherapy in dogs with bladder cancer and in
patients with NMIBC.
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