
Gerta Vrbová, a guide and a friend  
Eur J Transl Myol 31 (1): 9670, 2021 doi: 10.4081/ejtm.2021.9670 

- 1 - 
 

 

Gerta Vrbová, a guide and a friend for a generation of neuro-
myologists – Her scientific legacies and relations with colleagues  

Ugo Carraro  

Department of Biomedical Sciences, University of Padova, Italy; CIR-Myo - Interdepartmental 
Research Center of Myology, University of Padova, Italy; A&C M-C Foundation for 
Translational Myology, Padova, Italy. 

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License (CC BY-NC 4.0) which permits 
any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. 

Abstract 

Gerta Sidonová - Vrbová, (Trnava, Slovakia, November 28, 1926 - London, UK, October 2, 
2020) has been a key neuroscientist, who for almost half a century has contributed important 
findings and hypotheses on the relationships between motoneurons and skeletal muscle fibers, 
in particular on the differentiation and extent of plasticity of the peculiar characteristics of the 
different types of fibers present in mammalian muscles. This issue, Ejtm 31 (1), 2021, opens 
with the personal obituary authored by Dirk Pette, who remember his lifelong collaboration with 
Gerta, describing the many molecular and metabolic events that occur by changing the pattern 
of activation of adult muscle fibers through neuromuscular low frequency electrical stimulation. 
To honor the many scientific legacies of Gerta Vrbová and her impact on a generation of 
researchers studying myology and managements of neuromuscular disorders I add here 
additional examples of Gerta’s scientific heritage and of her relations with colleagues. 
Key Words: Gerta Vrbová; muscle development differentiation and plasticity; discharge 
patterns of motoneurons; electrical stimulation of skeletal muscles. 
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 Gerta Sidonová -Vrbová, Trnava (Slovakia) November 
28, 1926 – London (UK) October 02, 2020. 
Gerta Vrbová was a key neuroscientists who for more 
than half-century contributed results and hypotheses on 
the mutual relations between motoneurons and skeletal 
muscle fibers, i.e., about differentiation and maintenance 
of the characteristics of the motoneurons and of the 
muscle fiber types of mammalian muscles. Implication 
and transfer of her personal conclusions to managements 
of neuromuscular disorders were her second main 
interest. Gerta Vrbová made a career out of studying 
nerves, though her own were made of steel. Twice she 
escaped brutal regimes: once by jumping from a window 
to flee the Nazis, and later by crossing from 
Czechoslovakia to Poland on foot with two young 
children in tow to escape the communists. Her troubles 
began in her home town of Trnava, in western Slovakia, 
in 1939. Jewish people faced discrimination and the 12-
year-old was excluded from school. Rudi Vrba, an old 
school friend who was two years her senior, helped with 
her studies. She recalled a bicycle trip one summer day 
in 1939 with another friend, Marushka, who announced 
that they could no longer meet because Gerta was Jewish. 
We leave to others to stress the courage and 
determination of Gerta to achieve scientific results and to 

overcome tremendous personal obstacle along her long 
life.1,2 This issue, Ejtm 31 (1), 2021, opens with the 
personal obituary authored by Dirk Pette who remember 
his lifelong collaboration with Gerta, describing the 
many molecular and metabolic events that occur by 
changing the pattern of activation of adult muscle fibers 
through neuromuscular low frequency electrical 
stimulation.3 
To honor Gerta Vrbová and her scientific legacy, I add 
below my own memories. I meet Gerta for the first time 
in 1980, when she was visiting Prof. Massimiliano Aloisi 
at the Institute of General Pathology of the University of 
Padova, Italy. As the last young fellow of Prof. Aloisi, I 
was invited to present her my first-name paper on long 
term denervated rat hem-diaphragm.4 She was very 
pleased to hear that in the six-month denervated hemi-
diaphragm (a very mixed muscle) almost only fast-type 
Myosin Light Chains were present, a molecular result 
fully in agreement with the Gerta’s seminal observations 
that denervation, depriving the slow-type muscle fibers 
of the continuous stimulation of the slow-type 
motoneurons, shortened the contraction time of the slow-
type muscles.5-7 Her warm attention was the main support 
to my commitment to continue those studies during the 
following decades, independently from other 
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international  researchers, but heartened from many 
concordant results of prestigious groups, including, 
beside Gerta and Dirk Pette,8-10 Stanley Salmons,11-13 and 
Terje Lomo.14-20 Specifically, Terje had pioneered, often 
in collaboration with Stefano Schiaffino,21 the 
experimental model of low-frequency full-day electrical 
stimulation of  denervated muscle in the rat model, to 
avoid the criticism that, stimulating the nerve, an 
antidromic adaptation of the motoneurons may occur 
before transformation of the innervated muscle fibers of 
the motor units. Further strong evidence negating that 
option were convincingly discussed by Terje Lømo 
during a Lecture at the 2014 Padua Muscle Days.22 
The criticisms of course remained that our observations 
were restricted to the denervated hemi-diaphragm, a 
peculiar experimental model in which the denervated 
muscle fibers continued to be passively stretched by the 
innervated contralateral hemi-diaphragm. Encouraged by 
the suggestion of Gerta that that was further evidence that 
the denervated muscle fibers were able to respond to 
induced passive-stretch in absence of direct contact with 
the motoneuron terminals and by the accumulating 
evidence that the muscle fibers may develop and partly 
differentiate in vitro in the absence of neural contacts [see 
for a recent short account of the history of this topic]23,24 

soon after the visit of Gerta to Padova, we firstly 
extended our observations to long term denervated and 

reinnervated leg muscles,25 then in a conclusive paper in 
the Journal of Cell Biology (1985),26 we demonstrated a 
substantial slow to fast transformation of the denervated 
rat hemi-diaphragm by electron microscopy analyses 
(evidence of severely decreased mitochondria, 
pathological features of membranes of sarcoplasmic 
reticulum (SR) and regeneration of muscle fibers), by 
single fibers analyses of myosin heavy chains (MHC) 
(evidence that MHC of fast type accumulate at the 
expense of the slow type) and by 2D SDS Gel 
electrophoresis of myosin light chains (MLC) and 
parvalbumin (again, clear prevalence of the fast type 
characteristics). With our surprise, we were able to 
analyze a large numbers of muscle fibers up to 16 months 
after phrenectomy.26 All those results indicated that, after 
reaching a severe atrophic status 3 months after 
denervation, all types of denervated muscle fibers: i) 
maintain a residual 10% mass; ii) resting fast fibers 
continue to show their features, while iii) previously slow 
fibers acquire partially or almost completely fast type 
molecular characteristics. 
In 1986, under the influence of results of Terje Lømo, we 
developed an independent experimental model of 
electrical stimulation of denervated rat leg muscle, 
showing that the fast muscle fibers of the fast-type 
extensor digitorum longus (EDL) rat muscle, submitted 
to continuous slow-like electrostimulation, switch-on the 

 
 
Fig 1. Gerta Vrbová at the 2017 Padua Muscle Days: Translational Myology for Impaired Mobility – Thermae 

of Euganean Hills, Padua, Italy, March 23-25, 2017. From left to right: Ugo Carraro, Fanny Pette, Gerta 
Vrbová, and Dirk Pette. 
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genes of slow myosin in denervated fast-type muscle 
fibers.27 Thus, adult fast and slow skeletal muscles are 
composed of a large number of fibers with different 
physiological and biochemical properties that under 
neuronal control can respond in a plastic manner to a 
variety of stimuli. Although muscle cells synthesize 
muscle-specific contractile proteins in the absence of 
motoneurons, after innervation the type of motoneuron 
controls the particular set of isoforms subsequently 
synthesized. However, agreement had not been reached 
on the mechanism, either chemotrophic or impulse-
mediated, by which the nerve influences gene expression 
of the skeletal muscle fibers. In that study,27 we reported 
the effect on isomyosins of continuous, low-frequency (a 
protocol mimicking the discharge pattern of the slow 
motoneuron) direct electrical stimulation of a 
permanently denervated fast muscle, the extensor 
digitorum longus of adult rat. After several weeks, unlike 
sham-stimulated muscle, the stimulated muscle showed a 
dramatic increase of the slow myosin light and heavy 
chains. Myosin light chains were identified by two-
dimensional gel electrophoresis. The slow myosin heavy 
chains were clearly distinguished from fast and 
embryonic types by one-dimensional sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis and 
orthogonal peptide mapping. The myosin changes could 
be restricted to a portion of the muscle by the position of 
the stimulating electrodes. Taking into account the 
morphologic appearance of the electrostimulated muscle 
and the large body of evidence demonstrating the 
absolute dependence of slow myosin on specific 
innervation, our observations indicated that at least the 
slow motoneuron influences the isomyosin genes' 
expression by the kind of activity it imposes on 
developing muscle fibers. I am still wondering if the 
protocol we used in Padova, that was able to induce in 
the denervated fast-type EDL of rats high levels of 
expression of slow-type light and heavy chains found 
their rational in the fact that we increased the current 
duration of each impulse from  0.4 to 4.0 milliseconds.27 
Meantime Gerta Vrbová and Stanley Salmons proposed 
the use of electrical stimulation to increase resistance to 
fatigue of skeletal muscles for different managements of 
neuromuscular disorders, among others Duchenne 
Muscular Dystrophy,28,29 and for the support of 
insufficient circulation by Cardiomyoplasty,30 or of 
sphincter muscles.31 Meanwhile, electrical stimulation of 
the diaphragm has become an accepted clinical approach 
for patients with respiratory paralysis and intact phrenic 
nerves. Indeed, continuous simultaneous pacing of both 
hemi diaphragms with low-frequency stimulation and a 
slow respiratory rate is a satisfactory method of providing 
full-time ventilation support.32-36 In collaboration with 
the University of Bologna (Italy), we have been involved 
in a ten-year research project on cardiomyoplasty, testing 
the concept of dynamic cardiomyoplasty on demand. We 
were inspired by the differential effects on the contractile 
properties, population of fibers, myosin light chains and 

enzymes of energy metabolism of different periods of 
intermittent or continuous electrical stimulation of fast-
twitch muscles (Gerta Vrbová and Dirk Pette).37 Both in 
normal sheep,38 and in patients suffering with chronic 
heart failure, the latissimus dorsi responded to daily 
intermittent electrical stimulation reaching intermediate 
contractile characteristics during its fast lo slow 
transition induced be the on Demand (intermittent) 
stimulation protocol.39 The partially maintained fast type 
contractions of the patient muscle wrapped around the 
falling heart allowed to synchronize the pace-maker-
induced tetanic contractions with the heart systole, 
avoiding interference with the diastolic function. 
Specifically, during assisted systolic contractions cardiac 
ejection fractions of heart failure patients were 
increased.40-42 

Always supported by interest and suggestions of Gerta, 
from 2000, in collaboration with Prof. Helmut Kern of 
Vienna (Austria) we were able to show in a study 
supported by the EU Commission [(RISE - Use of 
electrical stimulation to restore standing in paraplegics 
with long-term denervated degenerated muscles (QLG5-
CT-2001-02191)] that a home-base protocol using long 
currents (up to 150 milliseconds) is able to reverse severe 
atrophy of permanent denervated human muscles, up to a 
level to allow stimulation-induced standing and pacing-
in-place exercise.43-49 For an example see the 
supplementary material in Kern H, Carraro U (2020)50: 
Home-based Functional Electrical Stimulation (hbFES) 
assisted stand-up exercise.51  
One of the effects of spinal cord injury (SCI) is rapid loss 
of contractile force and muscle mass, but atrophy of leg 
muscles is particularly severe when the injury destroys 
the soma of the lower motoneurons and, hence, the 
contacts between skeletal muscle fibers and motoneurons 
are permanently lost. Within weeks after SCI, muscles 
become unable to sustain tension during tetanic 
contractions induced by electrical stimulation.52-54 
Within months after a complete injury of the conus 
medullaris and cauda equina, the muscles are no longer 
excitable by commercially available electrical 
stimulators.55 This is because they have undergone severe 
disorganization of contractile elements (i.e., of the 
myofibrils) and of the excitation-contraction coupling 
(ECC) apparatuses. Finally, after several years of LMN 
denervation, human muscle fibers are almost completely 
replaced by adipose and fibrous tissues.44-46 This severe 
degeneration of muscle tissue does not occur in patients 
with upper motoneuron lesions even 20 years after 
thoracic-level SCI.56 To substantiate the functional and 
molecular mechanisms that allow muscle fibers to 
survive long-term denervation, we meantime performed 
experiments in a rat model of long-term denervation by 
analyses not possible in humans for obvious ethical 
concerns. The results are summarized in the abstract of a 
paper published by Squecco R, et al. (2009).57  
To define the time course and potential effects of 
electrical stimulation on permanently denervated 



Gerta Vrbová, a guide and a friend  
Eur J Transl Myol 31 (1): 9670, 2021 doi: 10.4081/ejtm.2021.9670 

- 4 - 
 

 

muscles, we evaluated ECC of rat leg muscles during 
progression to long-term denervation by ultrastructural 
analysis, specific binding to dihydropyridine receptors, 
ryanodine receptor 1 (RYR-1), Ca2+ channels and 
extrusion Ca2+ pumps, gene transcription and translation 
of Ca2+-handling proteins, in vitro mechanical properties 
and electrophysiological analyses of sarcolemmal 
passive properties and L-type Ca2+ current (ICa) 
parameters. We found that in response to long-term 
denervation: i) isolated muscle that is unable to twitch in 
vitro by electrical stimulation has very small myofibers 
but may show a slow caffeine contracture; ii) only 
roughly half of the muscle fibers with voltage-dependent 
Ca2+ channel activity are able to contract; iii) the ECC 
mechanisms are still present and, in part, functional; iv) 
ECC-related gene expression is upregulated; and v) at 
any time point, there are muscle fibers that are more 
resistant than others to denervation atrophy and 
disorganization of the ECC apparatus. These results 
support the hypothesis that prolonged “resting [Ca2+]” 
may drive progression of muscle atrophy to degeneration 
and that electrical stimulation-induced [Ca2+] modulation 
may mimic the lost nerve influence, playing a key role in 
modifying the gene expression of denervated muscle. 
Hence, these data provide a molecular explanation for the 
muscle recovery that occurs in RISE SCI patients in 
response to the rehabilitation strategies developed on the 
grounds of empirical clinical observations.44-51 
Gerta maintained her interest for the myology activities 
of the Interdepartmental Research Center of Myology of 
the University of Padova (CIR-Myo), even after she was 
more than 85 years old. Our relations were strengthened, 
indeed, after we discovered (getting out from a night bus 
after a dinner in Central London) that she was living in 
Muswell Hill just 10 walking-minutes from the house of 
my son’s family.  
She joined several times the PaduaMuscleDays, a 
meeting mainly devoted to translational research for 
skeletal muscle biology, management and rehabilitation. 
Last time it was in 2017, when she went together with 
Dirk Pette. During that meeting she accepted also to be 
interviewed on the importance for old people to stay 
physically and mentally active. She was, indeed, a 
witness (and herself a strong evidence, being in her 
ninety years) of the value of a very active life for the 
oldest olds. Readers may follow her advices at the 
YOUTUBE link:58  
https://www.youtube.com/watch?v=NJ9BPLquPWw   
During her career Gerta Vrbová published more than 270 
scientific papers, but her main role was to inspire a 
generation of successful researchers. Some were her 
postdoctoral fellows Maggie Lowrie,59 Angela 
Connold,60 Linda Greensmith,61 Roberto Naverrete,62 
Antal Nógrádi,63 and Katarzyna Sieradzan64, but 
independent scientists, among which I mention 
researchers studying nerve regeneration after partial or 
complete nerve injuries (Tessa Gordon, Canada)65 
electrical stimulation and muscle plasticity (Dirk Pette, 

Germany),3,8,9,66 electrical stimulation of denervated 
muscle in animal models, e.g., Terje Lomo, Norway,67 
and myself in Italy, working in both animal models and 
humans,68 and finally aging human muscles (Helmut 
Kern, Austria).69 Many of her pupils were brilliant 
enough to continue independent scientific careers and 
make major contributions to the fields of neuron diseases 
and injury, including amyotrophic lateral sclerosis and 
spinal muscular atrophy (Linda Greensmith in 
London),61 Parkinson’s, Huntington’s and Pompe 
diseases and epilepsy (Katarzyna Sieradzan in Bristol),64  
ventral root avulsion (Antal N Nógrádi in Szeged, 
Hungary)63,70 and in the field of locomotion (Urszula 
Slawinska in Warsaw, Poland).71 Her medical 
background explains her interest in translating 
experimental results into possible treatments for 
childhood genetic diseases of muscular dystrophy and 
spinal muscular atrophy, in collaboration with 
neurologists, Victor Dubowitz in London, UK,72 Milan 
Dimitrijevic in Houston, USA,73 and Irena Hausmanova-
Petrusewicz in Warsaw, Poland.74 Most of the latest 
opportunities found grounds on just two of her 
publications that inspired her a working hypothesis that 
changed the perspectives of interactions between skeletal 
muscle fibers and motoneurons, starting 50 years of 
studies still in need of further investigations.  
As is often the case in science and even more in 
translational research, there are now more open questions 
and hypotheses than before. Firm conclusions for some 
of the above discussed topics remain open to further 
researches, worth of significant founding by international 
sponsors. What is certain is that Gerta's legacy remains 
among the key preliminary results for supporting those 
grant applications. 

I will never forget Gerta’s friendship and support. 
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